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We study the influence of photons on the dynamics and the ground state of the atoms in a
Bosonic Josephson junction inside an optical resonator. The system is engineered in such a way
that the atomic tunneling can be tuned by changing the number of photons in the cavity. In this
setup the cavity photons are a new means of control, which can be utilized both in inducing self-
trapping solutions and in driving the crossover of the ground state from an atomic coherent state
to a Schrödinger’s cat state. This is achieved, for suitable setup configurations, with interatomic
interactions weaker than those required in the absence of cavity. This is corroborated by the study
of the entanglement entropy. In the presence of a laser, this quantum indicator attains its maximum
value (which marks the formation of the cat-like state and, at a semiclassical level, the onset of
self-trapping) for attractions smaller than those of the bare junction.

I. INTRODUCTION

A Bose Einstein condensate confined in a double-well
potential mimics in many ways the coherent dynamics of
a superconducting Josephson junction [1, 2]. Therefore,
it is often called a Bosonic Josephson junction (BJJ),
whose coherent dynamics can be described by the nonlin-
ear equations of a non-rigid pendulum [2]. Furthermore,
the investigation of the BJJ dynamics allows us to study
the formation of macroscopic coherent states [2, 3] and
macroscopic Schrödinger’s cat states [4–10]. When the
condensate is inside an optical resonator, the photon and
atomic degrees of freedom are no longer independent [11]:
there is a mutual back-action between the cavity and BJJ
dynamics. The photon field acts as an optical potential
on the atoms; at the same time, the atomic density serves
as a refractive medium for the cavity photons. Note that
the idea underlying this scheme is closely related to the
models discussed, within the optical lattices context, in
[12–14]. In an earlier paper it was shown, how the con-
stant photon field of a laser - tightly focused to the center
of the junction barrier - influences the tunneling proper-
ties by effectively raising or lowering the barrier, or ul-
timately allowing for a localized state inside the central
well [15]. Later it was also investigated, how the dynami-
cal nature of a cavity field - focused similarly to the center
of the barrier - alters the BJJ dynamics in the semiclas-
sical level [16]. The purpose of this paper is to study how
the photons influence the exact quantum dynamics and
the ground state of the junction, when the parameters
of the system are chosen in such a way that the cavity
field can be considered as fixed, i.e. in this bad cav-
ity case the photon field is practically a laser field. The
cavity photons alter the equations that describe the BJJ
dynamics [16], and we investigate how they can induce
self-trapping solutions. The study of the transition from
the Josephson regime to the self-trapping regime in the

semiclassical dynamics is complemented by the analysis
of the ground state. The crossover from the atomic co-
herent state to the Schrödinger’s cat state, can in fact be
regarded as the quantum counterpart to the semiclassi-
cal examination of the system. The ground state of the
system is analyzed using three quantum indicators: the
Fisher information, the coherence visibility and the en-
tanglement entropy. This last estimator proves to play a
central role in understanding when the transition takes
place.

II. THE MODEL

Here we consider a hybrid system consisting of a BJJ
and an optical cavity, whose field is interacting with the
atoms. The scheme is identical to that of Ref. [16]
and is illustrated in Fig. 1. The BJJ in our system
is made of an interacting Bose-Einstein condensate in
a symmetric double-well potential. Its Hamiltonian in
second-quantized form reads as

ĤA =

∫
d3r Ψ̂†(r)

[
− ~2

2m
∇2+V (r)+

g

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r),

(1)

where Ψ̂(r) annihilates an atom at position r = (x, y, z).
Low energy atom-atom scattering is characterized by g =
4π~2a/m, where a is the s-wave scattering length, and m
is the mass of an atom. The confining potential is

V (r) = VDW (x) +
1

2
mω2

H(y2 + z2) , (2)

where VDW (x) is the double-well potential in the x di-
rection, while we assume tight harmonic confinement in
the transverse direction, with trap frequency ωH .

The optical cavity is a single-mode high-Q Fabry-Pérot
resonator, whose axis is orthogonal to the double-well di-
rection as depicted in Fig. 1. We choose the y direction

ar
X

iv
:1

50
9.

