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ABSTRACT

By using the current photometric rotational data on eight galactic open clusters, we show that the evolutionary stellarmodel
(isochrone) ages of these clusters are tightly correlated with the period shifts applied to the (B − V)0–Prot ridges that optimally
align these ridges to the one defined by Praesepe and the Hyades. On the other hand, when the traditional Skumanich-type multi-
plicative transformation is used, the ridges become far less aligned due to the age-dependent slope change introduced by the period
multiplication. Therefore, we employ our simple additive gyro-age calibration on various datasets of Galactic field stars to test its
applicability. We show that, in the overall sense, the gyro-ages are systematically greater than the isochrone ages. The difference
could exceed several giga years, depending on the stellar parameters. Although the age overlap between the open clusters used in
the calibration and the field star samples is only partial, the systematic difference indicates the limitation of the currently available
gyro-age methods and suggests that the rotation of field stars slows down with a considerably lower speed than we would expect from
the simple extrapolation of the stellar rotation rates in open clusters.
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1. Introduction

Gyrochronology (the determination of stellar ages from their ro-
tation periods and colors) has gained considerable popularity in
recent years, largely due to the speedily accumulating observa-
tional data on open clusters. These data suggest that stars,after
several ten million years of formation, settle on a fairly well-
defined ridge in the color−rotation period (Prot) diagram. By
comparing cluster data of various ages, it turned out that the
height of these ridges (i.e., the rotation periods at each color)
increases as the cluster is aging. This property has first been
recognized by Skumanich (1972) (see also Kraft 1967) and has
later been elaborated by many authors both observationally(e.g.,
Barnes 2003) and theoretically (e.g., Kawaler 1988). Although
differing in details, it is widely accepted that the slowing-down
of the rotation is due to the angular momentum loss by magne-
tized stellar wind (as first described by Schatzman 1962), and
the rotation period is scaled as the square root of the stellar age
(as suggested first by Skumanich). A comprehensive description
of the current status of the field of stellar rotation can be found,
for example, in Bouvier (2013).

The success of the applicability of gyrochronology depends
on various factors, most importantly on the validity of the rela-
tion derived from open clusters for other stars. Based on a rather
limited sample, Barnes (2009) have shown that both the chromo-
spheric and the isochrone ages are considerably greater than the
gyro-ages derived from his formulae. Similarly, Brown (2014)
investigated a more extended sample of transiting extrasolar
planet host stars and found hints of this effect. Two very re-
cent papers seem to further strengthen this observation. Angus
et al. (2015) performed a Monte Carlo Markov chain analy-
sis by using 310 asteroseismic targets from the archive of the
Kepler satellite, a few well-studied fields stars from otherear-
lier works, and data on two open clusters. They calibrated the
formula of Barnes (2003) on this merged dataset. They found

that the marginalized likelihoods of the gyro-parameters exhibit
multiple maxima. The authors suggest the presence of multiple
rotation-color-age populations and raise concerns for thecur-
rently applied method of gyrochronology. In a further paper,
Maxted, Serenelli, & Southworth (2015) found strong evidence
for the younger gyro-ages of many of the 28 extrasolar planet
host stars in their sample (largely discovered by ground-based
surveys). They searched for a possible cause of the discrepancy
within the framework of tidal interaction between the planet and
the host, but they found no compelling evidence for a relation
between the gyro-age and the computed timescale of tidal inter-
action.

There are also technical details, including the transformation
of the color and period values to stellar ages. This is usually done
by the type of formulae introduced by Barnes (2003), where, by
maintaining the Skumanich-type age dependence, the color de-
pendence of the period is represented by a multiplicative factor
that entirely depends on the color. We show that this representa-
tion is suboptimal because it does not lead to the cleanest average
color−Prot ridge when, using the prescribed time-dependence,
all periods are transformed to the same age. Yet another, equally
important question is if the target star has already reached(and is
still in) the rotationally settled state (corresponding tosequence
‘I’ in the nomenclature of Barnes 2003). Open clusters are vital
objects to define this state since their members are assumed to be
coeval, leading to a topographically well-defined ridge structure
in the color−Prot plane. However, for individual targets we do
not have any criterion to decide whether they are in the rotation-
ally settled state, except that we assume that for their estimated
ages they are. This is a general problem in the applicabilityof
gyrochronology.

The purpose of this paper is to derive an updated relation be-
tween the color, rotation period, and age of rotationally settled
stars in open clusters and employ this relation on various inde-
pendent datasets to test the new formula against isochrone ages
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Fig. 1.Multiplicative vs. additive ridge alignments. Upper panels
show the result of the exact Skumanich-type period scaling with
Prot → Prot

√
tM44/tcluster, wheret stands for cluster ages. The

scaling factors are displayed in the boxes. The lower panelsshow
the same test with the additive scaling ofProt → Prot + c, where
c is the period shift as shown in the corresponding boxes. The
fiducial ridge (see Eq. (3)) is plotted as a light color continuous
line.

and, if possible, improve the gyro-method and extend its appli-
cability. Except for using the isochrone ages, we stay within a
strictly empirical framework throughout the paper.

2. New color-period-age formula

The ‘I’ branches of the cluster rotational data are commonlyfit-
ted by the following expression (Barnes 2003)

P = g(t) f (B− V) , (1)

where the age-dependent factorg(t) is approximated by a power-
law expression oftn with n ≈ 0.5 in a broad agreement with the
Skumanich-law. The color-dependent factor is also represented
as a power law:a(B − V − c)b, wherea, b, andc are constant
parameters determined by some properly chosen cluster;B− V
is assumed to be free of reddening.

