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Abstract: Edge magnetism in zigzag nanoribbons of monolayer MoS2 has been investigated with
both density functional theory and a tight-binding plus Hubbard (TB+U) Hamiltonian. Both methods
revealed that one band crossing the Fermi level is more strongly influenced by spin polarization than
any other bands. This band originates from states localized on the sulfur edge of the nanoribbon.
Its dispersion closely resembles that of the energy branch obtained in a linear chain of atoms with
first-neighbor interaction. By exploiting this resemblance, a toy model has been designed to study
the energetics of different spin configurations of the nanoribbon edge.

Keywords: DFT band structure; tight-binding calculations; Hubbard Hamiltonian; 2D materials

1. Introduction

Transition metal dichalcogenide (TMDC) monolayers have many properties [1,2] that
make them suitable for applications in nanoelectronics, photonics, spintronics, and other
fields [3,4]. Nanoribbons of these monolayers offer an even larger spectrum of properties
due to the presence of edges [5].

As first predicted in the case of graphene [6], electronic states can be strongly localized
on zigzag edges of 2D materials having a honeycomb lattice. In the case of graphene
zigzag nanoribbons, the edge states correspond to flat portions of two bands approaching
asymptotically the charge neutrality level from above and below at the X point of the
Brillouin zone. The extension of the flat part increases with the width of the nanoribbon.
This peculiar band structure is unstable with respect to spin polarization [7]: the two flat
band portions are shifted above and below the charge neutrality level by ferromagnetic
spin ordering of the electrons that occupy the edge states. According to the second Lieb
theorem [8], the spins on both edges have opposite orientations.

Zigzag MoS2 nanoribbons also have metallic states localized either at their Mo edge
or their S edge [9,10]. Whereas the interior of the nanoribbon is a semiconductor, the edge
states give rise to two to four dispersive bands crossing the Fermi level. The shape and num-
ber of these metallic bands depend on the Hamiltonian used and the edge geometry [11].
In the simplest case, one can preserve the primitive lattice constant of the nanoribbon by
saturating every Mo atom at the Mo edge with a sulfur dimer [10,12]. The atomic structure
just discussed is depicted in Figure 1. This experimentally observed geometry has been
adopted in the present work. For that geometry, spin polarization takes place at the S
edge and no magnetism is present at the Mo edge [12,13] (see Figure 1), which is also
the case for a (2× 1) reconstruction of both edges [14]. Spin-polarized band structure
calculations of zigzag MoS2 nanoribbons, whatever the particular edge structure used,
confirm that the magnetism first observed experimentally in edge-oriented nanosheets [15]
is due to edge states. Since then, more and more experimental evidence of magnetism
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produced by electrons localized at zigzag edges of TMDC nanosheets has appeared in the
literature [16–19].

Mo edge

Figure 1. Spin polarization plots (red disks) for a zigzag MoS2 nanoribbon with six unit cells across
thickness. The projection of the atomic structure on the Mo (x, y) mirror plane is shown by colored
sticks. The Mo atoms are located at the intersection of the gray part of the sticks. The projection of
the S atoms, symmetrically located above and below the Mo plane, lies at the crossing of the yellow
parts. The nanoribbon is infinite in the x direction. The sulfur dimers are perpendicular to the plane
of the drawing at the end of the topmost yellow bars.

An interesting observation from DFT band-structure calculations is the fact that a
branch with strong sulfur-edge character that crosses the Fermi level is strongly responsive
to spin polarization, whereas the other branches are virtually independent of the spin
orientation [13]. This responsive branch is called the “magnetic band” here. Its component
with spin down is fully located below the Fermi level, while the spin-up component is filled
up at 30%. This band is responsible for a magnetic moment of 0.7 µB per one-dimensional
unit cell of the nanoribbon when one Bohr magneton µB is attributed to each electron.
When spin polarization is switched off, the magnetic band is weakly dispersive, as shown
in Section 2. Anticipating the results of Section 2.2, the dispersion of the very same band
described with a tight-binding Hamiltonian is a cosine-like function similar to what is
obtained in calculating the band structure of a linear chain of atoms. By adding a Hubbard
term to the on-site energies of the tight-binding Hamiltonian (TB+U Hamiltonian), the spin-
degeneracy of the magnetic band is lifted, its two components being simply shifted from
each other in energy. Like in DFT calculations, the other bands remain mainly degenerate
in spin.

The observation just described led us to pay specific attention to this magnetic band,
while forgetting all the other branches of the nanoribbon. The problem is thereby reduced
to that of a linear chain of atoms described by a Hubbard model. The full TB+U calculation
having been performed in the mean-field approximation, by neglecting all correlation
effects, the linear chain will be treated at the same level of approximation. This toy model
allows us to understand better the results of the full calculations, more specifically, the
energetics of the magnetic Bloch domains. In addition to making the understanding easier,
the linear-chain model does explain the magnetic properties of the S edge of zigzag TMDC
nanoribbons. As demonstrated below, the ground state of the one-dimensional model is
ferromagnetic, as predicted by full calculations for the nanoribbon. Based on this, the central
motivation of the work was to estimate the excitation energies of different arrangements
of the magnetic moments, such as antiferromagnetic order and reversed-spin domains of
various sizes that are not accessible to full calculations. The main goal was to analyze the
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robustness of the ferromagnetic order. In summary, the results described in this paper
usefully complete the picture we have been able to sketch in Ref. [13] and open a new
pathway for the investigation of 1D edge magnetism in TMDC nanoribbons.