02
85

8v
2 

 [
qu

an
t-

ph
] 

 2
 N

ov
 2

01
5



2

x

y

pumping laser

double well

EM field profile

FIG. 1. (Color online) The illustration of the setup. The
bosonic Josephson Junction is created by magnetic or optical
means along the x direction. A Fabry-Pérot cavity is placed
around the junction with an axis orthogonal to the junction.
The resonator is operated on the TEM00 mode.

for the cavity axis. The cavity has characteristic fre-
quency ωC , it is pumped through one of its mirrors with
a laser of frequency ωL and amplitude η, and it is op-
erated at the TEM00 mode. The mode function of the
cavity is

f(r) =

√
2

L
cos(k y)

e−(x
2+z2)/(2σ2)

π1/2σ
, (3)

with k = ωC/c is the wave number of the cavity mode,
L is the distance between the mirrors and σ is the width
of the Gaussian profile in the (x, z) plane.

The cavity dynamics, in the frame rotating with the
frequency ωL of the laser drive, is governed by the Hamil-
tonian

ĤC = −~∆CN̂L − i~η(â− â†). (4)

Here ∆C = ωL − ωC is the cavity detuning, η is the
pumping strength of the driving laser, â is the annihi-
lation operator of a cavity photon and N̂L = â†â is the
photon number.

The condensate atoms have an electronic ground state
and an excited state, with transition frequency ωA. We
assume that the atomic detuning, ∆A = ωL − ωA, is
large enough to the excited state population to be neg-
ligible all the time, and the atoms to behave as polariz-
able scalar particles. Therefore, their interaction with the
cavity field is described by dispersive photon scattering
[11], which shifts the cavity resonance frequency propor-
tional to the atom number, and on the atomic degrees of
freedom it creates an optical potential. This additional
atom-light interaction term reads as

ĤAL = ~U0â
†â

∫
d3rf2(r)Ψ̂†(r)Ψ̂(r), (5)

where the strength of the interaction is U0 = Ω2
R/∆A,

with ΩR the single-photon Rabi frequency. As the cavity
field is focused symmetrically to the center of the double-
well barrier, the optical potential creates a light shift
symmetric in the wells, and lowers (raises) the height
of the barrier for red (blue) detuned atoms.

When the double-well barrier is sufficiently high, the
lowest energy doublet is well separated from the rest of
the spectrum. In this case the atomic dynamics can be
constrained to the two-mode Fock space of the left and
right valleys [2] and the atomic field operator can be ap-
proximated as

Ψ̂(r) =
(
w1(x) b̂1 + w2(x) b̂2

) e−(y2+z2)/(2l2H)

π1/2lH
, (6)

where b̂1 and b̂2 are the annihilation operators of a bo-
son in the Wannier-like states w1(x) and w2(x), cen-
tered around the minima of the left and right valleys,
respectively. The characteristic length of the strong
harmonic confinement in the (y, z) plane is given by

lH =
√
~/(mωH). In this limit, the Hamiltonian de-

scribing the BJJ dynamics is evaluated by inserting the
field operator (6) into the atomic Hamiltonian (1),

ĤBJJ = ε N̂−J
(
b̂†1b̂2 + b̂†2b̂1

)
+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
,

(7)
The parameters ε, J > 0 and U are the on-site energy
of a single well, the tunneling amplitude and the on-site
interaction energy, respectively. The values of these pa-
rameters are written in terms of overlap integrals of the
Wannier functions [16].

Similarly, the atom light interaction (5) evaluates to

ĤI = N̂L

[
W0N̂ +W12

(
b̂†1b̂2 + b̂†2b̂1

)]
. (8)

The term with W0 is the symmetric AC-Stark shift, while
the W12 term is the consequence of the lowering of the
barrier. This latter can be understood as a cavity assisted
tunneling contribution. The value of the parameters W0

and W12 are also expressed as overlap integrals [16]. The
full Hamiltonian of the system can be written as:

Ĥ = ĤBJJ + ĤC + ĤI

= (ε+W0N̂L) N̂ − (J −W12N̂L)
(
b̂†1b̂2 + b̂†2b̂1

)
+

+
U

2

(
b̂†1b̂
†
1b̂1b̂1 + b̂†2b̂

†
2b̂2b̂2

)
− ~∆CN̂L − i~η(â− â†) ,

(9)