In a brief test of this multiplicative age dependence, we trans-
formed two clusters (Pleiades (M45) and NGC 6811) to the fidu-
cial ridge line (determined by Praesepe (M44) and the Hyades
– see Sect. 2.2). The multiplicative and additive period trans-
formations are shown in the upper and lower panels of Fig. 1.
The change in slope for the younger cluster M45 in the case
of the multiplicative transformation is clear (see also Cargile et
al. 2014, their Fig. 12). For NGC 6811 there is not much differ-
ence between the two types of transformation. However, we see
(although the color range is rather short) that in both casesthere
is a slight downward trend with respect of the fiducial ridge.It
might be that the steeper slope for young clusters changes to-
ward a milder slope and eventually reverses for older clusters.
Unfortunately, NGC 6811 is the only available cluster with high-
quality rotational periods at∼ 1 Gyr, so the empirical confirma-
tion of the evolution of slope needs to await future observations
of older clusters. Because of the considerably better performance
of the additive period transformation in the younger age range,
in the next sections we therefore derive a new calibration ofthe
gyro-age relation based on the additive method.

2.1. Calibrating datasets

We chose eight recently observed clusters with reliable colors
and periods. The basic properties of these clusters that arerel-
evant for this paper are listed in Table 1. The ages span the
range between∼ 0.1 and∼ 1 Gyr. Unfortunately, for older clus-
ters (more relevant for the field stars) we do not yet have good
rotation period data. For example, for one of the oldest open
clusters, M67, the available rotation data are too sparse tobe
considered useful in the present context (e.g., Canto Martins et
al. 2011; Stassun et al. 2002). For NGC 6819 (age∼ 2.5 Gyr, see
Balona et al. 2013b), it is hard to reconcile the color-period plot
assuming that the cluster members are coeval. For NGC 6866
(age∼ 0.65 Gyr, see Balona et al. 2013a), the same diagram is
cleaner but still confusing (nearly constant period of∼ 10 days
from (B − V)0 ≈ 0.5 with a nearly uniform downward scatter
between∼ 2 and∼ 10 days).

Although from both an observational and theoretical point
of view, the use of (B − V)0 as the color coordinate in the ro-
tational studies is not necessary the best one, it is commonly
used. Therefore, we follow this practice here as well and usethe
previously published (B− V) colors whenever possible as given
in the corresponding papers where the rotational periods were
published. Four clusters (M34, M35, M45, and Blanco 1) fall
into this category. For M44, we also use the (B− V) colors pub-
lished in our period source (i.e., in Kovács et al. 2014) butwe
note that the colors originate from the APASS database (via the
UCAC4 catalog, see Zacharias et al. 2013). For M37 we use the
colors given in the period source (Hartman et al. 2009), which
are based on the cluster study of Kalirai et al. (2001), however.
For NGC 6811 we cross-correlate the list of rotational variables
of Meibom et al. (2011a) with the photometric table of Janes et
al. (2013). This yields 58 objects from the original 71 objects of
Meibom et al. (2011a). For the Hyades we use the compilation
of colors as given in the period source by Delorme et al. (2011).
Six stars in this source do not have color values. We checked the
APASS database for these objects and found that five of these
have fineB, V measurements. Before entering these values, we
cross-correlated the other stars of Delorme et al. (2011) with
the APASS database and found that on the average the APASS
(B−V) indices are 0.04 mag bluer than the ones given in Delorme
et al. (2011), that is, (B− V)compilation= (B− V)APASS+ 0.04. By
applying this color shift to the APASS colors of the five vari-
ables mentioned above, we finally compiled a sample with 61
variables for the Hyades.

2.2. Fiducial color–period ridge, age scaling

As we have discussed in the introduction of this section, the
strong variation in the steepness of the color-period ridges when
a Skumanich-type multiplicative period transformation isused
suggests that there is a need for some other type of transfor-
mation if we assume that these ridges are related through some
simple, few-parameter transformation. Visual inspectionof the
various cluster data suggests that a simple vertical (i.e.,period)
shift may substantially improve the ridge alignment. Therefore,
we assumed that there exists afiducial ridge that yields a bet-
ter representation of the data simply by an optimum shift of this
ridge, that is, the rotation periods of the stars on the ridgeof each
cluster can be represented by the following formula

Prot(age, color)= Pfiducial
rot (color)− c(age) , (2)

where we assumed that the additive constant is primarily a func-
tion of age. The derivation of the additive gyro-age relation re-
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Table 1.Calibrating clusters

Cluster E(B-V) Age [Gyr] NLC Source
Blanco 1 0.02 0.117± 0.017 33 C09, C10, C14
M45 0.04 0.135± 0.015 251 B14, B14, H10
M35 0.20 0.180± 0.020 418 K03, K03, M09
M34 0.07 0.220± 0.030 118 C79, M11b, M11b
M37 0.23 0.550± 0.030 575 H08, H08, H09
Hyades 0.00 0.625± 0.050 61 T80, P89, D11
M44 0.03 0.665± 0.011 180 T06, B14, K14
NGC6811 0.07 1.000± 0.170 58 J13, J13, M11a

Notes:All ages result from isochrone fits.NLC = number of light
curves; source: papers used for reddening, age and rotationperiods.
We assigned arbitrary age errors to M34 and M35. For these two
clusters we used the published dereddened colors. For M35 Meibom,
Mathieu & Stassun (2009) did not specify the reddening correction
used. See text on the sources of the colors used for the clusters entered
in this table.
E(B− V) source:C09=Cargile, James & Platais (2009), B14=Bell et
al. (2014), K03=Kalirai et al. (2003), C79=Canterna, Crawford &
Perry (1979), H08=Hartman et al. (2008), T80=Taylor (1980),
T06=Taylor (2006), J13=Janes et al. (2013)
Age source:C10=Cargile, James & Jeffries (2010) (from their Fig. 3),
B14=Bell et al. (2014), K03=Kalirai et al. (2003), M11b=Meibom et
al. (2011b), H08=Hartman et al. (2008), P98=Perryman et al. (1998),
J13=Janes et al. (2013)
Period source:C14=Cargile et al. (2014), H10=Hartman et al. (2010),
M09=Meibom et al. (2009), M11b=Meibom et al. (2011b),
H09=Hartman et al. (2009), D11=Delorme et al. (2011), K14=Kovács
et al. (2014), M11a=Meibom et al. (2011a)