2. Methods
2.1. DFT Calculations

Here we recall the main steps of the DFT and TB band structure calculations [13]
that are necessary to understand the one-dimensional (atomic chain) model presented
in this paper. As the goal was to correctly set our tight-binding parameters and crystal
structures, as well as ensure correct orbital dependency, we have compared the band
structures obtained by tight-binding with ones obtained by density functional theory (DFT).
The latter were computed with the Vienna ab initio simulation package (VASP) [20] using the
projector augmented wave (PAW) method [21]. The exchange-correlation functional chosen
is the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA-PBE) [22]. The
band structure was calculated with a plane-wave cutoff set at 500 eV and the Brillouin zone
was sampled on a (12 × 2 × 1) Monkhorst–Pack mesh of k points [23]. The convergence
criterion for forces was set to 0.01 eV/Åduring geometry optimization.

After the relaxation of the geometry, the S-S bond length of the dimer localized on
the Mo-terminated edge of the zigzag nanoribbon was found to be 1.99 Å, which differs
notably from both the in-plane (3.18 Å) and out-of-plane (3.13 Å) S-S bond lengths.

Our DFT calculations were compared with previous results, even on different edge
geometries of MoS2. A perfect agreement was found, e.g., with Ref. [12]. As a general
remark, all the calculations presented in this paper were performed at 0 K.

2.2. TB Formalism

We used a tight-binding (TB) model to calculate the band structures of MoS2. This
method is similar to the LCAOs (linear combination of atomic orbitals) frequently used in
quantum chemistry. The main assumption of this model is that the orbitals are localized and
orthogonal, like Wannier functions of the assumed crystalline material. In this formalism,
the allowed energies of the Schrödinger equation are the eigenvalues of the matrix whose
elements are

Hiλ,jµ = (εiλδλµ)δij + β
λµ
ij (1)

where the indices i, j refer to atomic sites, the Greek letters λ, µ designate s, p, or d orbitals,
εiλ is the on-site energy, β

λµ
ij the hopping integral, and H is a Hermitian matrix. The

approach used in this paper is the Slater–Koster one, which consists in considering the
different parameters of the tight-binding model as free parameters that can be adjusted to
obtain the best possible band structure. This has the advantage of being fast to calculate
numerically and of being applicable in situations for which Bloch’s theorem is not valid.

For MoS2, our model considers an orthogonal basis made of five orbitals (4dxy, 4dyz,
4dxz, 4dx2−y2 , and 4d3z2−r2) for each molybdenum atom and three orbitals for each sulfur
atom (3px, 3py, 3pz). We first used the TB parameters (hopping terms and on-site energies)
found in Ref. [24] and Ref. [25]. Since these parameters were fitted to infinite sheets of
MoS2, they fail to describe accurately the band structure of a nanoribbon, as the edges are
not taken into account. Thus, the first step was to modify the on-site energy parameters of
the edge atoms in order to quantitatively reproduce the DFT band structure calculations.

As the goal was to be as close as possible to what could be found experimentally, we
focused on MoS2 nanoribbons with zigzag edges. One edge is S-terminated and the other
one is Mo-terminated and passivated with S dimers, for this is the most stable configuration
according to both theoretical predictions and experimental observations [26]. The crystal
structure of the nanoribbon is shown in Figure 1.

To reproduce the shape of the band structure and mid-gap states with strong edge
character in the DFT calculations, it was necessary to describe individually the atoms at
the edges as well as the S dimer with the fine-tuned parameters shown in Table 1. The
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orbital dependency of each mid-gap state in our parameterized TB model is correctly
reproduced compared to the DFT results. The width of the nanoribbon (the number of
zigzag lines across the nanoribbon) was fixed at six for our parameterization. This turns
out to be sufficient to avoid electronic interaction between the two edges [13]. Therefore,
our parameterization is valid to describe wider nanoribbons.

Table 1. Modified tight-binding on-site energy parameters for the edge atoms in units of eV. The
values correspond to the five orbitals (4dxy, 4dyz, 4dxz, 4dx2−y2 , 4d3z2−r2 ) for Mo atoms and three
orbitals (3px, 3py, 3pz) for S atoms, in the indicated order.

- Mo Atom S Atom S Dimer

Mo edge −2.03, 1.42, 1.42, −4.03, 0.51 0.28, −8.28, −12.24 −0.55, −5.28, −8.24

S edge −2.03, 4.30, −0.80, −12.03, −2.60 −1.90, 0.18, −6.50 -

Four mid-gap states can be seen in Figure 2: three of them cross the Fermi level,
resulting in the existence of metallic states. The strong localization of these metallic states
at the edges of the nanoribbon is clearly revealed by charge density plots around the Fermi
level displayed in fig. 2(d) of Ref. [13]. The blue and green branches are states localized on
the S and Mo atoms at the S edge, whereas the red and yellow states are coming from the S
dimers and Mo atoms at the Mo edge.