A more detailed derivation of the Hamiltonian can be
found in Ref. [16]. In this configuration, W0 and W12 can
be either positive or negative since they are proportional
to the atomic detuning ∆A [16]. If the atoms are red
detuned, i.e. ∆A < 0, both W0 ,W12 < 0; while for
blue detuning, i.e. ∆A > 0, one has W0 ,W12 > 0. The
geometry of the system has a remarkable advantage: the
cavity photons can influence the tunneling of the atoms
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between the two wells of the potential, as opposed to
previous proposals of this type of system [17–19] which
considered only the effect of the cavity photons on the
on-site energies of the BJJ.

III. SEMICLASSICAL APPROXIMATION

Let us assume that the system is in a full coherent
state, in which both the atoms in the right and left
well, and the cavity photons are described with coherent

states: |FCS〉 = |β1〉 ⊗ |β2〉 ⊗ |α〉, where b̂j |βj〉 = βj |βj〉
and â|α〉 = α|α〉. It is convenient to write the eigenvalues
of the atomic coherent state as: βj =

√
Nj e

iθj , where
Nj the average number of atoms in the j-th well and θj
the corresponding phase, and similarly α = ξ eiφ, where
NL = ξ2 is the average number of photons in the cav-
ity and φ the corresponding phase. The dynamics of the
system can be described by a set of four ordinary differen-
tial equations for the fractional imbalance of the atomic
population of the wells z = N1−N2

N , the atomic relative
phase θ = θ2 − θ1, and the photon variables ξ and φ
[16]. The photon dynamics can be adiabatically elimi-

nated when δC = ∆C −N(W0 + W12

√
1− z2 cos θ)/~ is

orders of magnitude larger than ~−1ν = (J −W12ξ
2)/~2

[11]. When the magnitude of the cavity detuning ∆C is
much larger than that of NW0/~ and NW12/~ the sys-
tem is described by:

ż = −2ν̃
√

1− z2 sin θ, (10a)

θ̇ =

(
g̃ +

2 ν̃√
1− z2

cos θ

)
z, (10b)

where ν̃ = (J −W12ξ
2)/~ = (J −W12η

2/δ2C)/~. When
these conditions are satisfied, the photon field ampli-
tude ξ can be considered to be constant in time and
ξ = η/|∆C |. This set of equations is very similar to
the Josephson equations for a bare Josephson junction.
But here, because of the cavity photons, the tunneling
amplitude J is substituted with the assisted tunneling
amplitude J̃ = J −W12ξ

2. In the case of the bare BJJ
the solutions to these equations can be divided into two
classes. One is characterized by oscillations around z = 0
and therefore the time average of the population imbal-
ance is zero (Josephson regime). The second class of
solutions is characterized by an average imbalance in the
population of the wells (Self-trapping regime). However,
in our system, the cavity photons can be used to induce
self trapping solutions for initial conditions and param-
eters that would not allow them in the bare junction.
When U > 0 and J̃ > 0, the self trapping occurs when
[20]:

Λ

2
z2(0)−

√
1− z2(0) cos θ(0) > 1. (11)

where Λ = UN/2J̃ and z(0) and θ(0) are the initial con-
ditions to the equations. Since Λ depends on the number
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FIG. 2. (Color online) The highlighted area in the panels shows
the values of z, U and θ that allow self trapping. In the first column
for a fixed θ = 0 and in the second column for a fixed U = 12J/N .
The difference between the two rows is the number of photons in
the cavity. In the first one ξ2 = 0 and J̃ = J , in the second ξ2 = 25
and J̃ = 0.25J . It is clear that, because of the cavity photons,
the highlighted area gets wider and therefore the appearance of
the self trapping is assisted. The other parameters are N = 1000,
NW12 = 30J . U is written in units of J .

of cavity photons ξ2, in our system we have one more
relevant parameter that allows us to switch between dif-
ferent regimes. By comparing the panels in Fig. 2, it
can be clearly seen what the effect of changing the num-
ber of photons is when W12 > 0. In particular we notice
how increasing the number of photons widens the area
that allows self trapping solutions. The photon-induced
change of regime can be clearly seen from Fig. 3. The
left panel shows the time evolution of z in the Josephson
regime, in the absence of photons. The right panel shows
the time evolution when the cavity photons are present
in the system: it can be clearly seen that the photons
induce oscillations around a non-zero average value of z.
The cavity photons can be therefore used as a means of
inducing self trapped solutions that would not otherwise
occur in the absence of the cavity.