quires determining the fiducial ridge and the cluster-by-cluster
period shifts. In the earlier version of the paper we employed
an iterative scheme of least squares with data point densityas
weights to derive the main fiducial ridge as the best polyno-
mial approximation for the high-density ‘I’ branch part of the
(B − V)0 − Prot diagram. The derived fiducial ridge was rather
close to the one spanned by Praesepe. In part due the stimula-
tion of the referee report, we therefore decided to fix the fiducial
ridge as a polynomial fit to the merged data of Praesepe and
the Hyades.1 Some details of the fitting procedure are given in
Appendix A. Here we only give the finally accepted fourth-order
polynomial expression

Pfiducial
rot = − 35.51+ 153.07(B− V)0 − 201.13(B− V)2

0

± 7.71± 33.07 ± 50.84

+ 120.60(B− V)3
0 − 26.28(B− V)4

0

± 33.35 ± 7.91 . (3)

This polynomial fits the periods of the two clusters withσfit =

1.088 days. The errors listed are 1σ formal errors.
We need to note here that the clusters used to derive this

fiducial ridge exhibit fairly clean color−Prot diagrams, including
the lack of major ambiguities concerning the relation of thetrue
rotational period to the one determined by the highest peak in
the frequency spectrum. There is a generic degeneracy in this
respect in all photometrically determined rotation periods. They
are ambiguous toward integer multiple periods due to possible
special spot positions and numbers and also for aliasing in the
case of ground-based observations. We show a clear example

1 We added the Hyades because the two clusters are very similarin
all aspects, including their ages, therefore, except for proper correction
for - their otherwise low - reddening, merging does not require any ad-
ditional special treatment of the data.
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Fig. 2.Example of the period adjustment based on the harmonic
ambiguity of the estimated rotation periods from the frequency
spectra of the light curves (Hartman et al. 2009). The darker
gray line shows the fiducial ridge line shifted to the cluster‘I’
sequence. The lighter gray line was obtained by halving the pe-
riods corresponding to this cluster ridge line. The uncorrected
(i.e., originally published) periods are displayed as black dots.

of the period ambiguity in Fig. 2. The number of ambiguous
periods changes from cluster to cluster and have some influence
on the resulting period shifts. However, our experience shows
that although this correction is important in principle, inpractice
(in part due to the relatively small number of ambiguous cases)
it does not have a significant effect on the robust period shift
estimation described below.

Several ways are possible to find the fiducial ridge line that
best fits an ensemble of points that contains the cluster ridge
line (sequence ‘I’) as a subset. Manual selection of outliers is
one possibility, weighting with the density of the data points is
another. Here we resorted to a robust fitting method that is based
on a special kernel function employed in the least-squares fit.
The kernel will automatically put less weight on outliers, and
we do not need to decide on a case-by-case basis whether the
given data point is an outlier or not.

From the several kernels available in the literature, we chose
the one introduced by German & McClure (1987). The GM ker-
nel is widely used in various robust fit problems, including pat-
tern recognition (e.g., Yang et al. 2014). Accordingly, we min-
imized the following expression to find the best-fitting fiducial
ridge

E =
n

∑

i=1

G(δP(i))

G(δP(i)) =
(δP(i))2

a+ (δP(i))2

δP(i) = Pfiducial
rot (i) − Prot(i) − c . (4)

This least-squares condition with the GM kernel is equivalent
to a weighted ordinary least-squares condition with Cauchy
weights. We used simple scanning to find the best-fitting pe-
riod shift parameterc. The error ofc is estimated asσ2(c) =
∑n

i=1 w(i)(δP(i))2/(n
∑n

i=1 w(i)), wherew(i) = 1/(a + (δP(i))2).
The method has a single free parametera that can be tuned to
be more (a is small) or less (a is large) sensitive to outliers. We
found thata = 1 yields a perfect performance with accurate and

3
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Table 2.Period shifts for the calibrating clusters

Blanco 1 M45 M35 M34 M37 Hyades M44 N6811
3.08 3.48 3.37 2.53 1.31 0.05 0.01 −3.16
±0.17 ±0.08 ±0.07 ±0.11 ±0.05 ±0.12 ±0.05 ±0.11

Notes:The shifts (parameterc in Eq. (2)) are given in days.
Equations (2) and (3) can be used to predict the ridge periodsfor each
cluster.
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Fig. 3.Merged data of the eight clusters of Table 1 after applying
the shifts to each cluster as given in Table 2. Data from M44
(Praesepe) are shown as black dots.

robust identification of the ‘I’ sequences in each cluster, with all
data listed in Table 1 left in the datasets for each cluster. An ex-
ample of the cluster fit is shown in Appendix A. The optimum
period shifts with their errors are summarized in Table 2.

To illustrate the difference between the additive and mul-
tiplicative (Skumanich-type) period transformations on the full
sample of open clusters used in this paper, in Figs. 3 and 4 we
plot all data points after applying these transformations.It is
clear that the additive transformation leads to a tighter pattern
for the ‘I’ sequence and thereby allows a more reliable investi-
gation of the age dependence of the rotation periods throughout
the (B− V)0 color range of∼ (0.5− 1.4).