Figure 2. Non-spin-polarized band structure of the zigzag MoS2 nanoribbon with 6 unit cells across
thickness. (Left): DFT calculations, (Right): TB calculations using the modified TB parameters
(Table 1) for the edge atoms. The energy is measured from the Fermi level (reproduced with permis-
sion from Ref. [13]).

After this first step, we had to take into account the magnetic properties of the zigzag
nanoribbon. For this, we switched to a Hubbard-TB approach in the grand-canonical
ensemble and interaction terms UMo and US corresponding to the five Mo and three
S orbitals:

H = ∑
〈ij〉s

tij ĉ†
i,s ĉj,s + UMo ∑

i∈Mo
n̂i↑n̂i↓ + US ∑

i∈S
n̂i↑n̂i↓ + ∑

i,s
(εi − µ)n̂is (2)

where tij are the hopping parameters, ĉi,s annihilates a fermion at site i with spin s (and ĉ†
i,s

creates one), εi are the on-site energy parameters, n̂i,s the particle-number operator, and µ
the chemical potential. For simplicity, the orbital index is ignored here, but the calculations
were indeed performed with five and three orbitals per Mo and S atoms, respectively. Since
we are studying large systems in this paper, we apply the standard mean-field decoupling
of the Hubbard terms: n̂i↑n̂i↓ ≈ ni↑n̂i↓ + ni↓n̂i↑ − ni↑ni↓, which yields an effective single-
particle Hamiltonian that can be diagonalized either in k- or real-space. The average
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occupation numbers ni,s = 〈n̂i,s〉 have to be adjusted self-consistently. Briefly stated, the
algorithm is the following. A starting value is given to the average occupation numbers.
The mean-field version of the Hamiltonian (2) can then be diagonalized and the local
densities of states ρi,s(E) are calculated for both spins on all the atoms and for all the
orbitals. The total density of states follows from ρ(E) = ∑i,s ρi,s(E), where the sum over
i represents the sum on all the orbitals of all the atoms. The Fermi energy εF and the
occupation numbers are then calculated by the equations

Ne =
∫ εF

−∞
ρ(E)dE (3a)

ni,s =
∫ εF

−∞
ρi,s(E)dE (3b)

where Ne is the total number of electrons in the system. Once εF has been set through
Equation (3a), new values are obtained for the ni,s set from Equation (3b). The initial values
are corrected and the process is repeated until the ni,s values differ from the ones of the
previous iteration by less than a given tolerance.

The Coulomb interactions related to the S and Mo atoms in Equation (2) were adjusted
so as to best fit the spin-polarized DFT band structure of the nanoribbon with six unit cells
across the thickness. The obtained values of the Hubbard parameters were US = 1.7 eV and
UMo = 0.6 eV.

As visible in Figure 3, the effect of spin polarization is mainly noticeable on what we
have called the “magnetic band”, coming from the S atoms at the S edge. The partially
filled spin-up band is slightly shifted at higher energy, becoming less occupied, whereas
the spin-down band is far down the Fermi level, leaving this band totally filled. There is
virtually no magnetic moment on the Mo edge due to the S2 passivation of the Mo atoms. In
the notation of Ref. [27], the magnetic ground state is the FX phase, meaning ferromagnetic
ordering of the spins on the S edge of the nanoribbon. The magnetic structure of the
nanoribbon is illustrated by spin-polarization plots presented in Figure 1.

Figure 3. Spin-polarized tight-binding band structure of the zigzag MoS2 nanoribbon derived from a
Hubbard model with US = 1.7 eV and UMo = 0.6 eV parameters. Red and black curves correspond to
the up and down spins, respectively. The energy is measured from the Fermi level (reproduced with
permission from Ref. [13]).

At this stage of the discussion, it is important to point out that spin–orbit coupling
(SOC) was not taken into account in the present work. Due to the absence of inversion
symmetry in a monolayer TMDC, SOC lifts the spin degeneracy of the electronic bands
and induces effects that can be felt in some physical phenomena [28]. The spin splitting
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depends on the character of the bands. It is important where the dxy and dx2−y2 orbitals
of the transition metal dominate the character of a band. By contrast, the splitting is
very small for those bands that involve mainly the d3z2−r2 orbital of the transition metal
and/or the pz orbital of the chalgonenides [29]. We have performed spin-polarized DFT
calculations for a MoS2 nanoribbon including SOC and we may confirm that the SOC has
a very small effect on the magnetic band defined here above, because it has a dominant
3pz character (see below). In the ribbon band structure, the splitting of this band is the
same, with or without SOC, all along the ΓX line within 5 meV variations. This finding
demonstrates that the splitting of the magnetic band is not due to spin–orbit coupling
and comes, therefore, from electron–electron interactions. Briefly stated, the SOC does
not modify the spin-polarization plot of Figure 1. This is fortunate, because including
spin–orbit coupling in a TB+U Hamiltonian introduces new empirical parameters in the
form of SOC constants [30], which would require validation for the nanoribbon geometry.

The advantage of the TB+U approach over the DFT method is in its much lower
computing load. The Hamiltonian is a matrix whose size is 11 times the number of MoS2
units. In contrast to DFT, the diagonalization of the Hamiltonian for nanoribbons containing
several hundreds of MoS2 units can be achieved in a reasonable computing time, including
the self-consistent loop over the occupation numbers on the S and Mo orbitals.

