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Abstract. We study the Landau level spectrum using a multi-band k · p theory in

monolayer transition metal dichalcogenide semiconductors. We find that in a wide

magnetic field range the Landau levels can be characterized by a harmonic oscillator

spectrum and a linear-in-magnetic field term which describes the valley degeneracy

breaking. The effect of the non-parabolicity of the band-dispersion on the Landau

level spectrum is also discussed. Motivated by recent magnetotransport experiments,

we use the self-consistent Born approximation and the Kubo formalism to calculate the

Shubnikov de-Haas oscillations of the longitudinal conductivity. We investigate how

the doping level, the spin-splitting of the bands and the broken valley degeneracy of

the Landau levels affect the magnetoconductance oscillations. We consider monolayer

MoS2 andWSe2 as concrete examples and compare the results of numerical calculations

and an analytical formula which is valid in the semiclassical regime. Finally, we briefly

analyze the recent experimental results (Reference [18]) using the theoretical approach

we have developed.

PACS numbers:

1. Introduction

Atomically thin transition metal dichalcogenides semiconductors (TMDCs) [1, 2, 3]

are recognized as a material system which, due to its finite band gap, may have a

complementary functionality to graphene, the best known member of the family of

atomically thin materials. The experimental evidence that TMDCs become direct band

gap materials in the monolayer limit [4] and that the valley degree of freedom [5] can be

directly addressed by optical means [6, 7, 8, 9] have spurred a feverish research activity

into the optical properties of these materials [10, 11, 12, 13]. Equally influential has

proved to be the fabrication of transistors based on monolayer MoS2 [14] which motivated

http://arxiv.org/abs/1506.03616v2
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a lot of subsequent research to understand the transport properties of these materials.

Achieving good Ohmic contact to monolayer TMDCs is still challenging and this

complicates the investigation of intrinsic properties through transport measurements.

Nevertheless, significant progress has been made recently in reducing the contact

resistance by e.g., using local gating techniques [15], phase engineering [16], making use

of monolayer graphene as electrical contact [17, 18, 19], or selective etching procedure

[20].

Our main interest here is to study magnetotransport properties of monolayer

TMDCs. Unfortunately, the relatively strong disorder in monolayer TMDC samples

have to-date hindered the observation of the quantum Hall effect. Nevertheless, the

classical Hall conductance has been measured in a number of experiments [15, 18, 21,

22, 23] and was used to determine the charge density ne and to extract the Hall mobility

µH . In addition, three recent works have reported very promising progress in the efforts

to uncover magnetic field induced quantum effects in monolayer TMDCs. Firstly, in

Reference [24] the weak-localization effect was observed in monolayer MoS2. Secondly,

it was shown that in boron-nitride encapsulated mono- and few layer MoS2 [18] and in

few layer WSe2 [20] it was possible to measure the Shubnikov-de Haas (SdH) oscillations

of the longitudinal resistance. Both of these developments are very significant and

can provide complementary informations: the weak localization corrections about the

coherence length and spin relaxation processes [25, 26], whereas SdH oscillations about

the cross-sectional area of the Fermi surface and the effective mass of the carriers.

Here we first briefly review the most important steps to calculate the LL spectrum

in monolayer semiconductor TMDCs in perpendicular magnetic field using a multi-band

k · p model[3]. We show that for magnetic fields of B . 20T a simple approximation

can be applied to capture all the salient features of the LL spectrum. Motivated by

recent experiments in MoS2 [18] and WSe2 [20], we use the LL spectrum and the

self-consistent Born approximation (SCBA) to calculate the SdH oscillations of the

longitudinal conductance σxx. We discuss how the intrinsic spin-orbit coupling and the

valley degeneracy breaking (VDB) of the magnetic field affect the magnetoconductance

oscillations. We also point out the different scenarios that can occur depending on the

doping level.

2. Landau levels in monolayer TMDCs

Electronic states in the K and −K valleys are related by time reversal symmetry in

monolayer TMDCs and hence in the presence of a magnetic field their degeneracy should

be lifted. (Note that in the case of graphene the inversion symmetry, which is present

there but not in monolayer TMDCs, ensures that in the non-interacting limit the LLs

remain degenerate in theK and−K valleys.) Recently several works have calculated the

Landau level (LL) spectrum of monolayer TMDCs using the tight-binding (TB) method

[27, 28, 29] and found that the magnetic field can indeed lift the degeneracy of the LLs in

different valleys. However, due to the relatively large number of atomic orbitals that is
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needed to capture the zero magnetic field band structure, for certain problems, such as

the SdH oscillations of longitudinal conductance, the TB methodology does not offer a

convenient starting point. On the other hand, a simplified two-band k·pmodel was used

to predict unconventional quantum Hall effect [30] and to discuss valley polarization [31]

and magneto-optical properties [32]. This model, however, did not capture the valley

degeneracy breaking and was therefore in contradiction with the TB results and the

considerations based on symmetry arguments.

We first show that the VDB in perpendicular magnetic field can be described by

starting from a more general, seven-bands k · p model [3]. To this end we introduce an

extended two-band continuum model which can be easily compared to previous works

[30, 31, 32, 33]. We then show a relatively simple approximation for the LL energies

which will prove to be useful for the calculation of the SdH oscillations in Section 3.

2.1. LLs from an extended two-band model

Our starting point to discuss the magnetic field effects in monolayer TMDCs is a seven-

band k · p model (fourteen-band, if the spin degree is also taken into account), we

refer the reader to Refs. [3] for details. In order to take into account the effects of

a perpendicular magnetic field, one may use the Kohn-Luttinger prescription, i.e., we

replace the wavenumbers q = (qx, qy) appearing in the seven-band model with operators:

q → q̂ = 1
i
∇ + e

~
A, where AT = (0, Bzx, 0) is the vector potential in Landau gauge

and e > 0 is the magnitude of the electron charge. Note that due to this replacement

q̂+ = q̂x+iq̂y and q̂− = q̂x−iq̂y become non-commuting operators: [q̂−, q̂+] =
2eBz

~
, where

|Bz| is the strength of the magnetic field and [. . .] denotes the commutator. Working

with a seven-band model is not very convenient and therefore one may want to obtain an

effective model that involves fewer bands. This can be done using Löwdin-partitioning

to project out those degrees of freedom from the seven-band Hamiltonian that are far

from the Fermi energy. Since q̂+ and q̂− are non-commuting operators, it is important to

keep their order when one performs the Löwdin-partitioning. To illustrate this point we

first consider a two-band model (four-band including spin) which involves the valence

and the conduction bands (VB and CB). We will follow the notation used in Reference

[3]. One finds that the low-energy effective Hamiltonian in a perpendicular magnetic

field is given by

Hτ,s
eff = H0 +Hτ,s

so +Hτ,s
k·p (1)

where s = 1 (s = −1) denotes spin ↑ (↓) and

H0 =
~
2

2me

q̂+q̂− + q̂−q̂+
2

+
1

2
geµBBzsz (2)

is the free electron term (ge ≈ 2 is the g-factor and µB is the Bohr magneton).