With the optimum period shifts we are in the position to in-
vestigate the functional dependence of the shift on clusterage.
An inspection of this plot (see Fig. 5) by eye clearly shows that
a simple linear correlation should yield a fairly accurate descrip-
tion of the functional dependence (at least at the current stage,
with eight data points at hand). The linear regression yields the
following expression and formal error estimate

AGEgyro = a0 + a1∆P

σ
2(AGEgyro) = K11 + K22(∆P)2 + a2

1σ
2(∆P) + 2K12∆P

∆P = Pfiducial
rot − Prot

a0 = 0.620, a1 = −0.138

K11 = 0.004682,K22 = 0.000734

K12 = −0.000978. (5)

The fiducial periodPfiducial
rot can be easily evaluated for any star

given its dereddened color and using Eq. (3). This means that
Eq. (5) is directly applicable to the estimation of the gyrochrono-
logical age of any star with known color and rotation period.We
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Fig. 4. Merged data of the eight clusters after multiplying the
cluster periods by the factors given by the exact Skumanich-law
(i.e., Ptranf = Pobs

√
AGE(M44)/AGE(clus).) The cluster ages

are given in Table 1. Data from M44 (Praesepe) are shown by
black dots.
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Fig. 5. Linear regression of the optimum period shift param-
eters to the cluster isochrone ages (see Tables 1 and 2 and
Eq. (5)). Except for NGC 6811, the estimated errors (both forthe
isochrone ages and for the period shifts) are smaller or nearly of
the size of the dots. The standard deviation of the fit is 0.16 Gyr.

note that the error formula was derived by assuming a uniform
isochrone age error as given by the standard deviation of thefit.

We emphasize that this equation was derived by using the
isochroneages of the calibrating clusters. Therefore, we expect
this formula to yield a fair approximation of the isochrone age of
any (rotationally settled) target within the calibrating parameter
range and hopefully beyond.

It is interesting to compare the derived star-by-star gyro-ages
for each cluster with their isochrone ages. The result of this com-
parison is shown in Fig. 6. Although there are clusters (i.e., M37,
M45, NGC 6811) with some observable trend in the run of the
individual gyro-ages, the overall fit is satisfactory. Thisfigure
also highlights the relatively large errors we may expect when
the gyrochronological method is employed on individual targets
(even if there was a way to ascertain that they are in the rotation-
ally settled state). For comparison, in Appendix B we show the
same plot by using the gyro-age formula of Angus et al. (2015).
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Fig. 6. Predicted individual gyro-ages (dots) by using Eqs. (3)
and (5) and the adopted isochrone cluster ages of Table 1 (lines).

Their formula is based on the functional form of period and color
dependence of Barnes (2003). Because of the multiplicativena-
ture of the age-period dependence, we see larger systematicvari-
ations in the estimated ages than in the case of the additive de-
pendence.

3. Tests on independent datasets

Although the gyro-age formula derived in Sect. 2 is expected
to have a limited applicability, it is important to see how broad
this limit is. As mentioned, we cannot investigate whether the
stars to be tested are in the rotationally settled state. This, by
itself, introduces a great deal of uncertainty. The isochrone ages
are also erroneous, sometimes so excessively (e.g., for K and M
dwarfs) that individual ages rarely have any value. Nevertheless,
such a test (if employed on a sufficiently large sample) may tell
us something about the applicability of the gyro-age methodand
may also shed light on the evolution of the rotation of various
stellar populations.

3.1. Bright field stars and the Sun

Valenti & Fisher (2005) published accurate spectroscopic pa-
rameters (includingvrot sini values) for over one thousand
nearby bright, mostly main-sequence F–K stars. We adopted
their isochrone ages (based on the Yonsei-Yale stellar evolution
models of Demarque et al. 2004) and used their mass and grav-
ity values to compute the stellar radii. From these and the ro-
tation velocities, we estimated the rotation periods (in [days]):
Prot = 50.6R/(vrot sini), where the stellar radiusR is in solar
units and the rotation velocityvrot sini is in [kms−1]. From the
effective temperature, gravity, and metallicity given by Valenti
& Fisher (2005), we can estimate (B − V)0 with the aid of the
formula of Sekiguchi & Fukugita (2000)

(B− V)0 = −813.3175+ 684.4585 logTeff

− 189.923(logTeff)
2 + 17.40875(logTeff)

3

+ 1.2136[Fe/H] + 0.0209[Fe/H]2

− 0.294[Fe/H] logTeff − 1.166 logg

+ 0.3125 logg logTeff . (6)

With these parameters we can evaluate the gyro-age for each star
and compare it with the corresponding isochrone age. In a sim-
ilar representation we can plot the isochrone age as a function

of Prot(fiducial)−Prot and compare it with the gyro-age estimate
of Eq. (5). In the data preparation we excluded objects with ro-
tational velocities lower than 0.1 kms−1 and also those that did
not pass our criterion of isochrone fitting (see Sect. 3.3). Finally,
we had a sample with 934 stars from the original sample of 1039
stars of Valenti & Fisher (2005). We also note that for demon-
strative purpose we trimmed the period shift−age plotting area
to the space of interest, thereby excluding some small fraction of
objects. This does not affect our conclusion in any way because
on the one hand, these objects have extreme parameter values
that are largely irrelevant for the effect we investigate, and on
the other hand, their observable and derived parameters (e.g.,
age, rotation period) are also generally inaccurate.

In Fig. 7 we plot the isochrone ages given by Valenti &
Fisher (2005) as a function of the rotational period shift. For
reference, we also overplot the corresponding cluster values.
Clearly, there is a striking difference between the isochrone and
gyro-ages. Nearly all isochrone ages are greater than the gyro-
ages. If we focus only on the more densely populated part of the
plot, we see that the overall difference is 2 Gyr. Unfortunately,
the region below 1 Gyr (where the calibration was performed)is
rather sparsely populated. Nevertheless, it seems that even in this
regime the isochrone ages carry the same property as in the non-
calibrated (older age) regime. We note that correcting the spec-
troscopic rotation velocities for the overall aspect effect (e.g.,
Nielsen et al. 2013) exacerbates the situation because it leads
to higher rotational velocities, shorter periods, and therefore to
even younger gyro-ages. Furthermore, possible systematicbias
in the rotation velocities might occur at low-rotation rates when
the rotational broadening is similar to other broadening effects
(e.g., stellar macroturbulence). However, these stars do not con-
tribute in an important way to the discrepancy above, since more
than half of the sample hasvsini > 2 km−1.

