Zárójelentés

D 048594 ny. számú posztdoktori kutatási szerződés

Témavezető: *Dr. Csík Attila* Vezető kutató: *Dr. Beke Dezső* Kutatási téma címe: *Határfelületek kialakulása és mozgásuk vizsgálata nanoskálán*

A vékony, néhány nanométeres multirétegek termikus stabilitásának kutatása a szilárdtest fizika és az anyagtudomány egyik intenzíven kutatott területe. Termikus stabilitásuk ismerete nemcsak alapkutatás, hanem az alkalmazások szempontjából is érdekes és fontos a vékonyrétegeket tartalmazó eszközök élettartamának előrevetítésében. A D048594 OTKA posztdoktori kutatási program keretében a nanoméretű vékonyrétegekbenmultirétegekben lejátszódó szilárdtest reakciók illetve diffúziós folyamatok néhány fontos alapkérdésével foglalkoztunk. A pályázat ideje alatt elért eredményekből 13 közlemény jelent meg.

Műszerfejlesztések

Kutatásaimhoz a különböző rétegeket, multirétegeket a DE Szilárdtest Fizika Tanszékén épített magnetronos porlasztó berendezés segítségével állítottam elő, a rétegszerkezet mélységi feltárását szekunder neutrális tömegspektrométeres (SNMS) mérésekkel végeztem. A kutatási program szerves részét képezte az a műszerfejlesztés, mely eredményeként az SNMS berendezés mintamozgató egységének átépítése során megvalósítottuk a minták *in-situ* hőkezelési lehetőségét. A berendezés gyártójával egyeztetve a műszaki tervek átdolgozása után a teljes vákuumkamra, a mintatartó és mozgató rész, valamint a vezérlő elektronika egy részének cseréjét követően a fejlesztéssel sikerült egy

1.ábra. SIMS/SNMS berendezés átépített mintamozgató rendszere és az új fűthető mintatartó.

olyan mintatartó és mozgató rendszert kiépíteni (1. ábra.), mellyel a vizsgálandó minta a vákuumtérbe való elhelyezés után x, y és z irányokban mozgatható, a mintatartó -150 °C-tól 600 °C-ig hűthető-fűthető. Az x-y síkban történő mozgatási lehetőségnek köszönhetően ugyanazon mintán több mérést is tudunk végezni a minta levegőre történő kivétele nélkül. A

méréstechnika roncsolásos jellege miatt korábban mérések után a mintát hőkezelés és/vagy átpozícionálás miatt levegőre ki kellett venni. Vékonyrétegek esetén, ahol a minta vastagsága a teljes mintafelülethez képest jelentősen kisebb, ez a réteg oxidálódását, felületi szennyeződések lerakódását eredményezhette. Az átalakításnak köszönhetően lehetővé vált a koncentráció mélységi eloszlásának (~1nm-es feloldással) a felület különböző pontjain történő felvétel az egymást követő hőkezelések után, a minta levegőre történő kivétele nélkül. Így elkerülhető a minta szennyeződése és oxidációja, a mélységi profil ismeretében pedig direkt információt nyerhetünk a diffúzió okozta változások nyomon követésére. Az átalakítás az eddig is használt röntgendiffrakció és transzmissziós mikroszkópiával kiegészítve további lehetőséget biztosít multirétegekben a határfelületek mozgásának a vizsgálatára, a munkatervben szereplő Si/Si_xSb_{1-x} mintákban a határfelületek kialakulásának а nyomonkövetésére, valamint (a mintatartó mérés közbeni héliummal való hűtésének köszönhetően) az optoelektronikában igen széleskörűen használt kalkogenid multirétegek diffúziós vizsgálatainak kiterjesztésére.