In a previous paper [13], high-performance computing facilities allowed us to treat
nanoribbons of 6×40 (width times length) units, thanks to the relative simplicity of the
TB+U model. We have been able to show that, by applying randomly distributed Gaussian
potentials, it was possible to play with the spin-texture of a MoS2 nanoribbon. Unlike
zigzag graphene nanoribbons, MoS2 nanoribbons have weak magnetic coupling between
the S atoms at their S edge. Therefore, using a positive potential stretching out on just a few
atomic distances, it is possible to change the orientation of the edge spins, breaking locally
the ferromagnetic ground state and creating domain walls. We demonstrated with a simple
Gaussian potential that the width and the profile of the potential play a crucial role in the
magnetic ground state of the system. In the case of overlapping regions where a potential
is applied, the ferromagnetic order is preserved. However, a more systematic study of the
effect of the potential on the magnetic properties requires simplified models that are less
time consuming than the solution of the full TB+U Hamiltonian.

The shape of the magnetic band seems to be suitable for a one-dimensional chain
model, which will allow us to have an interesting toy model to study, in a more systematic
way, the effect of spin reversal on various scales and sites. In this way, the problem is
oversimplified but we believe it preserves an essential part of the physics. The reason is
that the magnetic band (blue curve in Figure 2) we focus all our attention on is weakly
interacting with the other bands located nearby. Indeed, the black curves are bulk states
having little weight at the edge atoms. The green branch comes from the same S edge as
the blue one, but it is unoccupied and should not affect the properties of the system at 0 K.
The red and yellow branches come from electronic states localized on the opposite edges
of the nanoribbon. When the width of the nanoribbon is doubled, nothing changes in the
relative position and shape of the mid-gap bands [13]. This means that, already with six
units cells across the thickness, the edges of a zigzag nanoribbon are independent. It is not
a strong approximation, therefore, to consider the magnetic band as being decoupled from
the other bands.

3. Atomic Chain Model
3.1. Motivation

It was mentioned in the previous section that, compared to unpolarized calculations,
spin polarization chiefly affects a single electronic band of the nanoribbon. This mag-
netic band is the one attributed to states localized on the S edge that crosses the Fermi
level with positive slope. Its dispersion can merely be represented by the expression
ε(k) = ε + β cos(ka), with a the one-dimensional period. This dispersion law is what is
obtained in a one-dimensional atomic chain containing a single orbital on every site. Care-
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ful analysis of the DFT nanoribbon wavefunctions indicate that this orbital mixes the 3py
and 3pz orbitals of the two symmetric sulfur atoms of the S edge. The contribution of
other orbitals, including those from Mo atoms, is very small. The mixed 3py–3pz orbital,
∼40%–∼60% in proportion, is perpendicular to the edge direction, taken as x (see Figure 1).
Accordingly, the small dispersion of the magnetic band observed in Figure 2 can be at-
tributed to a weak π interaction between the mixed p orbitals on successive sulfur pairs.
This π interaction is the hopping parameter β indicated in Figure 4.

ϵ
i,s

i−1 i+1i

β β

Figure 4. Ball-and-stick model of the linear chain described by the Hamiltonian (4).

The density of states ρ(εF) at the Fermi energy of the nanoribbon is big due to the small
dispersion of the magnetic band. Taking into account the Hubbard interaction US, one may
anticipate that the Stoner criterion [31] USρ(εF) > 1 is met; see below. As a consequence,
the magnetic band is unstable with respect to spin splitting. In the spin-polarized band
structure of Figure 3, indeed, the spin degeneracy is lifted, the band with spin ↓ shifts
down, the one with spin ↑ still crosses the Fermi level, hence the ferromagnetic character of
the S edge of the MoS2 nanoribbon.

In this section, we focus on this particular band and analyze its behavior in the context
of the Hubbard model. The parameters of our toy model are ε and β for the dispersion law,
and the number of electrons per spin n0 contained in the band. The parameters fitted to
the ab initio and full TB+U calculations are listed in Table 2. β is the quarter of the band
dispersion between the Γ and the X points of the first Brillouin zone and ε is the average
energy of the band. The effective U parameter was obtained by dividing by 2(1− n0) = 0.7
the splitting of 0.52 eV between the spin ↑ and spin↓ bands in the full TB+U calculations
(Figure 3).

Table 2. TB+U Hamiltonian parameters of the atomic chain that reproduces the dispersion of
electronic states localized on the zigzag S edge of MoS2 nanoribbons. The energy reference is the
same as for the on-site energies of Table 1.

ε (eV) β (eV) n0 U (eV) ε0 = ε − Un0 (eV)

−0.8397 −0.04595 0.65 0.7428 −1.3225

A great advantage of the one-dimensional model is its simplicity. Unlike the full
TB+U calculations, there is no need for a supercell approach with periodic boundary
conditions. Local densities of states in a chain containing several thousands sites can be
calculated in a very efficient way, making it possible to study different kinds of disorder of
the magnetic structure.