The case of the Sun is special because we know both its age
and its rotation period, together with other physical parameters.
Taking the equatorial rotation period, we derive that the gyro-age
of the Sun is 3.74±0.65 Gyr. Again, the gyro-age is 0.9 Gyr short
relative to the accurately known age of 4.6 Gyr (which happens
to be close to the actually computed isochrone age of 4.4 Gyr,
based on the Yonsei-Yale models discussed in Sect. 3.3.)

To show that this age discrepancy is not unique for the addi-
tive period−age scaling introduced in this paper, we applied two
different period−color−age calibrations on the above dataset.
The result (presented in Appendix B) clearly shows that the dis-
crepancy is generic.

3.2. Transiting extrasolar planet host stars

The host stars of extrasolar planets are usually very deeplystud-
ied objects because it is important to accurately determinethe
stellar parameters to derive the planet parameters. In addition, if
the planet is also transiting planet, the average stellar density is
rather tightly constrained by the basic orbital parametersof the
planet (Seager & Mallén-Ornelas 2003; Sozzetti et al. 2007). As
a result, these stars are very useful targets for testing thegyro-
age method.

We compiled the relevant physical parameters of 147 bright
transiting planet host stars from the literature. All of these sys-
tems have been discovered by ground-based surveys. All ages
used are stellar model (isochrone) ages, and they have been de-
rived mainly from the Yonsei-Yale models. Unfortunately, the
rotation periods are still based on the spectroscopicvrot sini val-
ues, since there are rather few host stars with reliable direct pho-
tometric rotation periods.
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Fig. 7.Period shift vs. evolutionary (i.e., isochrone) ages for the
field star sample of Valenti & Fisher (2005) (blue dots) and for
the eight open cluster ridges as presented in this paper (large
colored dots). The linear regression to the cluster data is shown
by the black line.

The result is plotted in Fig. 8 in the same fashion as before.
Unfortunately, some stars, otherwise possessing accurately de-
termined stellar parameters, had to be omitted because of their
extreme parameters. For instance, WASP-33 is a rare A-type host
star, with a high rotation rate of 90 kms−1, yielding aProt value
of 0.79 days. The isochrone age is fairly well constrained with
an upper limit of 0.4 ± 0.3 Gyr (Collier Cameron et al. 2010;
Kovács et al. 2013). Although the fast rotation is consonant with
its young age, we cannot verify this with our gyro-age formula
because the target is outside its validity. For similar reasons we
excluded five stars. As in the test of the Valenti & Fisher (2005)
dataset, we also focus on a limited area of the period shift−age
space (and again, only a small fraction of objects were excluded,
which does not alter our conclusion).

Although the data are sparser than for the large nearby star
survey of Valenti & Fisher (2005), thesameeffect is still well
visible: the highly significant excess of stars dated older by the
isochrone age determination. With the overall more accurate
isochrone ages for these bright, well-studied stars, the discrep-
ancy between the two types of age determination is reaffirmed.

Similarly to the test presented on the Valenti & Fisher (2005)
dataset in Sect. 3.1, here we refer to Appendix B, where we
compare our gyro-ages with those recently derived by Maxted
et al. (2015) on a sample of limited-number extrasolar host stars
with measured rotation periods. In spite of our very different ap-
proach, the two types of gyro-ages correlate very well, support-
ing their conclusion on the shorter gyro-ages for their planet host
sample.

3.3. Rotational variables from the Kepler field

A large sample of rotational variables have recently been identi-
fied by McQuillan, Mazeh & Aigrain (2014) through analyzing
the photometric database of the Kepler satellite. This includes
all possible rotational variables in the Kepler field. In an earlier
publication, McQuillan, Mazeh & Aigrain (2013) investigated
only those targets that were labeled as Kepler objects of interest
(KOI). Here we focus on this smaller sample, containing 760 ob-
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Fig. 8. As in Fig. 7, but for the sample of hot-Jupiter host stars,
discovered by ground-based surveys.

jects.2 A negligible fraction (5%) of this sample contains proba-
ble eclipsing binaries, blends, or suffers from other ambiguities.

Employing these KOI targets in our tests has the advantage
of using photometric rotation periods instead of spectroscopic
ones, thereby substantially decreasing the additional source of
scatter due to the aspect angle dependence. However, there is
also a drawback of using these data. Since the Kepler targets
are numerous and have considerably lower apparent brightness,
their basic spectroscopic and photometric parameters are usually
less accurate than those of the individually studied brightplanet
host stars.

Since the published data do not contain evolutionary (or
any) age information, we computed isochrone ages according
to the Yonsei-Yale models (Demarque et al. 2004).3 With the
aid of their interpolation routine and additional fine-gridin-
terpolation, we established a dense isochrone grid for solar-
scaled models withoutα element enhancement. The metallic-
ity and age grids are uniform and cover the following values:
{Zi = 0.001 + (i − 1)0.0005;i = 1, 2, ..., 80} and {log t j =

8.00+ ( j − 1)0.02; j = 1, 2, ..., 107}. Each of the downloaded
isochrone contains 140 (logTeff , logg) mesh points that we fur-
ther increased by linear interpolation to∼ 560, leading to suf-
ficiently dense sampling in all parameters to be matched to the
spectroscopic data. The solar heavy element abundance for these
models is equal to 0.018. We minimized the following metric to
select the best matching models

D2 = w(∆ logTeff)2 + (1− w)(∆ logg)2 , (7)

where∆ stands for the difference between the grid point and
the observed values. The weightw was chosen to be 5/6 and
takes into consideration the smaller range oflogTeff values en-
tering the matching procedure. For the observed values falling
within the region spanned by the isochrones, we derived match-
ing distancesD lower than 0.002, usually close to 0.001 or lower
(indicating that we have a sufficiently densely interpolated set of
models). We obtained a rough estimate on the error of the age by
computing the standard deviation of all model values satisfying

2 We attempted to also use the large sample of McQuillan, Mazeh&
Aigrain (2014), but found that the errors in logg were so large (often an
order of magnitude larger than for the field hot-Jupiter hoststars) that a
reasonable isochrone age determination was meaningless.