A munkatervnek megfelelően a Si/Si_{1-x}Sb_x/Si háromrétegű mintákban különböző antimon koncentrációk mellett a SiSb réteg szétesésének és az eredeti határfelületekkel párhuzamosan kialakuló határfelületek/koncentráció hullámok viselkedésének vizsgálata volt az elsődleges cél. Mivel az antimon oldékonysága az amorf Si-ban igen csekély (~0.1 %), ebből adódóan az SNMS mérések során kis mennyiségű beoldódott antimont kell kimutatni. Már a munka megkezdésének a legelején nyilvánvalóvá vált, hogy a minták készítése során nagy figyelmet kell fordítani a tiszta Si réteg antimonnal való szennyeződésének elkerülésére. Így első lépésként a Si és a SiSb forrásokat tartalmazó magnetronok "átszórásának" minimálisra való csökkentése érdekében a magnetronok körüli árnyékoló rendszer átalakítását

2.ábra. A porlasztóberendezés átépített zárt árnyékolórendszere és a hordozó fűtésére alkalmas mintatartó.

és a hordozó fűtésére alkalmas mintatartó kialakítását valósítottuk meg (2. ábra.).

A kutatási támogatás felhasználásával a berendezés bővítése céljából vásároltunk egy ultravákuum kivitelű léptetőmotor, a porlasztógáz beeresztésére alkalmas tűszelepet és egy 0-500 W közötti porlasztási teljesítmény szabályzására alkalmas tápegységet.

Antimon diffúziójának vizsgálata Si/Si_{1-x}Sb_x rétegekben

A kutatási munkatervnek megfelelően a Si/Si_{1-x}Sb_x/Si háromrétegű struktúrákban a SiSb réteg szétesésének és az eredeti határfelületekkel párhuzamosan kialakuló határfelületek-koncentráció hullámok viselkedésének vizsgálata céljából x = 18 és 24 at% összetételű amorf mintákat készítettem magnetronos porlasztással Si egykristály hordozóra. A minták vákuumban (<10⁻⁷ mbar) és 100 bar Ar gázban történt különböző idejű hőkezelése után az Sb

3. ábra. 18 at% Sb tartalmazó Si/Si_{1-x}Sb_x/Si trirétegű minta transzmissziós mikroszkóp felvétele és SNMS mélységi profilja hőkezelés után.

mélységi koncentráció eloszlását szekunder neutrális tömegspektrométerrel (SNMS) követtem nyomon. Megállapítottuk, hogy a folyamat az antimonnak a határfelületeken történő szegregációjával kezdődik, majd nanokristályosodás után a középső antimont tartalmazó réteg szétesik és az eredeti határfelülettel párhuzamos koncentráció hullámok alakulnak ki (3. ábra.). A jelenséget, az eredetileg amorf SiSb réteg nanokristályossá válását követő felgyorsult diffúzióval és az Sb határfelületeken történő szegregációjával magyaráztuk. További hőkezelések során megfigyelhető volt az antimonnak a szabad Si felület felé történő diffúziója és ezáltal fogyása is.

Ellentétben a nyomás alatt hőkezelt mintákkal, vákuumban történt hőkezelések során koncentráció hullámok kialakulása nem volt megfigyelhető. Feltételezésünk szerint a hidrosztatikai nyomás alkalmazása elősegíti a kristályosodási folyamat beindulását és az így kialakult nanokristályos szerkezetben az effektív diffúziós együttható több nagyságrenddel nagyobb lehet. Az SNMS merések eredményének megerősítésére egyes mintákat transzmissziós elektronmikroszkóppal (TEM) is megvizsgáltam. A TEM felvételeket az SNMS vizsgálatok eredményeivel összevetve egyértelműen megerősítést nyert, hogy a mikroszkópos felvételeken már korábban is látott kontrasztkülönbségek antimon koncentráció hullámoknak felelnek meg. Az elért eredményeket a Portorozban megrendezett JVC-10 konferencián (10th Joint Vaccum Conference) mutattuk be, ahol az ELFT Vákuumfizikai Szakcsoport által meghirdetett legjobb magyar poszter díját nyertem el. Az eredményeket a *Vacuum* folyóiratban közöltük [1].