IV. EXACT DIAGONALIZATION

We now want to show how the cavity photons influ-
ence the ground state of the system. In order to do this,
we describe the photons with a coherent state |α〉, but
we describe the atoms in the wells in a purely quantum
way. To this end we use Fock states as basis vectors
in the atomic Hilbert space. Furthermore, we assume
that the photon field relaxes quickly and this allows us
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FIG. 3. (Color online) Time evolution of the variable z. Time is
measured in units of ~/J . The first panel represents the bare junc-
tion in the absence of the cavity. The second one shows the junction
inside of the cavity. The solid lines represent the numerical solution
of the system (10), where the photon variables are constant. The
dashed line represents the solution of the system where the photon
dynamics has not been adiabatically eliminated. When there are
no photons, the system is in the Josephson regime, while when the
photon number is increased the system is in the self trapped regime.
The parameters for the second panel are: ~∆C = 300J , W0N = 4J ,
W12N = 3J , UN = 12J , N = 1000, ~η = 3000J . The initial con-
ditions for the first panel are for (z, θ) = (0.7, 0). The initial condi-
tions for the second panel are (z, θ, ξ, φ) = (0.7, 0, 10.17, π/2). The
inset plot represents the frequency ω of the small oscillations of z
written as a function of the number of cavity photons ξ2 . ω is writ-
ten in units of J/~. The range of ξ2 is given by the condition for the
system to show small oscillations. The other relevant parameters
for the inset are N = 1000, UN = 0.012J and W12N = 0.03J .

to consider the photon coherent state to be a parameter
on which the atomic ground state depends. The ground
state of the atomic field for a given photon field coher-
ent state |α〉 can be written as: |GS〉α =

∑
n cn(α)|n〉,

where |n〉 = |N − n, n〉 is an element of the Fock basis
{|n〉, n = 0, 1, ..., N} and N is the total number of atoms.
The element of the Fock basis |n〉 describes the state in
which n atoms are in the right well and N −n in the left
well. The coefficients cn(α) clearly depend on the photon
field. So the ground state of the system can be written
as |GS〉 = |α〉 ⊗ |GS〉α, which is the tensor product of
the coherent state of the photon field and of the atomic
ground state for that field strength. In order to calculate
the ground state coefficients cn(α) the matrix elements
of the Hamiltonian that needs to be diagonalized are:

Hm,n(α) =−
(
J −W12|α|2

)
(
√
N −m

√
n δm,n−1

+
√
N − n

√
mδm,n+1) +

U

2
[(N − n)(N − n− 1)

+ n(n− 1)]δm,n,

(12)

If we assume that the photon field relaxes very fast, then
i~ d

dtα = 0 leads to a relation between α and the ground
state coefficients cn(α) that needs to be satisfied in order
for the computation of the ground state to be consis-
tent. This makes the amplitude of the photon field |α〉
dependent on the parameters that appear in the Hamil-
tonian and on the coefficients cn(α) as well. The anal-
ysis of the ground state can however be simplified when
|∆C | � |W0|N/~ and |∆C | � |W12|N/~. When such
conditions are satisfied α depends weakly on the coeffi-
cients cn(α). Therefore, for any starting number of pho-
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FIG. 4. (Color online) Coefficients |cn(α)|2 of the ground state
as a function of n/N for N = 1000. In panel (a) W12 = −0.03J
and in panel (b) W12 = 0.03J . The on-site interaction is nega-
tive U < 0. The solid line represents the system in the absence
of cavity photons, |α|2 = 0, while the dashed line represents the
system when |α|2 = 1. The effect of the cavity photons in (a) is
to increase the coherence of the ground state for a given negative
on-site interaction U , and thus delay the transition to the regime
in which a valley appears in the middle of the distribution of the
coefficients |cn(α)|2. The effect of the cavity photons in (b) is the
opposite. The coherence of the ground state decreases for a given
negative on-site interaction U , and thus the photons assist the tran-
sition to the regime in which a valley appears in the middle of the
distribution of the coefficients |cn(α)|2. In both cases the ground
state is showed for four values of U . The coefficients |cn(α)|2 are

adimensional and normalized so that
∑N

n=0 |cn(α)|2 = 1. n/N is
adimensional.