Furthermore,

Hτ,s
so =

(

τ∆vbsz 0

0 τ∆cbsz

)

(3)
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describes the spin-orbit coupling in VB and CB (sz is a spin Pauli matrix) and τ = ±1

for the ±K valleys. The k · p Hamiltonian Hτ,s
k·p reads

Hτ,s
k·p = Hτ,s

D +Hτ,s
as +Hτ,s

3w +Hτ,s
cub, (4)

where

Hτ,s
D =

(

εvb τ γτ,sq̂
τ
−

τ γ∗
τ,sq̂

τ
+ εcb

)

, (5a)

Hτ,s
as =

(

ατ,sq̂
τ
+q̂

τ
− 0

0 βτ,sq̂
τ
−q̂

τ
+

)

, (5b)

Hτ,s
3w =

(

0 κτ,s(q̂
τ
+)

2

κ∗
τ,s(q̂

τ
−)

2 0

)

, (5c)

Hτ,s
cub,1 = −

τ

2

(

0 η
(1)
τ,s q̂τ+q̂

τ
−q̂

τ
− + η

(2)
τ,s q̂τ−q̂

τ
−q̂

τ
+

(η
(1)
τ,s)∗q̂τ+q̂

τ
+q̂

τ
− + (η

(2)
τ,s)∗q̂τ−q̂

τ
+q̂

τ
+ 0

)

.(5d)

Here the operator q̂τ± is defined as q̂τ± = q̂x ± iτ q̂y . The material specific properties are

encoded in the parameters εvb, εcb (band-edge energies in the absence of SOC), γτ,s
(coupling between the VB and the CB) and ατ,s, βτ,s, κτ,s, η

(1)
τ,s , η

(2)
τ,s , which describe the

effects of virtual transitions between the VB (CB) and the other bands in the seven-

band model. In general, the off-diagonal material parameters γs,τ , κs,τ and η
(1)
s,τ , η

(2)
s,τ are

complex numbers such that for the −K valley (τ = −1) they are the complex conjugates

of the K valley case (τ = 1). In the absence of a magnetic field, the material parameters

appearing in Eqs. (5a) - (5d) can be obtained by, e.g., fitting the eigenvalues of Hτ,s
eff

to the band structure obtained from density functional theory (DFT) calculations. We

refer to Reference [3] for the details of this fitting procedure and for tables containing

the extracted parameters for monolayer semiconductor TMDCs. Here we only mention

that such a fitting procedure yields real numbers which depend on the spin index s but

do not depend explicitly on the valley index τ . (The parameters η
(1)
τ,s and η

(2)
τ,s cannot

be obtained separately from fitting the DFT band structure, only their sum, ητ,s can

be extracted. Fortunately, as we will see below, the effect of Hτ,s
cub,1 is very small in the

magnetic field range we are primarily interested in. )

We note that a k ·p model, similar to ours, was recently used in References [29, 33]

to calculate the LL spectrum. There are two differences between our k · p Hamiltonian

Eqs. (4) and the model in References [29, 33]. The first one is that higher order terms

that would correspond to our Hτ,s
3w and Hτ,s

cub,1 were not considered in References [29, 33].

We keep these terms in order to see more clearly the magnetic field range where the

approximation discussed in Section 2.2 is valid. The second difference can be found

in our Hτ,s
as (5b) and the corresponding Hamiltonian used in [29, 33]. This difference

can be traced back to the way the magnetic field is taken into account in the effective

models that are obtained from multi-band Hamiltonians. In References [29, 33] first an

effective zero field two-band model was derived and then in a second step the Luttinger-

prescription was performed in this effective model. Therefore the terms which are
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∼ q2 in the zero field case become ∼ q̂+q̂− + q̂−q̂+ after the Luttinger-prescription.

In contrast, as mentioned above, we perform the Luttinger prescription in the multi-

band Hamiltonian and obtain the effective two-band model Hτ,s
eff (1) in the second step.

The two approaches may lead to different results because the operators q̂+, q̂− do not

commute and this should be taken into account in the Löwdin-partitioning which yields

the effective two-band model.

The spectrum of Hτ,s
eff can be calculated numerically using harmonic oscillator

eigenfunctions as basis states. Taking Bz > 0 for concreteness, one can see that the

operators a and a† defined as q̂− =
√
2

lb
a, q̂+ =

√
2

lb
a†, where lB =

√

~/(e|Bz|), satisfy

the bosonic commutation relation [a, a†] = 1. (For Bz < 0 one has to define q̂+ =
√
2

lb
a,

q̂− =
√
2

lb
a†). Therefore one can calculate the matrix elements of Hτ,s

eff in a large, but

finite harmonic oscillator basis and diagonalize the resulting matrix. For a large enough

number of basis states the lowest eigenvalues of Hτ,s
eff will not depend on the exact

number of the basis states. Such a LL calculation is shown in Figure 1 for MoS2 and

in Figure 2 for WSe2 (we have used the material parameters given in Reference [3]).

One can see that the LLs in different valleys are not degenerate and that the magnitude

of the valley degeneracy breaking is different in the VB and CB and for the lower and

higher-in-energy spin-split bands. While the results in the VB are qualitatively similar

for MoS2 and WSe2, considering the CB, for MoS2 the valley splitting of the LLs is

smaller in the higher spin-split band, whereas the opposite is true for WSe2. This is a

consequence of the interplay of the Zeeman term in Eq. (2) and other, band-structure

related terms which lead to VDB. (For MoS2 the valley splitting in the higher spin-split

CB (purple and cyan lines) is very small for the material parameter set used in these

calculations and can only be noticed for large magnetic fields.) One can also observe

that in the CB the lowest LL is in valley K, whereas in the VB it is in valley −K.
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Figure 1. Numerically calculated LL spectrum of MoS2. a) The first few LL in

the higher spin-split VB. Red lines: the K valley (τ = 1), blue lines: the −K valley

(τ = −1). The inset shows the LLs in the lower spin-split VB. b) The first few LL in

the CB. LLs both in lower spin-split band and in the higher spin-split band are shown.

Red and purple lines: the K valley, blue and cyan:the −K valley.
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Figure 2. Numerically calculated LL spectrum of WSe2. a) The first few LL in

the higher spin-split VB. Red lines: the K valley (τ = 1), blue lines: the −K valley

(τ = −1). The inset shows the LLs in the lower spin-split VB. b) The first few LL in

the CB. LLs both in lower spin-split band and in the higher spin-split band are shown.

Red and purple lines: the K valley, blue and cyan:the −K valley.