Az Sb amorf Si-ban történő diffúziójának további vizsgálatához, elkerülendő a SiSb réteg kristályosodását és szétesését, a 18 és 24 at%-os Sb koncetrációjú minták vizsgálata mellett 3-5 at%-os összetételű mintákat is készítettem. Feltételezve, hogy a jelentősen

alacsonyabb Sb összetétel mellett a rétegrendszerben a koncentráció hullámok kialakulására nem lesz mód, a véges méretű antimonnal ötvözött tartomány "szétfolyásából"

4. ábra. Sb koncentrációjának változása 550 ° C-on történt 10 órás hőkezelés után.

meghatározható az Sb amorf szilíciumbeli diffúziós együtthatója. A hőkezeléseket 450–750°C hőmérsékleti tartományban (50°C-os lépésekben) végeztük vákuumban és 100 bar Ar nyomáson. A vákuumban hőkezelt mintákon, hasonlóan a magasabb összetételek esetében korábban végzett kísérleteinkhez, most sem tapasztaltunk észrevehető változást. A nyomáson hőkezelt minták esetében az SNMS koncentráció profilokban azonban az Sb csúcs kiszélesedése és lecsökkenése volt megfigyelhető. Az Sb koncentrációjának változását, 550°C-on történt 10 órás hőkezelés után a 4. ábra mutatja. Ellentétben a nagyobb összetételű mintákon mért eredményeinkkel a rendszernek spinodális bomláshoz hasonló transzformációja nem volt megfigyelhető a 10 órás hőkezelések után sem. Augerelektronspektroszkópiával a minta felületén nem láttunk antimont, így feltételezhető, hogy az "elfolyt" anyagmennyiség a kétoldali Si rétegben van. A 600°C és 750°C hőmérsékleten hőkezelt minták transzmissziós elektronmikroszkópos (TEM) vizsgálatai már kristáyosodást mutatott, mind a vákuumos, mind pedig a 100 bar-os hőkezelések esetén. Feltehetően az Sb jelenléte a Si kristályosodását eredményezi fém-indukált kristályosodási folyamat révén. A koncentráció eloszlás változásból, az Sb diffúziós együtthatójára az amorf Si-ban, 550 °C-on $D_{Sb} \sim 1.10^{-21}$ m²/s -t kaptunk. Az eredmények poszter formájában az ICTF13/ACSIN8 (Stockholm) és Prágában a JVC-11 vákuumkonferenciákon mutattuk be, valamint a Vacuum és a Defect and Diffusion Forum folyóiratokban kerültek közlésre [2-3]. Meg kell jegyezni, hogy a [3] közleményből technikai okok miatt az OTKA nyilvántartási szám kimarad, de a cikk tartalmát tekintve látszik, hogy szorosan kapcsolódik a kutatási programhoz.

Kalkogenid vékonyrétegek-multirétegek vizsgálata

A pályázata egy másik témaköre a kalkogenid anyagok vizsgálata volt. Az optikai adattárolók alapanyagaként használt kalkogenid rétegekben, noha igen széleskörben

elterjedtek, a mai napig nem ismertek az olyan alapfolyamatok teljes bizonyossággal, mint a fázisátalakulások, fény indukálta kristályosodás és amorfizáció, diffúziós folyamatok.

megfelelően А kutatási tervnek e ielenségek vizsgálata céljából $Se_{0.6}Te_{0.4}$ $Se_{0.6}Te_{0.4}/SiO_x$, vékonyrétegeket és valamint Se_{0.6}Te_{0.4}/As₂S₃ multirétegeket készítettünk. A pályázat keretében a mintákban hőkezelés, valamint lézerrel történő megvilágítás hatására végbemenő kristályosodás röntgendiffrakciós és transzmissziós elektronmikroszkópos vizsgálatát végeztem el. Mértük továbbá a megvilágított minták optikai és elektromos tulajdonságainak a változását is. Megállapítottuk, hogy а Se_{0.6}Te_{0.4}/SiO_x multirétegeben, ellentétben а Se_{0.6}Te_{0.4} vékonyrétegekkel, már az előállítás után jelen vannak aprószemcsés krisztalitok (5. ábra.). Lézer fénnyel történő megvilágítás hatására szemcseméret növekedés figyelhető meg, mely jelentősen megváltoztatta a rétegek optikai tulajdonságait: a multiréteges minták optikai áteresztőképessége (a réteg sötétedése, τ/τ_o) sokkal gyorsabban változott mint a

röntgendiffrakciós spektruma megvilágítás előtt és után.

vékonyrétegeké (6. ábra.). Adattároló lemezek esetében e jelenség gyors írásra ad lehetőséget [4-7].

o.abra. Se_{0.6}1e_{0.4} vekönyelege(1, 1) es Se_{0.6}1e_{0.4} StO_x multiréteg (2, 2') optikai áteresztőképességének változása a megvilágítási idő függvényében.

közlemény és három konferencia anyag született.