tons |α|2 the above procedure gives as result the starting
|α|2. The number of photons in the system can thus
be modified by changing the values of η and ∆C . Under
this approximation we only need to study how the ground
states of the Hamiltonian with the assisted tunneling is
influenced by the presence of the photons. In the ab-
sence of the cavity, and thus |α|2 = 0 the ground state of
the BJJ can show three limit behaviors depending on the
value of the ratio U/J [21]. When U/J = 0 the ground
state is an atomic coherent state (ACS), where the dis-
tribution of the |cn(α)|2 has a gaussian profile. For large
values |U/J | the ground state can be found in two config-
urations, depending on the sign of U/J . When U/J > 0
the ground state is a separable Fock state, where half of
the atoms are in the right well and half in the left one.
When U/J < 0 the ground state is a ”cat state”, which
is the linear combination of the state with all particles
in the left or in the right well. Changing the interaction
strength U/J leads to a continuous transitions between
these three kinds of state.

The correlation properties of the ground state can be
analyzed by using the Fisher information F [22, 23] and
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FIG. 5. (Color online) Fisher information F , coherence visibility
αV and entanglement entropy S, plotted as a function of the on-
site interaction U , which is written in units of J , for N = 1000.
In panel (a) W12 = −0.03J and in panel (b) W12 = 0.03J . The
solid line represents the system when |α|2 = 0, while the dashed
line represents the system when |α|2 = 1. The on-site interaction is
attractive U < 0. The plots of the quantum indicators complement
those of Fig. 4. In the presence of photons F is smaller when
W12 < 0 and larger when W12 > 0, compared the the solid line,
since F is related to the distribution width of the cn(α). αv is larger
for W12 < 0 and smaller for W12 > 0 compared to the solid line
as the photons increase and decrease the coherence respectively.
As for S, whose maximum represents the value of U at which the
distribution of the |cn(α)|2 starts to show a valley [21], comes for
a larger |U | for W12 < 0 and for a smaller |U | for W12 < 0. F, αv

and S are dimensionless.

the coherence visibility αv [24]. The definition for these
two estimators can be found in [21]. In particular, F gives
the width of the distribution of |cn(α)|2 and αv charac-
terizes the degree of coherence between the two wells. We
are interested in characterizing also the genuine quantum
correlations between the atoms in two wells pertaining
to the ground state. Here we focus on the atom part
only and address this issue from the bi-partition per-
spective with the two wells playing the role of the two
partitions. Following the same path as in [21, 25] we
thus calculate the entanglement entropy S [26] that re-

sults in S = −
∑N
n=0 |cn(α)|2 log2 |cn(α)|2. Remarkably,

S, plotted as a function of U , shows a maximum at the
onset of the transition to the ”cat-like” state regime in
which the distribution of the |cn(α)|2 begins to exhibit
a valley. The Hamiltonian we need to diagonalize in Eq.
(12) differs from the Hamiltonian of a Bosonic Josephson
Junction only for the value of the tunneling amplitude,
which we will call J̃ = J −W12|α|2. The magnitude and

sign of J̃ depend on both W12 and on the photon number
|α|2.

When W12 < 0 the assisted tunneling amplitude J̃ is
always positive and its magnitude gets larger as the num-
ber of photons in the system |α|2 increases. Let us choose

W12 = −0.03J and plot together the ground states for
various values of U for |α|2 = 1 and therefore J̃ = 1.03J .
We always plot the ground state of the bare junction,
with |α|2 = 0, to use as a reference. In panel (a) of
Fig. 4 and of Fig. 5 we can see what happens when the
on-site interaction U is negative. When the interaction
is positive, the effect of the photons is still to delay the
transition to the separable Fock state.