Further details of the VDB, including its dependence on the parameter set that can

be extracted from DFT calculations, will be discussed in Section 2.2. Here we point out

that these results qualitatively agree with the TB calculations of Reference [27, 28, 29],

i.e., the continuum approach can reproduce all important features of multi-band TB

calculations. A more quantitative comparison between our results and the TB results

[27, 28, 29] is difficult, partly because the details may depend on the way how the

material parameters are extracted from the DFT band structure and also because in

the TB calculations the Zeeman effect was often neglected.

The LL energies can also be obtained analytically in the approximation where Hτ,s
3w

and Hτ,s
cub,1 are neglected. We will not show these analytical results here because it turns

out that an even simpler approximation yields a good agreement with the numerical

calculations shown in Figures 1 and 2 (see Section 2.2) and offers a suitable starting

point to develop a theory for the SdH oscillations of the longitudinal conductivity.

2.2. Approximation of the LLs spectrum

In zero magnetic field, the trigonal warping term Eq. (5c) and the third order term

Eq. (5d) are important in order to understand the results of recent angle resolved

photoelectron spectroscopy measurements and in order to obtain a good fit to the DFT

band structure, respectively [3]. However, as we will show for the calculation of LLs the

terms Hτ,s
3w and Hτ,s

cub,1 are less important. To see this one can perform another Löwdin-

partitioning on Hτ,s
eff to obtain effective singe-band Hamiltonians for the VB and the

CB separately. Keeping only lowest order terms in Bz one finds that these single-band

Hamiltonians correspond to a harmonic oscillator Hamiltonian (with different effective

masses in the VB and CB and for the spin-split bands) and a term which describes a

linear-in-Bz splitting of the energies of the LLs in the two valleys. Therefore the LL
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spectrum can be approximated by

Eτ,s
n,vb = ετ,svb + ~ω

(τ,s)
vb

(

n+
1

2

)

+
1

2
geµBBzs+

1

2
g
(s)
vl,vbµBBz τ, (6a)

Eτ,s
n,cb = ετ,scb + ~ω

(τ,s)
cb

(

n+
1

2

)

+
1

2
geµBBzs+

1

2
g
(s)
vl,cbµBBz τ. (6b)

Here, the following notations are introduced: n = 0, 1, 2, . . . is an integer denoting the

LL index, ετ,svb(cb) = εvb(cb) + τ∆vb(cb)sz are the band edge energies in the VB (CB) for a

given spin-split band s and ω
(τ,s)
vb (cb) =

eBz

m
(τ,s)
vb (cb)

are cyclotron frequencies. In terms of the

parameters appearing in Eqs. (2)-(4), for τ = 1 the effective masses m
(s)
vb (cb) that enter

the expression of the cyclotron frequencies are given by [3]

~
2

2m
(1,s)
vb

=

(

~
2

2me

+ αs −
|γ|2

E
(s)
bg

)

(7a)

~
2

2m
(1,s)
cb

=

(

~
2

2me

+ βs +
|γ|2

E
(s)
bg

)

(7b)

where E
(s)
bg = ε1,scb − ε1,svb . The corresponding expressions for τ = −1 can be easily found

from the requirement electronic states that are connected by time reversal symmetry

have the same effective mass. This means that bands corresponding to the same value of

the product τ s have the same effective mass. The third term in Eqs (6a) and (6b) comes

from the free-electron term (2). The VDB is described by the last term in Eqs. (6a),

(6b) and the valley g-factors are given by

g
(s)
vl,vb = 4

me

~2

(

αs +
|γ|2

E
(s)
bg

)

(8a)

g
(s)
vl,cb = 4

me

~2

(

|γ|2

E
(s)
bg

− βs

)

. (8b)

As one can see from (8a)-(8b), g
(s)
vl depends on the (virtual) inter-band transition matrix

elements αs, βs and γ. Due to the intrinsic spin-orbit coupling, the magnitude of these

matrix elements is spin-dependent [3]. Note, that gvl is different in the VB and the

CB. This is in agreement with numerical calculations based on multi-band tight-binding

models [27, 29]. For the CB, the details of the derivation that leads to (6b) can be found

in [34], for the VB the derivation of (6a) is analogous and therefore it will not be

detailed here. We note that in variance to Reference [34], we do not define separately

an out-of-plane spin g-factor and a spin independent valley g-factor, these two g-factors

are merged in g
(s)
vl . The response to magnetic field also depends on the free electron

Zeeman term. The spin-index s to be used in the evaluation of the Zeeman term in

Eqs. (6a)-(6b) follows the spin-polarization of the given spin-split band. For MoS2, the

spin polarizations s of each band are shown in Figure 5, other MoX2 (X={S, Se, Te})

monolayer TMDCs have the same polarization. For monolayer WX2 TMDCs the spin

polarization in the VB is the same as for the MoX2, but in the CB the polarization of
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the lower (higher) spin-split band is the opposite [3]. We are mainly interested in how

the magnetic field breaks the degeneracy of those electronic states which are connected

by time reversal in the absence of the magnetic field. Using Eqs. (6a)-(6b), the valley

splitting δE
(i)
cb(vb) = g

(i)
eff,cb (vb)µBBz of these states can be characterized by an effective

g-factor g
(i)
eff,cb (vb) = (gesτ + g

(s)
vl,cb (vb)), where i = 1(2) denotes the higher-in-energy

(lower-in-energy) spin-split band. In the VB the upper index (1) [(2)] is equivalent to

↓ (↑), but in the CB the relation depends on the specific material being considered

because the polarisation is different for MoX2 and WX2 materials. Taking first the

MoX2 monolayers one finds that (see also Figure 5)

g
(1)
eff,vb = (−ge + g↓vl,vb) g

(2)
eff,vb = (ge + g↑vl,vb) (9a)

g
(1)
eff,cb = (ge + g↑vl,cb) g

(2)
eff,cb = (−ge + g↓vl,cb) (9b)

For WX2 monolayers g
(i)
eff,vb can also be calculated by (9a), whereas in the CB

g
(1)
eff,cb = (−ge + g↓vl,cb) g

(2)
eff,cb = (ge + g↑vl,cb) (10)

As an example the numerical values of the various g-factors defined above are given in

Table 1 for MoS2 and in Table 2 for WSe2. One can see that g
(s)
vl,cb (vb) can be comparable

in magnitude to ge. This explains why the valley splitting is very small for MoS2 in the

case of the upper spin-split band in the CB (see Figure 1), whereas the opposite is true

for WSe2 (Figure 2).