We have used the mean-field approximation, although the one-dimensional Hubbard
model can be solved analytically for a periodic chain [32–34]. There are several reasons
for keeping this approximation: (1) we want to remain as close as possible to the full
nanoribbon TB+U calculations which were performed at the Hartree–Fock level; (2) the
prediction of the properties of the one-dimensional periodic Hubbard model based on
its analytical solution is complicated; (3) our main interest lies in non-periodic magnetic
configurations involving a large number of sites, which makes the exact diagonalization
of the Hubbard Hamiltonian impossible. Indeed, the complexity of the Hubbard problem
increases exponentially with the number of sites in the chain, when it is finite, or the
number of sites contained in a supercell is reproduced periodically. Different levels of
approximation exist to address the problem, among which the mean-field approximation is
the simplest [35]. At this level, the problem is easy to tackle, especially in the case of perfect
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ferromagnetic or antiferromagnetic order. More original is the study of disordered magnetic
configurations of the infinite chain, which forms the main contribution of this work.

3.2. Energetics

The on-site elements of the TB+U Hamiltonian with one orbital per site are written as
εi,s = εi +Uni,−s, where s denotes spin ↑ or ↓ and −s denotes the opposite spin orientation.
Let εi = ε0 + Vi, where ε0 comes from the individual atoms and Vi is the crystal field
contribution plus a possible local perturbation of the on-site elements brought about by
an external perturbation. In the latter case, the one-dimensional Hubbard chain becomes
spatially inhomogeneous, which introduces a further complication [36]. In this notation,
the Hamiltonian is written as

H = ∑
i,s

(
εi,s|i, s〉〈i, s|+ β|i, s〉〈i + 1, s| − 1

2
Uni,sni,−s

)
(4)

The underlying chain model is illustrated in Figure 4.
In Equation (4), ni,s is the occupation of the local density of states (DOS) ρi,s(E) on site

i by an electron of spin s. The cohesive energy is the difference between the total energy
of the condensed phase and the total energy of the same number of isolated atoms. Its
expression is

Ec =∑
i

(∫ εF

−∞
[ρi,↓(E)(E− εi,↓) + ρi,↑(E)(E− εi,↑)]dE + Vi(ni,↓ + ni,↑)

)
+ U ∑

i
(ni,↓ni,↑ − n2

0) + Vr (5)

where n0 is the number of electrons per spin in the isolated atoms and Vr the total con-
tribution of the repulsive potential between pairs of atoms in the condensed phase. The
actual expression of Vr does not matter as long as we compare the energy of the same
structure with different magnetic structures. Similarly, the term involving Vi disappears by
subtraction when it involves the same set of elements Vi in the two condensed phases that
are compared.

Equation (5) is valid under the implicit assumption that each site brings n0 electron
per spin on the average. The Fermi energy εF follows from that condition, whisch imposes
that Vi be a constant crystal field term, the same for all the condensed phases under
consideration. If a perturbation of the on-site energy is applied locally or if some local
disorder is introduced, such as a Bloch wall or a small domain with reversed magnetic
moment, the Fermi level εF remains that of the non-perturbed system. The number of
electrons is not conserved and the energy modification must be computed in the grand
canonical framework:

∆E = ∆Ec + (ε0 − εF)∆N (6)

where ∆N is the variation in the total number of electrons. The latter can be generated by
the external perturbation, when there is one, or it can be accommodated by the other bands
that cross the Fermi level in the real MoS2 nanoribbon. The term ε0∆N in Equation (6) is
the result of the modification in the number of electrons compared to the set of individ-
ual atoms.

3.3. Perfect Magnetic Structures

With the parameters of Table 2, the Stoner criterion for magnetic instability Uρ(εF) > 1
is met [31]. It means that the paramagnetic chain is unstable compared to the magnetic
chain. Here, ρ(εF) = 2/[πW sin(πn0)] is the density of states per atom and per spin
at the Fermi energy of the non-magnetic chain with n0 electrons per spin and per atom,
where W = 4|β| is the bandwidth. Ferromagnetic and antiferromagnetic structures were
considered. Self-consistent calculation of the occupation numbers of the spin-polarized
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densities of states were performed for the one-dimensional Hubbard model in the mean-
field approximation. The results are shown in Figure 5. The energy gain per atom were
evaluated for both structures with Equation (5); the results are listed in Table 3. The
ferromagnetic structure is the most stable among the three structures. The calculations
were performed for the band occupation n0 = 0.65, consistent with the full electronic band
structure of the MoS2 nanoribbon.

The widths of the spin ↑ and spin ↓ bands of the antiferromagnetic chain are small com-
pared to the bandwidth 4β = 0.18 eV of the non-magnetic chain. The smallest value of the
bandwidth is realized when n0 = 0.5, where it becomes close to 4β2/U = 0.011 eV. At half
filling, the antiferromagnetic structure would be the most stable, with ∆Ec = −0.138 eV/atom
if all parameters remain the same. As usual with the Hubbard model for half-filled band
systems, the chain would then be an antiferromagnetic insulator (see also Ref. [27]).

Figure 5. Density of states per atom and per spin of the atomic chain for three periodic structures:
(a) non-magnetic, (b) ferromagnetic, and (c,d) antiferromagnetic. Spin ↓ (blue color) and spin
↑ (red color) are represented on the left and right sides of the energy axis, respectively. In the
antiferromagnetic case, (c,d) display the local DOS on two successive sites i and i + 1 along the chain.
For clarity, the width of the spin ↑ and spin ↓ bands for the antiferromagnetic ordering has been
enlarged by a factor of 3.