A termikus párologtatás és lézerablációval előállított Se/As₂S₃ multiréteget vizsgálata során kiderült, hogy az utóbbi módszerrel előállított iobb tulajdonságokkal minták rendelkeznek. minták a röntgendiffrakciós spektruma élesebb határfelülettel rendelkező szerkezetet mérések mutat [8]. További szükségeltetnek még az optikai paraméterek vastagságtól, modulációs hossztól való függésének vizsgálata, mely vizsgálatok jelenleg is folynak.

A kalkogenid anyagok vizsgálata során elért eredményeinkből 5 tudományos

Amorf Si/Ge és hidrogénezett Si/Ge multirétegek vizsgálata

A munkatervnek megfelelően egy következő kutatatási program az amorf Si/Ge multirétegek határfelületi élesedésének vizsgálata volt. Korábbi diszkrét modellszámolásaink a diffúziós együttható erős koncentráció függése esetén kristályos rétegekben azt a meglepő eredményt adták, hogy multirétegekben i) a diffúzió során a határfelület ellaposodás helyett éles marad és eltolódik; ii) ez az eltolódás a megszokottal ellentétben az időben lineáris függést mutat; iii) a kezdetben elmosott határfelületeket a diffúzió kiélesítette. Az első két állítást Ni film félvégtelen Cu mátrixba való beoldódásának Auger elektronspektroszkópos vizsgálatai igazolták, a határfelületek élesedését pedig szinkrotronnál végzett alacsonyszögű röntgendiffrakciós mérések útján sikerült megmutatni Mo/V rendszerben. Ezen eredményekből kiindulva merült fel a kérdés, hogy amorf rendszerben is igazolható-e a kristályos multirétegeknél már bizonyított, kezdetben elmosott határfelület élesedése. A vizsgálatokhoz a Si/Ge mint modell rendszert kívántam használni (korábban e rendszerben a diffúziós együttható koncentráció függését már vizsgáltam) és párhuzamosan hidrogénezett Si/Ge minták vizsgálatát is elkezdtük. Ez utóbbi rendszer azért vált érdekessé, mert az általunk készített Si/Ge multiréteg mindig tartalmaz oxigént (Si-nál ez gyakorlatilag elkerülhetetlen), ami beépülve a Si rétegbe 2 szabad gyököt/kötést hoz létre. A H-Si/Ge a hidrogén jelenléte miatt nyilván kevesebb oxigént fognak tartalmazni, szabad kötések száma is kevesebb lesz, így a diffúziós mechanizmus is más lehet. A H-Si/Ge mintákkal ezt a különbséget szerettük volna megvizsgálni.

A hidrogénezett minták hőkezelése 350, 400 és 450 °C történt. Az első méréseknél lehetőségünk volt szinkrotronnál vákuumkamrában *in-situ* kísérleteket végezni (BESSY), a további mérések Ar atmoszférában hőkezelt mintákon történtek *ex-situ*. Az elvégzett mérésből egyértelműen kiderült, hogy a H-Si/Ge rendszer nem hidrogénezett mintákhoz képest sokkal érzékenyebb a hőkezelési hőmérsékletre. A Si/Ge multirétegnél diffúziós szempontból