As one can see from Eqs. (8a) and (8b), g
(s)
vl depends explicitly on the band-gap

E
(s)
bg of a given spin s. In addition, the parameters γ, αs and βs implicitly also depend on

E
(s)
bg due to the fitting procedure that is used to obtain them from DFT band structure

calculations[3]. It is known that E
(s)
bg is underestimated in DFT calculations and its exact

value at the moment is not known for most monolayer TMDCs. Therefore in Reference

[3] we have obtained two sets of the k ·p band structure parameters, the first one using

E
(s)
bg from DFT and the second one using E

(s)
bg extracted from GW calculations. The

calculations shown in Figures 1 and 2 were obtained with the former parameter set. As

shown in Table 1, the calculated g-factors depend quite significantly on the choice of the

parameter set. While there is an uncertainty regarding the magnitude of g
(s)
vl , we expect

that the g-factors obtained by using the DFT and the GW parameter sets will bracket

the actual experimental values. On the other hand, the effective masses are probably

captured quite well by DFT calculations and therefore the first term in Eqs. (6a)-(6b)

is less affected by the uncertainties of the band structure parameters. The calculations

in Figures 1 and 2 correspond to the “DFT” parameter set in Tables 1 and 2.

In order to see the accuracy of the approximation introduced in Eq. (7a)-(7b), in

Figure 3 we compare the LL spectrum obtained in this approximation and calculated

numerically using the Hamiltonian (1). As one can see the approximation is very good

both in the VB and in the CB up to magnetic fields . 20T. For larger magnetic fields

and large LL indices (n > 7) deviations start to appear between the full quantum results

and the approximation. The deviations are stronger in the VB which we attribute to

the larger trigonal warping [3] of the band structure in the VB. To our knowledge the
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Table 1. Valley g-factors in MoS2. In the first row the g-factors are obtained with

the help of DFT band gap, in the second row the g-factors are calculated with a band

gap taken from the GW calculations.

E↓

bg E↑

bg g↓vl,vb g↑vl,vb g
(1)
eff,vb g

(2)
eff,vb g↓vl,cb g↑vl,cb g

(1)
eff,cb g

(2)
eff,cb

DFT 1.66 eVa 1.838 eVa 0.98 0.96 −1.02 2.96 −2.11 −2.05 −0.05 −4.11

GW 2.8 eVb 2.978 eVb 2.57 2.38 0.57 4.38 −0.52 −0.6 1.4 −2.52

a adapted from Reference [3].
b adapted from Reference [35].

Table 2. Valley g-factors in WSe2. In the first row the g-factors are obtained with

the help of DFT band gap, in the second row the g-factors are calculated with a band

gap taken from the GW calculations.

E↓

bg E↑

bg g↓vl,vb g↑vl,vb g
(1)
eff,vb g

(2)
eff,vb g↓vl,cb g↑vl,cb g

(1)
eff,cb g

(2)
eff,cb

DFT 1.337eVa 1.766eVa −0.38 −0.23 −2.38 1.77 −2.71 −2.81 −4.71 −0.81

GW 2.457eVb 2.886eVb 2.55 1.9 0.55 3.9 −0.67 0.13 −2.67 2.13

a adapted from Reference [3].
b adapted from Reference [36].

effects of the non-parabolicity of the band-dispersion on the LL spectrum has not been

discussed before for monolayer TMDCs.
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Figure 3. Comparison of the LL spectrum in MoS2 obtained from the two-band model

and from the single band model. a) The numerically calculated LLs using (1) for the

τ = 1, s = −1 in the VB (squares) and the approximation (6a) (solid lines) for LL

indices n = 0 . . . 9. b) the same as in a) but for the for the τ = 1, s = −1 band in the

CB (squares) and the approximation (6b) (solid lines).

Given the noticeable uncertainty regarding the exact values of the effective g-factors,

one may ask which features of the LL spectrum are affected or remain qualitatively the

same. Looking at Tables 1 and 2, one can see that in some cases only the magnitude of

an effective g-factor changes, in other cases both the magnitude and the sign. Firstly,
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we consider a case which illustrates possible effects of the uncertainty in the magnitude

of an effective g-factor. In Figure 4 we show the LLs in the lower spin-split CB in MoS2

 0
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 0  5  10  15  20  25

E
 [e

V
]

 Bz [T]

a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  5  10  15  20  25

E
 [e

V
]

 Bz [T]

b)

Figure 4. Comparison of the LL spectrum in in the lower-in-energy spin-split CB of

MoS2 obtained with a) g
(2)
eff,cb = −4.11 and b) g

(2)
eff,cb = −2.52. LLs in different valleys

are denoted by different colors.

for the two different g
(2)
eff,cb given in Table 1. One can see that in Figure 4(a) the VDB

is small, except for the lowest LL, which is clearly separated from the other LLs. If one

assumes that the LLs acquire a finite broadening then all LLs would appear as doubly

degenerate except the lowest one in, e.g. an STM measurement. In contrast, the LLs

are in Figure 4(b) are more evenly spaced and may appear as non-degenerate even if

they are broadened.

Secondly, in some cases also the sign of geff changes depending on which parameter

set is used. For geff > 0 the LLs in the K valley have higher energy than the LLs in the

−K valley, while for negative geff the opposite is true. We note that in Reference[37]

Eqs (6a)-(6b) were used to understand the VDB in the excitonic transitions in MoSe2.

The exciton valley g-factor gvl,exc was obtained by considering the energy difference

between the lowermost LL in the CB and the uppermost LL in the VB in each valley:

gex,vlµBBz = (Eτ=1,↓
n=0,cb − Eτ=1,↓

n=0,vb)− (Eτ=−1,↑
n=0,cb − Eτ=−1,↑

n=0,vb ). (11)

Using Eqs. (7a)-(8b), one can easily show that in this approximation the exciton valley

g-factor is independent of the band gap and it can be expressed in terms of the effective

masses in the CB and VB [37, 38]:

gex,vl = 4− 2

(

me

ms
cb

−
me

|ms
vb|

)

(12)

Therefore, albeit the effective g-factors in the CB and VB separately are affected by

uncertainties, the exciton g-factor, in principle, can be calculated more precisely so long

the effective masses are captured accurately by DFT calculations. The comparison of

DFT results and ARPES measurements [3] suggest that the DFT effective masses in the

VB match the experimental results quite well. At the moment, however, it is unclear

how accurate are the DFT effective masses in the CB.

Finally, we make the following brief comments.
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i) In the gapped-graphene approximation, i.e., if one neglects the free electron term

and the terms ∼ αs, βs in Eqs. (7a)-(7b) and in (8a)-(8b) then the lowest LL in the

CB and the highest one in the VB will be non-degenerate, but for all other LLs the

valley degeneracy would not be lifted [31] due to a cancellation effect between the

first and last terms in Eqs.(6a) and (6b).

ii) By measuring the valley g-factors and the effective masses one can deduce the

Diracness of the spectrum [48], i.e., the relative importance of the off-diagonal and

diagonal terms in Hτ,s
D (5a) and Hτ,s

as (5b), respectively.