Table 3. Stabilization energy of two periodic magnetic structures of the linear chain compared to the
non-magnetic case. The Hamiltonian parameters are those of Table 2.

Structure Non-Magnetic Ferromagnetic Antiferromagnetic

∆Ec (meV/atom) 0 −62 −47
n↓ − n↑ 0.00 0.70 ±0.67
εF (eV) −0.7980 −0.6337 −0.5874

3.4. Bloch Wall

The formation energy of a Bloch wall was calculated by reversing the spin orientations
in half of the atomic chain. More precisely stated, the occupation numbers ni,↓ and ni,↑ were
set to 1 and 0.3, respectively, in one half and to 0.3 and 1, respectively, in the other half. The
occupation numbers of 20 sites on both sides of the Bloch wall were considered as variables.
Starting from the initial values 0.3 and 1, these variables were adjusted self-consistently
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from the local integrated densities of states calculated using Equation (3b) on these sites.
The Fermi energy was fixed at the value corresponding to the ferromagnetic order. After
convergence of the self-consistent loop described in Section 2.2, the formation energy of the
Bloch wall was calculated according to Equation (6), with the sum over i in Equation (5)
running over 60 sites, 30 on both sides of the interface. These include the 2 × 20 sites
surrounding the interface, whose occupation numbers were adjusted self-consistently, plus
10 more-distant sites with fixed bulk occupancies. The result is ∆E = 5.8 meV, in good
agreement with the calculations performed for the full MoS2 nanoribbon [13].

Figure 6 represents the variation in the local magnetic moment calculated as the
difference ni,↓ − ni,↑. The bulk value is 0.7. In both domains, small damped oscillations are
visible. The largest moment is realized at the interface, where it reaches 0.84. The smallest
value arises right after that, 0.66. There is a small defect of electrons, ∆N =−0.21, compared
to the perfect crystal.

Figure 6. Variation in the local magnetic moment calculated along the atomic chain when reversed
spins are imposed on both terminal ends of the chain.

3.5. Small Bloch Domains

Small magnetic domains with opposite moment were realized in a way similar to
the Bloch wall. The occupation numbers ni,↓ and ni,↑ were set to 1 and 0.3 all along
the chain except on 1, 2, 3 . . . 6 adjacent sites where their values were swapped. The
occupation numbers on 20 sites on both sides of the center of the domain were calculated
self-consistently, still keeping the Fermi energy at its bulk value. The total energy cost
of the defects was calculated according to Equation (6). The results are listed in Table 4.
Depending on the domain size, the formation energy varies between 7.5 and 14.9 meV. For
the domains with four and more sites, ∆E is close to but not exactly equal to two times the
energy of a single Bloch wall. There remains a small interaction between the walls. Figure 7
represents the local variations in the magnetic moment in the case of a single spin flip and
for the domain with four reversed spins. On both sides of the domain, oscillations take
place similar to Figure 6. The largest values of the moment are realized at the two walls,
merely because the site occupation for spin ↑ is reduced there compared to the bulk value
of 0.3, whereas the occupation of the majority spin remains close to one. The moment at the
single-site domain is −0.98.

Table 4. Total energy cost from Equation (6) and total charge variation for small domains with
reversed magnetic moment in the ferromagnetic chain. The size is the number of sites in the domain.

Size 1 2 3 4 5 6

∆E (meV) 7.5 14.9 11.6 9.8 11.9 12.9
∆N −0.46 −0.75 −0.09 −0.42 −0.72 −0.01
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(a)                                                         (b) 

Figure 7. Variation in the local magnetic moment calculated along the atomic chain with (a) a single
spin flip and (b) a 4-site domain of reversed spin in the ferromagnetic system.

A defect in a one-dimensional chain leads to localized states above or below the
electron band. This is the case with the small magnetic domains. Appendix A contains a
qualitative description of the electronic structure of a single spin flip in the ferromagnetic
system. The local density of states on the site where the spin is reversed is composed at
99% of two peaks, one per spin. The 1% that remains is distributed in the continuous bands.
The peak at low energy, being pulled down from the upper band, is occupied by an electron
with the minority spin, the other peak is not occupied (see Figure A1). When the domain
is composed of two sites, there are four localized states. The lowest—actually two very
closely degenerate peaks—can accommodate almost two electrons with the minority spin.

In Ref. [13], small magnetic domains on the sulfur edge of a MoS2 nanoribbon appeared
as the consequence of having introduced local perturbations of the on-site energy. Due to its
simplicity, the atomic chain model allows us to investigate this effect in a more systematic
way. Similarly to in Ref. [13], we applied a Gaussian perturbation of the on-site energy; see
Figure 8 . The inter-atomic distance was taken as the length unit in such a way that atom i
is located at abscissa xi = i along the chain. Then, the Gaussian perturbation of εi is