7a. ábra. 350 °C-on hőkezelt minta SEM felvétele

7b. ábra. 350 °C-on hőkezelt minta XRD spektruma

alacsonynak tekinthető 350 °C-os hőmérséklet a H-Si/Ge minták nagy mértékű degradációját eredményezi már 10 perces hőkezelés idő alatt, ami minden bizonnyal a hidrogénnek a rendszerből való távozásával hozható kapcsolatba. Az *in-situ* mérések után a minták eredeti sima felülete láthatóan feldurvult, így indokolt volt alapos mikroszkópos vizsgálatuk. A SEM felvételen látható (7a. ábra), hogy hőkezelés után a minta "tönkrement", de ugyanakkor van

kisszögű röntgendiffrakciós spektrum (7b. ábra), ami első ránézésre meglepő volt. Annak ellenére, hogy a felület teljesen felszakadozik az alacsonyszögű röntgendiffrakcióban nem tűnik olyan drasztikusnak a rétegszerkezet degradálódása. Ezért a diffúziós vizsgálatok további előrehaladása előtt a minta szerkezeti változásainak a feltérképezését volt indokolt

elvégezni. AFM és TEM vizsgálatok megmutatták (8.-9. ábra.), hogy a rétegszerkezet a felület jelentős feldurvulása ellenére azokon a részeken ahol a réteg nem szakadozott fel megmaradt, ami magyarázza az alacsonyszögű spektrum meglétét. Az eddigiekből következően a további mérések célja azon hőmérséklet megtalálása volt, ahol a hidrogén távozása a rendszerből nem olyan gyors, hogy felszakítsa a réteget. A hőkezelések során minden lépés után a mintákról alacsonyszögű röntgendiffrakciós spektrum és SEM vizsgálat készült. A vizsgálatok eredményét összegezve azt mondhatjuk, hogy i) a felület feldurvulása már a hőkezelések első néhány percében megtörténik még a legalacsonyabb, 150 °C-on történt hőkezelések után is; ii) a további hőkezelések során a már jelentősen lecsökkent

melletti diffúziót hidrogéntartalom "látjuk"; iii) első mérési az pont elhagyásával alacsonyszögű az röntgendiffrakció elsőrendű Braggreflexiós csúcsának időbeli változása (lnI/I_o) a Si/Ge és a H-Si/Ge minták esetén összehasonlíthatóak. Egy ilyen összehasonlítást láthatunk a 10. ábrán a hidrogénezett és a nem hidrogénezett minták elsőrendű Bragg-csúcsának időbeli változására. Látható, hogy a hidrogénezett mintában а Bragg-csúcs intenzitás lényegesen rövidebb csökkenése hőkezelési idők alatt megy végbe, ami arra utal, hogy a hidrogén jelenléte gyorsítja a diffúziós keveredést. A két rendszer diffúziós folyamatainak

10. ábra. Hidrogénezett és nem hidrogénezett minták elsőrendű Bragg-csúcsának időbeli változása.

pontosabb összehasonlításához azonban még további mérések elvégzése szüksége, melyek folyamatban vannak. Az eddigi eredményekből egy konferencia anyag készült el (DRIP XII, Berlin, 2007 Sept. 9-13) és egy közlemény megjelenése van folyamatban [9].

A H-Si/Ge minták vizsgálatával párhuzamosan az amorf Si/Ge határfelület elmozdulási kinetikájának vizsgálata céljából amorf Ge-ra felvitt néhány nm-es amorf Si réteg beoldódási kinetikáját vizsgáltuk AES-es *in-situ* Marseille-ben. A mérések tapasztalatai alapján XPS kinetika méréseket is végeztünk, mivel ezzel a módszerrel a Ge-jel változása sokkal pontosabban követhető. Az előzetes eredmények azt mutatják, hogy az élesen maradó határfelület eltolódása - szimulációs eredményeinkkel összhangban - nem követi a parabolikus törvényt [10].

A pályázat ideje alatt megjelent több összefoglaló tudományos közlemény is az eddig elért eredményeinkből vékonyrétegekben és multirétegekben zajló diffúziós folyamatok vizsgálatával kapcsolatban, a klasszikus diffúziós törvények (Fick-egyenletek) nanométeres tartományban való sérüléséről [11-15].

Debrecen, 2007. november 8.