3. Shubnikov-de Haas oscillations of longitudinal conductivity

As we will show, the results of the Section 2.2 provide a convenient starting point

for the calculation of the SdH oscillations of the magnetoconductance. Our main

motivation to consider this problem comes from the recent experimental observation

of SdH oscillations in monolayer [18] and few-layer [18, 20] samples. Regarding previous

theoretical works on magnetotransport in TMDCs, quantum corrections to the low-field

magneto-conductance were studied in References [25, 26]. A different approach, namely,

the Adams-Holstein cyclotron-orbit migration theory [39], was used in Reference [40]

to calculate the longitudinal magnetoconductance σxx. This theory is applicable if the

cyclotron frequency is much larger than the average scattering rate 1/τ̄sc. By using

the effective mass obtained from DFT calculations [3] and taking the measured values

of the zero field electron mobility µe = e2neτ̄sc
mcb

and the electron density ne given in

Reference [18] for monolayer MoS2, a rough estimate for τ̄sc can be obtained. This

shows that for magnetic fields B . 15T the samples are in the limit of ωcbτ̄sc . 1 and

therefore the Adams-Holstein approach cannot be used to describe σxx. Therefore we

will extend the approach of Ando [42] to calculate σxx in monolayer TMDCs because it

can offer a more direct comparison to existing experimental results.

Figure 5. Schematics of the dispersion in the VB and in the CB around the K and

−K points of the band structure. The spin-split bands are denoted by red and blue

lines, different colours indicate different spin-polarization. The arrows show the spin-

polarization for MoS2. For typical values of doping, the Fermi-level EF (denoted by a

dashed line) would intersect only the upper spin-split band in the VB or both spin-split

bands in the CB. The index (1) and (2) denote the upper and lower spin-split band.

Before presenting the detailed theory of SdH oscillations we qualitatively discuss
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the role of the doping and the assumptions that we will use. The most likely scenarios

in the VB and the CB are shown in Figure 5 (a) and (b), respectively. Considering first

the CB, for electron densities ne ∼ 1013/cm2 measured in Reference [18] both the upper

and lower spin-split bands would be occupied. In contrast, due to the much larger spin-

splitting, for hole doped samples EF would typically intersect only the upper spin-split

VB. Such a situation may also occur for n-doped samples in those monolayer TMDCs

where the spin-splitting in the CB is much larger than in MoS2, e.g., in MoTe2 or WSe2.

For strong doping other extrema in the VB and CB, such as the Γ and Q points may

also play a role, this will be briefly discussed at the end of this section.

We will have two main assumptions in the following. The first one is that one

can neglect inter-valley scattering and also intra-valley scattering between the spin-

split bands. Clearly, this is a simplified model whose validity needs to be checked

against experiments. One can argue that in the VB (see Figure 5(a)) in the absence of

magnetic impurities the inter-valley scattering should be strongly suppressed because it

would also require a simultaneous spin-flip. A recent scanning-tunneling experiment in

monolayer WSe2 [41] indeed seems to show a strong supression of inter-valley scattering.

In the CB, for the case shown in Figure 5(b), the inter-valley scattering is not forbidden

by spin selection rules. Even if EF was smaller, such that only one of the spin-split

bands is populated in a given valley, the inter-valley scattering would not be completely

suppressed because the bands are broadened by disorder which can be comparable to

the spin-splitting 2∆cb (2∆cb = 3meV for MoS2 and 20 − 30meV for other monolayer

TMDCs.) On the other hand, the intra-valley scattering between the spin-split bands in

the CB should be absent due to the specific form of the intrinsic SOC, see Eq. (3). We

note that strictly speaking any type of perturbation which breaks the mirror symmetry of

the lattice, such as a substrate or certain type of point defects (e.g., sulphur vacancies)

would (locally) lead to a Rashba type SOC and hence induce intra-valley coupling

between the spin-split bands. It is not known how effective is this mechanism, in the

present study we neglect it. The second assumption is that we only consider the effect

of short range scatterers. This assumption is widely used in the interpretation of SdH

oscillations as it facilitates to obtain analytical results [42]. We note that according to

References [18, 24], some evidence for the presence of short range scatterers in monolayer

MoS2 has indeed been recently found. While short-range scatterers can, in general,

cause inter-valley scattering, on the merit of its simplicity as a minimal model we only

take into account intra-valley intra-band scattering.

Using these assumptions it is straightforward to extend the theory of Ando [42] to

the SdH oscillations of monolayer TMDCs. Namely, as it has been shown in Section

2.2, for not too large magnetic fields the LLs in a given band can be described by a

formula which is the same as for a simple parabolic band except that it contains a

term which describes a linear-in-magnetic field valley-splitting. Then, because of the

assumption that one can neglect inter-valley and intra-valley inter-band scattering, the

total conductance will be the sum of the conductances of individual bands with valley

and spin indices τ, s. This simple model allows us to focus on the effects of intrinsic
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SOC and valley splitting on the SdH oscillations, which is our main interest here.

Following Reference [42], we treat impurity scattering in the self-consistent Born

approximation (SCBA) and use the Kubo-formalism to calculate the longitudinal

conductivity σxx (for a recent discussion see, e.g., [43, 44]). Assuming a random disorder

potential V (r) with short range correlations 〈V (r)V (r′)〉 = λscδ(r− r′), the self-energy

Στ,s
R = Στ,s

r + iΣτ,s
i in a given band (τ, s) does not depend on the LL index n. It is given

by the implicit equation

Στ,s
r + iΣτ,s

i =
λsc

2πl2B

∞
∑

n=0

1

E −Eτ,s
n − (Στ,s

r + iΣτ,s
i )

(13)

where Eτ,s
n is given by Eqs (6a)-(6b). The term λsc/2πl

2
B on the right-hand side of Eq.(13)

can be rewritten as λsc

2πl2
B

= 1
2π
~ω

(i)
c

~

τ
(i)
sc

where 1/τ
(i)
sc = λscm

(i)/~3 is the scattering rate

calculated in the Born-approximation in zero magnetic field. As in Section 2.2, the

upper index i = 1(2) refers to the higher(lower)-in-energy spin-split band in a given

valley (see also Figure 5). Using the Kubo-formalism the conductivity coming from a

single valley and band στ,s
xx is calculated as

στ,s
xx =

e2

π2~

∫

dE

(

−
∂f(E)

∂E

)

στ,s
xx (E) (14)

where f(E) is the Fermi function and

στ,s
xx (E) = (~ω(i)

c )2
∞
∑

n=0

(n+ 1)Re[Gτ,s
A (n,E)Gτ,s

R (n+ 1, E)−Gτ,s
A (n,E)Gτ,s

A (n+ 1, E)].(15)

Here Gτ,s
R (n,E) and Gτ,s

A (n,E) are the retarded and advanced Greens-functions,

respectively. Vertex corrections are neglected in this approximation. Since we

neglect inter-valley and intra-valley inter-band scattering, the disorder-averaged Greens-

function Gτ,s
R,A(n,E) = [E − Eτ,s

n − Στ,s
R,A]

−1 is diagonal in the indices τ, s and in the LL

representation it is also diagonal in the LL index n. The total conductivity is then

given by σxx =
∑

τ,s σ
τ,s
xx where the summation runs over occupied subbands for a given

total electron (hole) density ne (nh). In general, one has to determine Στ,s
r + iΣτ,s

i by

soving Eq. (13) numerically. The Greens-functions Gτ,s
R,A can be then calculated and στ,s

xx

follows from Eq. (15). It can be seen from Eq. (14) that at zero temperature Στ,s(E)

and στ,s
xx (E) has to be evaluated at E = EF . In the semiclassical limit, when there are

many occupied LLs below EF , i.e., ~ω
(i)
c ≪ EF , one can derive an analytical result for

στ,s
xx , see References [42, 43] for the details of this calculation. Here we only give the

final form of σxx and compare it to the results of numerical calculations.