Vi = V0 exp [−(i− i0)2/2σ2] (7)

where σ is a dimensionless parameter. We set i0 as either an integer number (maximum of
the Gaussian on the atomic site i0, like in Figure 8a) or as a semi-integer number (maximum
of the Gaussian located halfway between two consecutive sites, like in Figure 8b). The
energy of the perturbed chain was first calculated with the perfect ferromagnetic order.
The energy was calculated next with the same Gaussian perturbation while reversing the
spin on 1, 3, or 5 sites when i0 was an integer and 2, 4, or 6 sites when i0 was a semi-integer
number. These initial configurations generated a magnetic domain with reversed moment
on 1, 2 . . . 6 adjacent sites. In all cases, the initial spin configuration was symmetric with
respect to the maximum of the Gaussian and kept that symmetry. The energy difference
between the configurations with a reversed-moment domain and the configuration without
the domain was calculated. The results are listed in Table 5. Even with a small amplitude
V0, the perturbation stabilizes small domains with reversed moments. Both parameters V0
and σ have a strong influence on the energetics of the domains.
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(a) ∆ℰ = −7.8 meV              V0 = 25 meV, σ = 1.5 

(b) ∆ℰ = −0.6 meV

(c) ∆ℰ = −0.4 meV

Figure 8. Illustration of the results listed in the first row of Table 5. The applied Gaussian perturbation
(Equation (7)) is represented by a continuous green line. Its maximum is located either on top of a site
(a,c) or at the center of a bond (b). The total energy of domains with reversed moments on (a) 1, (b) 2,
and (c) 3 sites is indicated on the left-hand side. Negative values mean more stable configurations
than the ferromagnetic chain subjected to the same Gaussian perturbation. Spins down and spins up
are represented by blue and red arrows, respectively.

Table 5. Formation energy (Equation (6)) in meV for small domains with reversed magnetic moment
in the ferromagnetic chain in the presence of a Gaussian perturbation with parameters V0 and σ. The
size is the number of sites in the domain and σ is given in units of the bond length.

Size 1 2 3 4 5 6

V0 = 0.025 eV, σ = 1.5
∆E (meV) −7.8 −0.6 −0.4 +8.8 +12.4 +11.0

V0 = 0.05 eV, σ = 1.5
∆E (meV) −11.1 −8.3 −7.4 −2.4 +1.0 +8.3

V0 = 0.075 eV, σ = 1.5
∆E (meV) −11.3 −10.4 −9.4 −6.5 −3.0 +2.7

V0 = 0.05 eV, σ = 2.0
∆E (meV) −11.3 −9.7 −9.3 −6.4 −4.2 +0.6

V0 = 0.05 eV, σ = 2.5
∆E (meV) −11.4 −10.4 −10.2 −8.4 −7.1 −4.0

By increasing the amplitude V0 at a fixed width (σ = 1.5), larger domains with reversed
spins become energetically favorable compared to the ferromagnetic solution. For example,
at Vo = 0.025 eV only domains with reversed spins at up to three sites are stable (with
∆E = −0.4 meV), but for V0 = 0.075 eV the stable domain size extends up to five sites.
Similar trends can be observed by increasing the σ parameter at fixed potential value. For
all the parameters explored, the most stable case is a single-site domain. However, as
the last line of Table 5 indicates, domains with two or three reversed moments become
competitive when the full width of the perturbation exceeds six bond lengths (σ > 2.5).
Consistently with the results of Ref. [13], a Gaussian perturbation centered on an atom of
the chain (which represents an edge site of the MoS2 nanoribbon) can reverse the spin on
that particular atom. In addition to the full TB+U calculations, our systematic study with
the one-dimensional model also revealed the relation between the magnetic domains and
the applied perturbation potential in a larger parameter space. If one imagines that the
Gaussian perturbation mimics that produced by an STM tip, it will thereby become possible
to locally change the low-temperature magnetic texture of the S edge of the nanoribbon.
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4. Conclusions

The examination of edge magnetism within zigzag nanoribbons of monolayer MoS2
was undertaken with two distinct approaches: the density functional theory and a tight-
binding Hamiltonian augmented with Hubbard U interactions. The outcomes from both
methodologies consistently disclosed a notable disparity in the spin-polarization effect on
an electron band crossing the Fermi level and coming from the S atoms at the S edge in
comparison to other bands. This band was identified as being responsible for the biggest
part of the polarization. Notably, its dispersion shape closely mirrors the energy dispersion
observed in a linear chain of atoms interconnected through nearest-neighbor interactions.
Exploiting this similarity, a simplified model based on an isolated atomic chain was thought
up, based on the assumption that it captures the main trends of the physics of the real
system. Band-structure calculations allowed us to make a one-to-one correspondence
between the linear chain of the model and the two terminal sulfur atoms at the S edge of
the nanoribbon. On every pair of S atoms at the edge, there is a mixing of 3py and 3pz
orbitals, imposed by the ribbon geometry, which are weakly bound by π interactions along
the edge (the β parameter listed by Table 2).