3 http://www.astro.yale.edu/demarque/yyiso.html
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Fig. 9.As in Fig. 7, but for the KOI sample of McQuillan, Mazeh
& Aigrain (2013). The evolutionary ages were computed with
the aid of the Yonsei-Yale isochrones. The high-density hori-
zontal set of points at low isochrone ages dominantly consti-
tutes stars with observed stellar parameters outside the isochrone
regime. The color coding is scaled by the best isochrone match-
ing distance (Eq. (7)) and shows that most of these low-lying
stars do not match the isochrones.

the D < 0.04 criterion. This rather high cutoff for D is set for
the broad agreement of our error estimates with those found in
the literature. In computingσ(age), the standard deviation of the
ages satisfying the condition posed byD, we weighted the vari-
ous age values by the inverse of the square of the corresponding
distances

σ
2(age)=

n
∑

k=1

wk(agek − 〈age〉)2
, (8)

wherewk = (1/D2
k)/

∑n
j=1 1/D2

j andn is the total number of grid
points satisfying theD < 0.04 criterion, andD j is the distance
D (see Eq. (7)) of the j-th grid point from the target values. The
average age〈age〉 was computed in a similar manner:〈age〉 =
∑n

k=1 wkagek. (We note that in the tests we used the best-fitting
model value as our age estimate rather than this average.) Ina
comparison with the ages found in the literature on the sample
of hot-Jupiter host stars (Sect. 3.2), we found that except for a
few outliers at young or old ages and for some 20% of stars with
deviations 0.5–1.5 Gyr, this simple fitting method yields ages
that agree well with the published values within±0.5 Gyr. (See
also Appendix B for an example of this compatibility on a small
size of sample of hot Jupiters compiled by Maxted et al. 2015.)

For the 762 stars of McQuillan, Mazeh & Aigrain (2013) we
used the spectroscopic and photometric parameters recently re-
vised by Huber et al. (2014). To discard suspected items with
excessive errors, we performed a fairly generous parametercut
by requiring both the [Fe/H] and the logg errors to be smaller
than 0.2. This filtering led to a sample of 207 stars that was fur-
ther decreased to 204 by satisfying the condition ofD < 0.04.

The resulting period−age plot is shown in Fig. 9. The plot is
very similar to the earlier ones, showing the significantly older
ages obtained from the isochrone fits. In addition to this general
feature, we also recognize a relatively large number of young
(looking) objects with nearly the same age of 0.1–0.3 Gyr. As the
side bar shows, most of these objects have rather low isochrone
matching accuracy (i.e., they have highD values). Indeed, a

comparison with the logTeff − logg isochrone plot shows that
nearly all of these objects areoutsidethe regime covered by
the isochrones for the given metallicity. More specifically, their
spectroscopic gravity is higher than expected from the models.
If we discard these objects, the trend toward greater isochrone
ages is again clear.

4. Conclusions

The purpose of this paper was threefold: i) examine the va-
lidity of the Skumanich-type scaling between the stellar rota-
tion period, color, and age through a comprehensive analysis
of the available observations on open clusters; ii) comparethe
ages based on the revised scaling with the stellar evolution-
ary (isochrone) ages for various samples of stars; and (iii)if
the result of test (ii) is positive (i.e., no major discrepancy is
found), recalibrate the gyro-age formula to accommodate the
older ages and different evolutionary histories of these samples
and thereby make the age determination based on stellar rotation
more widely applicable.

In test (i) we compiled the data from eight open clusters and
searched for a simple transformation that generates a tightrela-
tion between the color and rotation period for the full sample. As
has previously been indicated but left untreated in some other
publications – for example, Cargile et al. 2014, by using the
Skumanich-type multiplicative period transformation, the peri-
ods are stretched too much at the long-period side (i.e., toward
lower mass stars), leading to a rather fuzzy color−period plot
when all data are combined. If we instead use a simple addi-
tive scaling (i.e., we shift the periods by cluster-dependent opti-
mal constants), then the individual cluster ridges align ina much
tighter way. This enabled us to investigate the relation between
cluster ages and period shifts on a more solid statistical basis.
The relation between these two quantities was also fairly tight,
which together with the derived fiducial ridge (expressing the re-
lation between the color and period for rotationally settled near
main-sequence F–K dwarfs at a given age) enabled us to give
age estimates for other stars based on their rotation periods and
colors (see Eqs. (3) and (5)).

It is not the purpose of this paper to discuss the possible the-
oretical consequences of the better fitting additive period−age
scaling. Here we only note three aspects that should be consid-
ered in constructing a revised model of stellar angular momen-
tum dissipation. First, the rotational evolution of stars in open
clusters might differ from those in the field due to the substan-
tially different stellar environment and the low density of in-
terstellar matter. Second, the rate of angular momentum loss
is a strong function of the assumed structure of magnetic field
and other physical details (e.g., core-envelope coupling,mag-
netic field strength vs. rotation, etc.) For example, Reiners &
Mohanty (2012) derived a rotation-rate dependence oft−1/4 in
the non-saturated regime for 1M⊙ stars merely by adopting a
different physical meaning of the magnetic flux – rotation rate
relation. Third, both the sample size and the age range of open
clusters available currently for gyro-age studies are small, there-
fore the true age−rotational period relation might be more in-
volved than the one derived here. (We sampled only a small part
of an unknown function that was incidentally best approximated
by a linear relation in this restricted parameter space.)