When W12 > 0 the assisted tunneling amplitude J̃
gets smaller when increasing the number of photons in
the cavity. This can lead to two main consequences. On
the one hand, if the number of photons is sufficiently
small, J̃ maintains its positive sign but its magnitude
gets smaller and 0 < J̃/J < 1. On the other hand if the
number of photons is large enough the assisted tunnel-
ing can become negative J̃/J < 0. When 0 < J̃/J < 1
we can plot the ground states of the system, for differ-
ent values of negative U , and for |α|2 = 1, and therefore

J̃ = 0.97J . We can see from panel (b) of Fig. 4 and
of Fig. 5 that the effect of the photons in this case is
opposite to the effect when W12 is negative. When the
interaction is positive, the effect of the photons is still
to assist the transition to the separable Fock state. It is
worth mentioning that this result is actually more inter-
esting then the sole rescaling of the ratio U/J . Focusing
our attention on the attractive on-site interaction and
on the emergence of the ”cat-like” state regime we can
notice a fundamental difference. For a fixed number of
atoms in the system, in the bare Josephson junction, the
transition to the ”cat-like” state regime happens for a
definite value of U/J . However, in the complete system,
with a positive W12, by fine tuning the number of cav-
ity photons the transition to the ”cat-like” state regime
can happen for a given magnitude of negative U , without
changing the number of atoms. This means that the pho-
tons in the system act as a new knob through which the
transition between different regimes can be manipulated.
The change of the sign of J̃ is significant when analyzing
the Hamiltonian of the system. In the case of the bare
Josephson junction J can always be taken to be positive.
However, by numerically calculating the ground state of
the system we found out that the sign of J̃ bears no rel-
evance to the coefficients |cn(α)|2 and to the value of the
quantum indicators. Therefore, choosing values of |α2|
such that the values of the assisted tunneling amplitude
J̃ is the same as the ones we have just studied, but with
opposite signs, leads to the same results. It is interest-
ing to notice this analogy between the case with positive
J̃ and negative J̃ . One would at first think that, since
the relevant parameter in the analysis is the ratio U/J̃ ,

when J̃ is negative, the same results could be obtained
by changing the sign of U as well, however this is not the
case.
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V. SUMMARY

To summarize, we have shown that the cavity photons
can be used to induce self-trapping solutions in the dy-
namics of the Josephson junction. Moreover we have de-
scribed how the transition from the atomic coherent state
to a ”cat state” can be delayed or expedited, depend-
ing on the photon-assisted tunneling amplitude. This
analysis lays the first stone of the quantum study of this
system. Possible extensions to this work could be the
study of the ground state when the |∆C | � |W0|N/~
and |∆C | � |W12|N/~ conditions no longer hold. This
would lead to the same ground states we have already
found, but the photon number of the cavity would de-
pend on the other parameters of the system. Moreover
one could try to better understand the transition between
the atomic coherent state and the cat state, by comput-
ing the relevant critical indices for F and αv.

The setup considered here can be implemented directly
due to the current feasibility of trapping ultracold bosons
in double-well potentials [27–29] and to fabricate high-
finesse optical cavities supporting quantum degenerate
bosonic clouds [30–32]. The experiment deriving from
the suitable combination of these two parts would pro-
vide a powerful tool for observing the Josephson–self-

trapping crossover, an issue addressed with bare BJJs
[27] and creating entangled states of matter. In this con-
text, experimentalists could have the concrete possibility
to receive feedback on the shift of the crossover above by
using the number of cavity photons as a knob. The setup
considered in Ref. [31] is extremely appealing, where
the Fabry-Pérot cavity is assembled on top of an atom
chip, where wires suitable for the double-well potential
can be easily placed too. On such a device one has to
fine tune experimental parameters that mainly consist
in the proper matching of the double-well dimensions (a
barrier width of a few microns) with those of the waist
of the cavity (also in the range of a few microns).
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Krüger, Nat. Phys. 1, 57 (2005).

[29] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Na-
ture 449, 579 (2007).

[30] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl,
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