The linear-chain model aimed at facilitating the exploration of the energy landscape
for diverse spin configurations at the nanoribbon edge. With a band occupation of 2n0 = 1.3
electrons in the paramagnetic state, this model confirmed that the most stable magnetic
configuration is the ferromagnetic one predicted by the full calculations. The model also
accurately reproduced the energy needed to create a single Bloch wall between two domains
with opposite spins, aligning well with calculations for the complete MoS2 nanoribbon
(5.8 meV versus 6.5 meV). For smaller domains, we determined how the formation energy
changed with domain size. Thanks to the simplicity of the atomic chain model, we could
systematically investigate the effects of local changes in the on-site energy. By applying
Gaussian perturbations and reversing the spins in a small portion of the chain centered
at the maximum of the Gaussian profile, we calculated and compared energy differences
for various configurations. The data listed in Table 5 demonstrate a lowering of the total
energy of the chain perturbed by a Gaussian potential when the spin is reversed in a
small region. The size of the reversed-spin domain and the energy gain depend on the
Gaussian parameters. This finding agrees with a similar conclusion drawn from full TB+U
calculations that a local Gaussian perturbation may create a small domain with reversed
spins along the S edge, without destroying the ferromagnetic order in the long range [13].
We anticipate that the same one-dimensional model can be applied to study the magnetic
structure of other TMDC nanoribbons, such as WS2, MoSe2, and MoTe2.
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Appendix A. Spin Flip in a Ferromagnetic Linear Chain

In this Appendix, we seek a necessary condition for making it possible to reverse
the magnetic moment on a single site of an otherwise perfect ferromagnetic linear chain.
It is supposed that the ferromagnetic order creates two separate bands, one totally filled
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with nb1 = 1 (b like bulk) electron of spin ↓ per site while the other is filled up to the Fermi
energy εF and contains nb2 = 0.3 electrons of spin ↑ per site. The Hubbard model is used in
the mean-field approximation. The first-neighbor interaction parameter is β all along the
infinite chain.

We suppose that it is possible to reverse the spin on a single site d (d like defect) for
instance by applying a local external perturbation V that shifts the on-site energy on this
site. In other words, we want to realize nd1 � nb1 and nd2 ≈ 1 > nb2. We simplify the
problem by considering that the electron occupancies on the neighboring sites of the defect
all keep their bulk values. In these conditions, the local density of states on site d can be
obtained analytically:

ρd(E) = − 1
π

Im
1

εb − εd −
√
(E + i0− εb)2 − 4β2

E < εb − 2|β| (A1)

=
1
π

√
4β2 − (E− εb)2

(εb − εd)2 + 4β2 − (E− εb)2 εb − 2|β| < E < εb + 2|β| (A2)

= − 1
π

Im
1

εb − εd +
√
(E + i0− εb)2 − 4β2

E > εb + 2|β| (A3)

Figure A1. The local density of states on the spin-flip defect (top part) is compared to the density
of states of the ferromagnetic atomic chain far from the defect (bottom part). Blue and red colors
correspond to spin ↓ and spin ↑ states, respectively. A, B correspond to defect states, where the
minority spin is occupied (B) and the majority spin is not occupied (A).

Due to the Hubbard term, the on-site energies εd on the defect site and εb on all
the other sites are spin-dependent. For the lowest band (spin ↓), εb = ε0 + Unb2 and
εd = V + ε0 + Und2. The parameter ε0 is defined in Table 2. Under the hypotheses made
above, εd > εb, even with a zero or slightly negative perturbation V. Then, the spin
defect pushes a localized state above the bulk band; see Figure A1. Equation (A3) becomes
ρd(E) = Aδ(E − εu) where E = εu corresponds to the pole of the right-hand side of
Equation (A3). The weight (residue) of the localized state is readily obtained as

A =
|εb − εd|√

(εb − εd)2 + 4β2
. (A4)

The localized state shits up and its weight increases when the difference εd − εb increases,
as for instance by increasing V. When εu crosses the Fermi energy, the occupation nd1 of
the local DOS ρd(E) for spin ↓ abruptly falls from 1 down to 1− A. This value can indeed
be small as soon as εd − εb exceeds the bandwidth 4|β|.

Similarly, for spin ↑the spin defect pushes a localized state below the upper band
(see Figure A1) at the energy E = εl corresponding to the pole of the right-hand side of
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Equation (A1). This state has a weight B given by the same expression as in Equation (A4).
Here, εb − εd = U(nb1 − nd1) − V. When V is not too large, the localized state εl can
host a large fraction of the spin ↑ electron on site d. Hence, nd2 ≈ 1 and nd1 � 1 are
achieved under the condition εu > εF. Considering V as a tuning parameter, this last
condition demands V > −0.06 eV with the parameters of Table 2. The conditions for a
single spin flip are met even in the absence of local perturbation. For V = 0, one obtains
nd1 = 0.016 and nd2 = 0.993. By comparison, full self-consistent calculations for a single
reversed spin (Figure 7a) yield nd1 = 0.013 and nd2 = 0.993. This does not mean that spin
flip will occur spontaneously, because the formation of this defect for V = 0 has an energy
cost given in Table 4 for size 1. In addition, the calculations developed in this Appendix
are oversimplified and, therefore, qualitative. Nevertheless, they indicate that applying a
positive V on one site will facilitate the formation of the defect.

Figure A1 sketches the effects of a single-site spin flip on the local density of states.
With the parameters relevant for the present study, almost all the states are localized on two
peaks, the one at εl is fully occupied by spin ↑ electrons, the other at εu is totally empty. An
electron with spin ↑ is trapped below the bulk bands, which reverses the magnetic moment
on the defect site. The continuous distributions (Equation (A2)) account for about 1 % of
the total spin ↓ and spin ↑ states. Due to this small but non-zero population, there is a weak
probability for an electron at the Fermi energy to tunnel across the defect.
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