Dr. Beke Dezső vezető kutató Dr. Csík Attila témavezető

- [1] A. Csik, G. Erdélyi, G.A. Langer, L. Daroczi, D.L. Beke, J. Nyéki, Z. Erdélyi Pattern formation in SiSb system
 Vacuum 80 (2005) 168-173 (imp.:0.909)
- [2] A. Csik, G.A. Langer, G. Erdélyi, D.L. Beke, Z. Erdelyi, K. Vad Investigation of Sb diffusion in amorphous silicon Vaccum 82 (2008) 257-260 (imp.:0.909)
- J. Nyéki, C. Girardeaux, Z. Erdélyi, A. Csik, L. Daroczi, G. Langer, D.L. Beke, A. Rolland, J. Bernardini, G. Erdélyi
 Sb diffusion and segregation in amorphous Si thin films
 Defect and Diffusion Forum 237 (2005)1246-1251 (imp.:0.483, 1 hivatkozás)
- [4] I. Ivan, D.L. Beke, S. Kokenyesi, I.A. Szabo, A. Csik *Light and ion induced interdiffusion in amorphous chalcogenide nanomultilayers* Journal of Optoelectronics and Advanced Materials 7 (2005)1831-1836 (imp.:1.138; 2 hivatkozás)
- [5] M. Malyovanik, M. Shiplyak, V.M. Cheresnya, I. Iván, S. Kökényesi, A. Csik Stimulated transformations in nano-layered composites with Se0.6Te0.4
 Journal of Optoelectronics and Advanced Materials 7 (2005)1451-1456 (imp.:1.138; 1 hivatkozás)
- [6] S. Kokenyesi, I. Ivan, A. Csik, I. A. Szabo, D. L. Beke

Stimulated interdiffusion and optical recording in amorphous chalcogenide nanomultilayers

SPIE – The International Society for Optical Engineering Nanoengineering: Fabrication, Properties, Optics and Devices III Proceedings of SPIE Vol. 6327 **0** (2006)

- S. Kokenyesi, M. Malyovanik, V. Cheresnya, M. Shiplyak, A. Csik Stimulated structural transformations in Se_{0.6}Te_{0.4}/SiO_x nano-layered composite Journal of Non-Cristalline Solids 352 (2006) 1529 (imp.:1.264)
- [8] V. Takats, P. Nemec, A. Csik, S. Kokenyesi
 Photo- and thermally induced interdiffusion in Se/As₂S₃ nanomultilayers prepared by pulsed laser deposition and thermal evaporation
 Journal of Physics and Chemistry of Solids 68 (2007) 948-952 (imp.:1.410)
- [9] C. Frigeri, M. Serényi, A. Csik, Z. Erdélyi, D. L. Beke and L. Nasi Structural modifications induced in hydrogenated amorphous Si/Ge multilayers by heat treatments
 Journal of Materials Science: Materials in Electronics közlésre beküldve(2007)
- [10] Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik *Transition from anomalous kinetics towards Fickian diffusion for Si dissolution into amorphous Ge* Physical Review Letters közlésre beküldve(2007)
- [11] Z. Erdélyi, G.A. Langer, A. Csik, D.L. Beke Nanoscale effects in interdiffusion
 Diffusion and Defect Data 264 (2007) 91-98
- Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik
 Interface shape change and shift kinetics on the nanoscale Solid State Phenomena 129 (2007)105-110 (imp.:0.493)
- [13] Kis-Varga M., Langer G.A., Csik A., Erdélyi Z., Beke D.L.
 Effect of substrate temperature on the different diffuseness of subsequent interfaces in binary multilayers Deffect and Diffusion Forum közlésre elfogadva (2007) (imp.:0.483)
- [14] Z. Balogh, C. Cserháti, Z. Erdélyi, A. Csik, G.A. Langer, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm
 Silicide formation reactions in a-Si/Co multilayered samples Deffect and Diffusion Forum közlésre elfogadva (2007) (imp.:0.483)
- [15] D.L. Beke, Z. Erdélyi, G.A. Langer, A. Csik, G.L. Katona Diffusion on the nanometer scale
 Vacuum 80 (2005) 87-91 (imp.:0.909)