As mentioned above, the situation depicted in Figure 5(a), i.e., when there is only

one occupied subband in each of the valleys is probably most relevant for p-doped

samples. One finds that in this case the longitudinal conductance is

σxx/σ0 =
2

1 + (ω
(1)
vb τ

(1)
sc )2

[

1−
4(ω

(1)
vb τ

(1)
sc )2

1 + (ω
(1)
vb τ

(1)
sc )2

e
− π

(ω
(1)
vb

τ
(1)
sc ) cos

(

2πEF

~ω
(1)
vb

)

A1 B

+
g
(i)
eff

2

µBBz

EF

4(ω
(1)
vb τ

(1)
sc )2

1 + (ω
(1)
vb τ

(1)
sc )2

e
− π

(ω
(1)
vb

τ
(1)
sc ) sin

(

2πEF

~ω
(1)
vb

)

A2 B

]

. (16)
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Here σ0 = e2τ
(1)
sc

2π~2
EF = e2τ

(1)
sc

m
(1)
vb

nh

2
is the zero field conductivity per single valley and band,

nh is the total charge density and we assumed Στ,s
r ≪ Στ,s

i ≪ EF . The amplitudes A1,2

and B are given by

A1 = cos

(

π

2
g
(1)
eff,vb

m
(1)
vb

me

)

, A2 = sin

(

π

2
g
(1)
eff,vb

m
(1)
vb

me

)

; (17a)

B =
2π2kBT/~ω

(1)
vb

sinh
(

2π2kBT/~ω
(1)
vb

) , (17b)

where kB is the Boltzmann constant and T is the temperature. One can see that

Eqs. (16)-(17b) are very similar to the well known expression derived by Ando [42]

for a two-dimensional electron gas (2DEG). The valley-splitting, which leads to the

appearance of the amplitudes A1,2, plays an analogous role to the Zeeman spin-splitting

in 2DEG. Therefore, under the assumption we made above, the uncertainty regarding

the value of the effective g-factors affects the amplitude of the oscillations but not their

phase. The term proportional to µBBz/EF in Eq. (16) is usually much smaller than the

first term. Thus, it can be neglected in the calculation of the total conductance, but

may be important if one is interested only in the oscillatory part of σxx, see below.

We emphasize that Eq. (16) is only accurate if ~ω
(1)
vb ≪ EF . However, in

semiconductors, especially at relatively low doping, one can reach magnetic field values

where the cyclotron energy becomes comparable to EF . In this case the numerically

calculated σxx may differ from Eq. (16) ‡. It is known that, e.g., WSe2 can be relatively

easily gated into the VB, and a decent Hall mobility was recently demonstrated in few-

layer samples in Reference [15]. As a concrete example we take the following values [15]:

nh = −4 ∗ 1012/cm2 and Hall mobility µH = 700cm2/V s. By taking m
(1)
vb = −0.36me

[3] the Fermi energy is EF ≈ −26.6meV and using that µH = eτ
(1)
sc /m

(1)
vb we obtain

τ
(1)
sc = 1.4 × 10−13s. The amplitude of the oscillations should become discernible when

ω
(1)
vb τ

(1)
sc = µHBz . 1, i.e., for magnetic fields Bz & 10T, while at Bz = 14.28T, which

corresponds to ω
(1)
vb τ

(1)
sc ≈ 1, there are around six occupied LLs. One can expect that for

Bz . 15T the LL spectrum is well described by Eq(6a), however, since the number of

LLs is relatively low, there might be deviations between the analytically and numerically

calculated σxx. In Figure 6(a) we show a comparison between the analytical result

Eq. (16) and the numerically calculated longitudinal conductance at zero temperature.

The effective g-factors g
(1)
eff,vb used in these calculations are given in Table 2.

One can see that for larger magnetic fields the amplitude of the oscillations is

not captured very precisely by Eq. (16) but the overall agreement with the numerical

results is good. Next, in Figures 6(b) and (c) we compare the oscillatory parts σxx,osc

of the longitudinal conductivity obtained from numerical calculations and from Eq (16)

using two different geff,vb values. In the case of the numerical calculations σxx,osc was

obtained by subtracting the smooth function 2/(1+ (ω
(1)
vb τ

(1)
sc )2) from σxx. According to

‡ From a theoretical point of view, in strong magnetic fields one should also calculate vertex correlations

to σxx, but this is not considered here.
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Figure 6. Comparison of the numerically (symbols) and analytically (solid line)

calculated zero temperature conductivity for WSe2 for the situation depicted in Figure

5. a) total conductivity, g
(1)
eff,vb = 0.55. b) and c) comparison of the oscillatory parts

of σxx. In b) g
(1)
eff,vb = 0.55, while in c) g

(1)
eff,vb = −2.38 (see Table 2). The figures

correspond to a magnetic field range of about 5.7− 15.7T.

Eq. (16), the valley-splitting of the LLs and the different effective g-factors should only

affect the amplitude of the oscillations. While the amplitude of the oscillations indeed

depends on g
(1)
eff,vb, one can see that the agreement is better for g

(1)
eff,vb = 0.55 than for

g
(1)
eff,vb = −2.38. For the latter case the position of the conductance minimuma start

to differ for large magnetic field, whereas the maximuma in σxx agree in both figures.

These calculations illustrate that Eq. (16) may not agree with the numerical results

when there are only a few LLs below EF .