Test (ii) resulted in a negative conclusion for all three
datasets (field stars, host stars of transiting hot Jupiters, and
Kepler planetary candidate stars). The bulk of theisochrone ages
is 1.5–2.0 Gyrgreaterthan the predicted gyro-ages, with a large
scatter to even larger differences. Only a small fraction of stars
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show younger isochrone ages in all three samples. It is important
to recall that the ages of the open clusters – which the gyro-ages
have been calibrated to – are also basedon isochrone ages, es-
sentially on thesameevolutionary stellar models, as those used
in the test samples. Although the age overlap between the field
stars and open cluster stars is not too extensive, it seems that
the above difference is characteristic for all ages, also including
the younger age range of the calibrating clusters. Therefore, the
discrepancy does not seem to be the result of a poor extrapo-
lation of the age relation derived from open clusters. Although
the topology of the isochrones may introduce some bias toward
older ages, this effect is likely to be small, based on the survival
of the age discrepancy for stars with accurate isochrone ages
(e.g., Sun, KELT-2A – see Beatty et al. 2012). Apparently, non-
cluster field stars havesignificantly lower slow-down ratesthan
their cluster counterparts.

This study supports the conclusions of other current works
investigating the performance of the gyro-age method on var-
ious stellar populations. From the study of bright planet host
stars, Maxted, Serenelli, & Southworth (2015) reached the same
conclusion as we did, in spite of their quite different gyro-age
method. Earlier, Brown (2014) also found hints of the young
gyro-ages of extrasolar planet host stars. Based on a Monte Carlo
study of a large sample of Kepler asteroseismic targets and data
from two open clusters, Angus et al. (2015) also questioned the
overall reliability of the current gyro-age estimations.

In these circumstances, we were obviously unable to pur-
sue task (iii). A more reliable extension of the gyro-age method
to non-cluster stars should probably wait until the source of the
discrepancy between the current gyro- and isochrone ages ofthe
field and cluster stars is understood and a physically acceptable
solution is found. Finally, we note that our conclusion is based
on isochrone ages derived from non-rotating stellar evolution-
ary models. Brandt & Huang (2015) recently showed that with
rotating models the age of the Hyades and Praesepe clusters be-
come considerably older (from the generally accepted valueof
630/670 Myr – which we also used here – to∼ 800 Myr). An
extension of the evolutionary models in this direction might mit-
igate some part of the discrepancy we highlighted here.
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Appendix A: Fiducial polynomial and the robust fit
of the ‘I’ sequences

To find the best representation of the joint ‘I’ sequences of the
merged data of Praesepe (M44) and the Hyades, we fitted poly-
nomials of various order and checked the fit both by visual
and by statistical means. We omitted the obvious outliers that
are mostly due to the rotationally unsettled lower temperature
stars in the Hyades (we note that all outliers are well defined).
Altogether, we left out two stars from Praesepe and 11 from the
Hyades and compiled a sample of 228 stars. These stars were
fitted by least squares of equal weights. Figure A.1 shows the
variation of the unbiased estimate of the standard deviation of
the residuals as a function of the polynomial order.

The standard deviation levels off at about order four.
Although there is some decrease afterward, the fit shows wig-
gles with increasing amplitudes as the order of the polynomial
increases. The fit starts to become unstable at order nine, and it
becomes entirely volatile at order ten with a residual standard
deviation of 4.1. We also tested the statistical significance of the
fourth-order fit by using the following statistics

R( j1, j2) =

(

RS S( j1)
RS S( j2)

− 1

)

n− j2
j2 − j1

8



Géza Kovács: Are the gyro-ages of field stars underestimated?

 1.05

 1.1

 1.15

 1.2

 1  2  3  4  5  6  7  8

Polynomial order

si
gm

a
(d

at
a-

fit
)
 [d

]

Fig. A.1.Polynomial order vs. unbiased estimate of the standard
deviation of the residuals of the fit for the fiducial ridge fitting
(see Fig. A.2). For reference, the horizontal line shows to the
standard deviation at order four.
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Fig. A.2. Fourth-order polynomial fit to the combined data of
M44 (Praesepe, gray points) and the Hyades (black points). The
fit (red dots) is sampled at the same (B− V)0 values as the data.
All data are plotted, including the 13 outliers mentioned inthe
text.

RS Sk =

n
∑

i=1

(Prot(i) − pk(i))
2
. (A.1)

Heren is the number of data points,{pk(i)} is the fitted poly-
nomial of orderk, and j1 and j2 are the order tested. In our
case, j2 = j1 + 1, so R( j1, j2) follows a Fisher distribution
of F(1, n − j2). We assessed the significance of the change
in R( j1, j2) in terms of the theoretical standard deviation of
F(1, n − j2). This yields some 8σ significance at each step for
the change inR( j1, j2) as we go from the second- to the fourth-
order fits. After this, the significance decreases to∼ 2σ with an
increase at order eight and then the solution becomes unstable,
as mentioned.

The fourth-order polynomial fitted to the merged data of
M44 and the Hyades is shown in Fig. A.2. The regression pa-
rameters and their statistical errors are given by Eq. 3.

This fiducial polynomial was used in Sect. 2.2 to derive
the relative period shifts of the ‘I’ sequences of the individual
clusters. The best-fit shifts were determined by using a kernel-
weighted least-squares method to consider outliers (i.e.,mini-
mizing the effect of stars not associated with the ‘I’ sequence).
The kernel proposed by German & McClure (1987) has proven
to be an excellent way of localizing the ridge in each cluster. We
show an example for the robustness of the fit in Fig. A.3.
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Fig. A.3. Result of the best-fit period shift of the rotation peri-
ods of M35 (gray dots) to the fiducial ridge (red dots) by using
the GM kernel (German & McClure 1987). The fiducial ridge is
sampled at the same (B− V)0 values as the data.

Appendix B: Comparison with other studies

First we calculated the individual rotational ages of the cluster
sample used in this paper by employing the gyro-age formula
of Angus et al. (2015). Their Eq. (15) has the standard form as
introduced by Barnes (2003), but the parameters are determined
by using 310 astroseismic targets from the survey of the Kepler
satellite and some additional stars from the field and from some
open clusters. We plot the individual gyro-ages for the eight clus-
ters in Fig. B.1. In comparison with Fig. 6, using our additive
age-period-color relation, the ages corresponding to the stars as-
sociated with the ridges of type ‘I’ have stronger systematic vari-
ations than those derived from our additive formula (see, e.g.,
the plot for M37). This is the effect of multiplicative period–age
scaling, as discussed in Sect. 2.

In the rest of this appendix we show that the significantly
younger rotational ages derived for the field stars from our newly
calibrated additive formula is not specific to this formula,but is
a general property of all currently used gyro-age calibrations.

In the lower panel of Fig. B.2 we plot the evolutionary ages
as given in the spectroscopic survey of 1039 field stars by Valenti
& Fisher (2005) vs. the rotational ages derived from one of the
most frequently used gyro-age formula of Barnes (2007, his
Eq. (1)). For comparison, in the upper panel of the same fig-
ure we show the plot derived from the additive gyro-age formula
presented in this paper. In both cases we use a subsample of the
full survey as described in Sect. 3.1.

Although different in details, the two plots are topologically
closely similar, indicating in both cases a significant excess of
old evolutionary ages. The high density of points in the [0,5] Gyr
regime suggests an overall difference of 1–2 Gyr. From the color-
coded radius distribution it is also clear that differences much
higher than the quoted value exist for stars with lower radii. By
repeating the iso-gyro age comparison for other empirical gyro-
age formulae – that is, those of Mamajek & Hillenbrand (2008)
(their Eqs. (12)–(14) with the parameters given in their Table
(10)) and Angus et al. (2015) (their Eq. (15)) – a similar conclu-
sion can be drawn on the topology of the gyro- vs. evolutionary
age relation. Interestingly, these two works yield very similar
parameters for the Barnes-type gyro-age relation, in spiteof the
very different input data and methods of analysis, and the con-
clusion of the authors in the second paper about the limited ap-
plicability of the formulae presented for the full population of
the dataset used in the calibration.
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Géza Kovács: Are the gyro-ages of field stars underestimated?
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Fig. B.1.Predicted individual gyro-ages (dots) by using the for-
mula of Angus et al. (2015) and the adopted isochrone cluster
ages of Table 1 (lines).

Yet another approach for estimating gyro-ages comes from
the analytical model of Barnes (2010, see also Barnes &
Kim 2010). Maxted et al. (2015) employed this model to ana-
lyze 28 well-established extrasolar planet host stars withmea-
sured photometric rotation periods. We employed this sample
with the stellar parameters used in their paper to compute our
age estimates. The plots in Fig. B.3 show the excellent correla-
tions between the ages of Maxted et al. (2015) and those pre-
sented here.4 This good agreement is rather surprising for the
gyro-ages, since our ages are basically empirical (with thein-
termediation of the cluster ages determined by the stellar evo-
lutionary isochrone fits), whereas their ages are more involved
through various model approximations and initial conditions.
For the evolutionary ages there is a uniform shift of 0.5–1 Gyr
in the sense that the ages computed by Maxted et al. (2015) are
older than ours. This tendency of thegarstecmodels of Weiss &
Schlattl (2008) used by Maxted et al. (2015) was also noted by
Metcalfe et al. (2014). Chaplin et al. (2014) attributed this offset
to the different treatment of convective core overshooting in the
garstec models.

4 We note, however, that 55 Cnc is not plotted in this graph. Thegyro-
ages derived for this object differ considerably (8.10± 3.54 for Maxted
et al. 2015 and 4.62± 1.49 for our formula). Although the difference is
within the error limit, the discrepancy between the two types of gyro-
ages indicates that they show very different behavior for long rotational
periods. For example, HATS-2 has very similar stellar parameters to
those of 55 Cnc, but a far shorter rotational period (24.98 ± 0.04 vs.
39.0 ± 9.0 days). Their gyro-ages agree fairly closely (3.10± 0.30 and
2.76±0.46 for Maxted et al. 2015 and this paper, respectively). The dis-
crepancy for 55 Cnc might disappear in the future, once the estimate of
its rotation period becomes more accurate with a presumed shift toward
shorter periods.
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Fig. B.2.Rotational ages vs. stellar evolution ages computed us-
ing the additive gyro-age formula Eq. (5) derived in this pa-
per (upper panel) and the popular multiplicative formula of
Barnes (2007) (lower panel). The thick continuous lines indi-
cate the identical values of the rotational and evolutionary ages.
We use the spectroscopic data of Valenti & Fisher (2005). The
color coding is for the stellar radius as indicated by the side bar
(scaled in solar units).
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Fig. B.3.Comparison of the evolutionary ages (upper panel) and
the rotational ages (lower panel) for the extrasolar planethost
stars of Maxted et. al (2015) with those derived in this paperus-
ing the Yonsei-Yale isochrones of Demarque et al. (2004) andthe
additive gyro-age formula Eq. (5) of this paper. The continuous
line indicates the identical values for the quantities correspond-
ing to the labels. We note that the panels have different ranges.
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