We now turn to the case shown in Figure 5(b) when both spin-split subbands are

populated. The total conductance is given by the sum of the conductances coming

from the two spin-split subbands : σxx = σ
(1)
xx + σ

(2)
xx . Since the effective masses in the

spin-split bands are, in general, different, the associated scattering times τ
(1)
sc and τ

(2)
sc

calculated in the Born-approximation are also different. We define τ̃sc = τ
(1)
sc + τ

(2)
sc and

σ̃0 =
e2τ̃sc
2π~2

EF , and obtain for the magnetoconductance

σxx/σ̃0 = 2C(2) 1

1 + (ω
(2)
cb τ

(2)
sc )2

[

1−
4(ω

(2)
cb τ

(2)
sc )2

1 + (ω
(2)
cb τ

(2)
sc )2

e
− π

(ω
(2)
cb

τ
(2)
sc ) cos

(

2πEF

~ω
(2)
cb

)

A
(2)
1 B(2)

]

+2C(1) 1

1 + (ω
(1)
cb τ

(1)
sc )2

[

1−
4(ω

(1)
cb τ

(1)
sc )2

1 + (ω
(1)
cb τ

(1)
sc )2

e
− π

(ω
(1)
cb

τ
(1)
sc ) cos

(

2π(EF − 2∆cb)

~ω
(1)
cb

)

A
(1)
1 B(1)

]

(18)

Here

C(1) =

(

1−
2∆cb

EF

)

τ
(1)
sc

τ̃sc
, C(2) =

τ
(2)
sc

τ̃sc
, (19a)

A
(i)
1 = cos

(

π

2
g
(i)
eff

m
(i)
cb

me

)

, (19b)

B(i) =
2π2kBT/~ω

(i)
cb

sinh
(

2π2kBT/~ω
(i)
cb

) . (19c)
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In Eq. (18) we have neglected terms which are∼ µBBz/EF . The result shown in Eq. (18)

is similar to the multiple subband occupation problem in 2DEG [45, 46, 47]. The valley

splitting affects the amplitude of the oscillations (see Eq. (19b)), whereas the intrinsic

SOC can influence the amplitude of the oscillations [see Eq. (19a)] and it also leads

to a phase difference [Eq. (18)] between the oscillations coming from the two spin-split

subbands.

The situation depicted in Figure 5(b) is easily attained, e.g., in the CB of monolayer

MoS2, where DFT calculations predict that the spin-splitting is 2∆cb = 3meV and

therefore both subbands can be populated for relatively low densities. Our choice of

the parameters for the numerical calculations shown below is motivated by the recent

experiment of Cui et al. [18], where SdH oscillations in mono- and few layer MoS2

samples have been measured. We use ne = 1013/cm2 and mobility µH = 1000cm2/Vs.

The effective masses are chosen as m
(1)
cb = 0.46me, m

(2)
cb = 0.43me and the spin-splitting

in the CB is 2∆cb = 3meV [3]. Using these parameters we find EF = 28.43meV. Since

the effective masses are rather similar, the scattering times calculated from µH are close

to each other: τ
(1)
sc ≈ τ

(2)
sc ≈ 2.6 × 10−13s, i.e., they are almost twice as long as in the

case of WSe2. The oscillations in σxx should become discernible for Bz & 7T, and at

Bz = 10T there are ten LLs in both the lower and the upper spin-split CB in each

valley. We will focus on the oscillatory part σxx,osc = σ
(1)
xx,osc+σ

(2)
xx,osc of the conductance,

since this contains information about the spin and valley splittings. As in the previous

example, we first calculate σ
(i)
xx numerically using Eqs. (13)-(15) and obtain σ

(i)
xx,osc by

subtracting the smooth function 2C(i)/[1 + (ω
(i)
c τ

(i)
sc )2]. We than compare these results

to the oscillations that can be obtained from Eq. (18).

In Figures 7(a) and (b) we show the numerically calculated σ
(1)
xx and σ

(2)
xx for the

two different sets of g-factor values given in Table 1 as a function of ω̄cτ̄sc which

was introduced as a dimensionless scale of the magnetic field. Here ω̄c = eBz

m̄cb
with

m̄ =

√

m
(1)
cb m

(2)
cb and τ̄sc =

√

τ
(1)
sc τ

(2)
sc . All calculations are at zero temperature. One can

observe that due to the CB spin splitting 2∆cb the oscillations of σ
(1)
xx and σ

(2)
xx will not be

in-phase for larger magnetic field. This effect is expected to be even more important for

TMDCs having larger 2∆cb than MoS2 and leads to more complex oscillatory features

in the total conductance σxx than in the previous example of p-doped WSe2 where

only one band in each valley contributed to the conductance. One can also observe

that in Figure 7(b) additional peaks with smaller amplitude appear in σ
(2)
xx,osc for larger

magnetic fields, while there are no such peaks in σ
(2)
xx,osc in Figure 7(a). The origin of

this behaviour can be traced back to the different valley-splitting patterns shown in

Figure 4. The valley splitting of the LLs in Figure 4(a) is small (except for the lowest

LL), while in Figure 4(b) all LLs belonging to different valleys are well-separated for

larger fields and this leads to the appearance of the additional, smaller amplitude peaks

in σ
(2)
xx,osc in Figure 7(b). The comparison between the numerically calculated total

oscillatory part σxx,osc = σ
(1)
xx,osc+σ

(2)
xx,osc and the corresponding analytical result given in

Eq. (18) is shown in Figures 7(c) and (d). The agreement between the two approaches
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Figure 7. Oscillations of σxx in n-doped MoS2. a) numerically calculated σ
(1)
osc

(red squares) and σ
(2)
osc (blue circles) using g

(1)
eff,cb = −0.05 and g

(2)
eff,cb = −4.11. b)

numerically calculated σ
(1)
osc (red squares) and σ

(2)
osc (blue circles) using g

(1)
eff,cb = 1.44

and g
(2)
eff,cb = −2.55. c) The total oscillatory conductance σosc = σ

(1)
osc + σ

(2)
osc

corresponding to a) (red squares) and the analytical result calculated from Eq. (18)

(solid line). d) the same as in c) but corresponding to b).The figures correspond to a

magnetic field range of about 4− 14T.

is qualitatively good for ω̄cτ̄sc . 1. However, for larger magnetic fields where ω̄cτ̄sc & 1

the amplitude of the oscillations start to differ. In this regime the oscillatory behaviour

in σxx,osc can be quite complex, influenced by both the valley splitting and also by the

intrinsic SOC splitting of the bands.

We have tried to analyze the experimental results by Cui et al. [18] using the

theoretical approach outlined above. To this end we have first calculated σxx,exp(Bz) by

inverting the experimentally obtained resistance matrix and normalized it by the zero-

field conductance σxx,exp(0). To simplify the ananlysis, we assumed that the effective

masses are the same in the two spin-split CB: m
(1)
cb = m

(2)
cb = 0.43me, and hence τ

(1)
sc =

τ
(2)
sc . We then fitted σxx,exp(Bz)/σxx(0) by the function f0(Bz) = C + A/(1 + (µqBz)

2),

where the amplitudes A, C and the quantum mobility µq are fit parameters. This

function, according to Eq. (18), should give the smooth part of the conductance. The

fit was performed in the magnetic field range [4T − 15T]: for smaller fields the weak-

localization corrections might be important which are not considered in this work,

while in larger magnetic field the semiclassical approximation may not be accurate.

We have found that σxx,exp can be approximated quite well by f0(Bz). The most

important parameter that can be extracted from the fit is the quantum scattering
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time τsc,q, which is obtained from τsc,q = mcbµq

e
. We find that it is roughly 3.5 times

shorter than the transport scattering time τsc,tr that follows from the measured Hall

mobility µH = 1000 cm2/Vs. The ratio τsc,tr/τsc,q depends to some extend on the

fitting range that is used, but typically it is τsc,tr/τsc,q > 2. This difference may be

explained by the fact that small-angle scattering is unimportant for τsc,tr but it can

affect τsc,q. We note that Cui et. al. [18] has also found that the τsc,tr is larger

than τsc,q, but they have used the amplitude of the longitudinal resistance oscillations

in the magnetic field range 10 − 25T to extract τsc,q and obtained τsc,tr/τsc,q ≈ 1.5.

The significantly shorter τsc,q makes it difficult to analyze the magnetic oscillations

in a quantitative way using Eq. (18). Namely, it implies that oscillations should be

discernible for Bz & 15T, i.e., for magnetic fields where only a few LLs are occupied and

the semiclassical approximation may not be accurate. Using f0(Bz) we then extracted
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Figure 8. Comparison of the theoretical results and the measurements of Cui et

al. [18]. The measured conductance oscillations σosc
xx,exp (squares) and the fitting of

the function fosc(Bz) (see Eq. (20)) using ne = 1.1 ∗ 1013/cm2, 2∆cb = 3meV (blue)

ne = 1.31 ∗ 1013/cm2, 2∆cb = 3meV (black), and ne = 1.31 ∗ 1013/cm2, 2∆cb = 5meV

(purple).

the oscillatory part σxx,osc(Bz) = σxx,exp(Bz) − f0(Bz) of the conductance and fitted it

with the function

fosc(Bz) = −A
4(µqBz)

2

(1 + (µqBz)2)2
exp

(

−π

µqBz

)[

D1 cos

(

2πEF

~ωcb

)

+D2 cos

(

EF − 2∆cb

~ωcb

)]

(20)

where D1,2 are fitting parameters. As one can see in Figure 8, the fit can qualitatively

reproduce the meauserements, but the complex oscillations between 15 − 22T are not

captured. We also note that a somewhat better fit can be obtained if we assume that

the charge density is larger than what is deduced from the classical Hall measurements

(see the black line in Figure 8) and if we choose the spin-splitting larger than the value

obtained from DFT calculations (purple line). In all cases we find, however, that the

fit parameters D1 and D2 differ quite significantly in their magnitude, which is difficult

to interpret in the present theoretical framework. This might indicate that additional

scattering channels, such as inter-valley scattering, would have to be taken into account

for a quantitative theory.
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Finally, we would briefly comment on the relevance of the other valleys in the band

structure for the SdH oscillations. Regarding p-doped samples, the Γ point might, in

principle, be important for MoS2. However, according to DFT calculations [3] and

ARPES measurements [49] the effective mass at the Γ point is significantly larger than

at ±K and therefore we do not expect that states at Γ would lead to additional SdH

oscillations. Nevertheless, they can be important for the level broadening of the sates

at ±K because scattering from ±K to Γ does not require a spin-flip [3]. In the case of

other monolayer TMDCs the Γ valley is most likely too far away in energy from the top

of the VB at ±K to influence the transport for realistic dopings [3]. The situation can

be more complicated for n-doped samples, especially for WS2 and WSe2. For these two

materials the states in the six Q valleys are likely to be nearly degenerate with the states

in the ±K valleys. Therefore the Q valleys might be relatively easily populated for finite

n-doping and, in contrast to the Γ point, the effective mass is comparable to that in the

±K [3] valleys. Therefore they may contribute to the SdH oscillations. They would also

affect the level broadening of the ±K valley states because scattering from K (−K) to

three of the six Q valleys is not forbidden by spin selection rules [3]. Furthermore, we

note that in the absence of a magnetic field the six Q valleys are pairwise connected

by time reversal symmetry. Therefore, taking into account only the lowest-in-energy

spin-split band in the Q valleys, the LLs belonging to the Q valleys will be three-fold

degenerate: the magnetic field, similarly to the case of the K and −K points, would lift

the six-fold valley-degeneracy. The effective valley g-factors, however, might be rather

different from the ones in the ±K valleys. For n-doped monolayer MoX2 materials the

situation is probably less complicated because the Q valleys are higher in energy and are

not as easily populated as for the WX2 monolayers. For MoS2 monolayers, therefore,

one can neglect the Q valleys in first approximation.

4. Summary

In summary, we have studied the LL spectrum of monolayer TMDCs in a k · p theory

framework. We have shown that in a wide magnetic field range the effects of the

trigonal warping in the band structure are not very important for the LL spectrum.

Therefore the LL spectrum can be approximated by a harmonic oscillator spectrum

and a linear-in-magntic field term which describes the VDB. This approximation and

the assumption that only intra-valley intra-band scattering is relevant allowed us to

extend previous theoretical work on SdH oscillations to the case of monolayer TMDCs.

In the semiclassical limit, where analytical calculations are possible, it is found tha

the VDB affects the amplitude of the SdH oscillations, whereas the spin-splitting of

the bands leads to a phase difference in the oscillatory components. Since in actual

experimental situations there might be only a few occupied LL below EF , we have

also performed numerical calculations for the conductance oscillations and compared

them to the analytical results. As it can be expected, if there are only a few LLs

populated the amplitude of the SdH oscillations obtained in the semiclassical limit does
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not agree very well with the results of numerical calculations. This should be taken

into account in the analysis of the experimental measurements. We used our theoretical

results to analyze the measured SdH oscillations of Reference [18]. It is found that the

quantum scattering time relevant for the SdH oscillations is significantly shorter than

the transport scattering time that can be extracted from the Hall mobility. Finally, we

briefly discussed the effect of other valleys in the band structure on the SdH oscillations.
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2015 Physical Review Letters 114, 037401.

[38] Wang G, Bouet L, Glazov M M, Amand T, Ivchenko E I, Palleau E, Marie X, and Urbaszek B,

2015 2D Materials 2 034002.

[39] Adams E N, and Holstein T D, 1959 J. Phys. Chem. Solids 10, 254.

[40] Zhou X, Liu Y, Zhou M, Tang D, and Zhou G, 2014 J. Phys.: Condens Matter 26, 485008.

[41] Yankowitz M, McKenzie D, and LeRoy B J, 2015 Phys. Rev. Lett. 115, 136803.

[42] Ando T, 1974 J. Phys. Soc. Jpn. 37, 1233.

[43] Vasko F T and Raichev O E, Quantum Kinetic Theory and Applications, Springer (2005).

[44] Bruus H and Flensberg K, Many-Body Quantum Theory in Condensed Matter Physics, Oxford

University Press (2006).

[45] Raikh M R, and Shahbazyan T V, 1994 Phys. Rev. B 49, 5531.

[46] Averkiev N S, Golub L E, Tarasenko S A, and Willander M, 2001 J. Phys.: Condens. Matter 13,

2517.

[47] Raichev O E, 2008 Phys. Rev B 78, 125304.

[48] Goerbig M O, Montambaux G, and Piéchon F, 2014 EPL 105 57005.
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