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Abstract. Different models are described where non-interacting particles generate dissipative
effective forces by the mixing of infinitely many soft normal modes. The effective action is
calculated for these models within the Closed Time Path formalism. This is a well known
scheme for quantum systems but its application in classical mechanics presents a new, more
unified derivation and treatment of dissipative forces within classical and quantum physics.

1. Introduction

The derivation of dissipative forces is a challenge for us on two counts. First, these forces are
not covered by the fundamental equations of motion. Dissipation, a special kind of breakdown
of the time reversal invariance, arises from the restriction of our attention to a subset of a closed
system, in short it is an effective force. Second, the usual formalism of classical or quantum
mechanics, based on Lagrangians and Hamiltonians, can not cope with such non-conservative
forces.

Some attempts to derive friction dissipative forces and decoherence are surveyed here by
calculating the effective action for the observed system within the Closed Time Path (CTP)
formalism, well known in quantum field theory [1, 2, 3, 4]. Its extension for classical mechanics
[5, 6, 7, 8], which provides a unified treatment of effective forces on the classical and the quantum
level and offers a fresh look into the quantization of open systems, is surveyed in the first part
of this paper. The second half contains a brief discussion of dissipative effective forces in two
classical models, in a set of harmonic oscillators and in classical electrodynamics, followed by the
quantum mechanical examples, a test particle in an ideal gas and the dynamics of the probability
current in an ideal fermi gas.

2. Dissipative forces in effective theories

Let us consider a classical model, described by the system and the environment coordinates x
and y1, . . . , yN , respectively. The closed dynamics, defined by the action S[x, y], is supposed
to be symmetric under the inversion of and the translation in the time. The solution of the
equations of motion,

δS[x, y]

δx
= 0,

δS[x, y]

δy
= 0, (1)

are made unique by some auxiliary condition, to be chosen as initial conditions. To find the
effective system equation of motion one solves the second equation for a general system trajectory
and inserts the solution, y[x], into the first equation. One can gain more insight into the effective
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dynamics by calculating the effective action, Seff [x] = S[x, y[x]], whose variational equation,

δSeff [x]

δx
= 0, (2)

is the effective equation of motion.
But this procedure is formal an incomplete. The problem comes from the way the auxiliary

conditions are handled in the variational method: The Euler-Lagrange equation is derived by
fixing the initial and final coordinates but we have initial conditions in this problem. This is
an important issue for dissipative effective dynamics where the final environment coordinates
are extremely complicated. An extension of the traditional variation method is needed at this
point. The proposition, put forward in this Section, is to let ourself guided in establishing an
extension of the classical variational method by the already well known solution of this problem
in quantum theory, namely by the use of mixed states. This strategy not only lead us to an
action principle which covers dissipative forces but also provides a fresh view of the standard
quantization rules when applied for open systems.

2.1. Semiholonomic force

One of the main obstacle to describe effective dynamics is that it contains non-conservative
forces. Analytic mechanics starts with d’Alembert principle, stating that the virtual work of the
external and the inertial forces is always vanishing along the trajectory,

(Fext −mẍ)δx = 0. (3)

This equation can be converted into a much more powerful form by assuming that the force is
holonomic, namely it can be obtained from a scalar function, U(x, ẋ) by derivation,

F (x, ẋ)δx = −δx∂xU(x, ẋ)− δẋ∂ẋU(x, ẋ). (4)

Hamilton considered the time integral of d’Alambert principle for a holonomic force and noticed
that it can be written as a variational equation,

0 = δ

∫ tf

ti

dt
[m

2
ẋ2 − U(x, ẋ)

]

− δx(mẋ + ∂ẋU)

∣

∣

∣

∣

tf

ti

. (5)

Note that the initial and final variations cancel in this equation. To underline the formal
similarities of the classical and quantum dynamics we continue with the usual variational
principle,

0 = δ

∫ tf

ti

dt
[m

2
ẋ2 − U(x, ẋ)

]

. (6)

The holonomic forces are conservative and we need a generalization of (4) for effective forces.
The coordinate and velocity dependence dependence of U(x, ẋ) in (4) provides us an expression
of the force and assures the energy conservation. We separate these two roles by introducing
passive and active copies of the degrees of freedom,

x→ x̂ = (x+, x−), (7)

the active coordinate being used to calculate the force and the passive coordinate controlling
the potential in an independent manner. The result is expression,

F (x, ẋ)δx = −[δx∂x+U(x̂, ˙̂x) + δẋ∂ẋ+U(x̂, ˙̂x)]|x+=x−=x, (8)

for the semiholonomic forces. These forces are non-conservative and it will be argued below that
they cover all effective forces, arising within a subsystem of a closed system.



2.2. Initial conditions

Another complication of the effective dynamics is related to the missing auxiliary conditions.
Let us suppose that the environment is finite, N <∞, when the effective equation of motion,

[

c0 + c2∂
2
t + · · ·+ c2(N+1)∂

2(N+1)
t

]

x = 0. (9)

can easily be derived in harmonic models by the use of normal modes. The general solution of this
equation requires the knowledge of 2(N + 1) auxiliary conditions of which two are known, x(ti)
and ẋ(ti), the environment being unobserved. How to solve this equation with the insufficient
number of auxiliary conditions at hand? It is easy to see that this problem is not restricted to
harmonic models.

The missing initial conditions may lead to yet another, more particular problem of the effective
equation of motion (9). This equation is formally invariant under time reversal but this symmetry
is bound to be broken in the effective theory. In fact, to check the the time reversal invariance of
the effective theory one records the motion of the system and checks whether the motion, seen
by playing the record backward in time, satisfies the same effective equation of motion. The
point is that the environment initial conditions influence the effective equation of motion in an
implicit manner and the initial environment conditions of the time reversed record are the final
environment conditions of the original motion.

We propose the use of variational principle as a remedy of these problems. More precisely,
the solution of the effective equation of motion will be constructed by the help of the retarded
Green function, derived from the effective action.

2.3. Classical chrono-dynamics

To avoid the need of fixing the final coordinates and to allow the dynamical breakdown of time
reversal invariance we follow the motion in an extended time interval. We start the motion at
ti with some initial conditions, perform a time reversal at tf and follow our system back in time
until it reaches its initial state, c.f. Fig. 1. The result is a closed time path, x̃(t) = x(t), for
ti < t < tf and x̃(t) = x(2tf − t) when tf < t < 2tf − ti. This notation is rather cumbersome
and a simpler book-keeping is provided by the introduction of the CTP doublers, (7), with
trajectory x̂(t) = (x+(t), x−(t)) = (x̃(t), x̃(2tf − t)). This step sheds more light on the role of
the active and passive copies, introduced above: The non-conservative part of the effective force
arises from the new segment of the extended motion and the active and the passive coordinates
belong to the same degrees of freedom because the equation x+(t) = x−(t) holds after having
imposed the equation of motion. Note that the time arrow is oriented in the opposite way for
the two trajectory. This is the main achievement of this formalism, the possibility of following
the motion in both directions of the time, and is the source of the name chronon, introduced for
the doublet x̂.

x

t

+

f

−x

t

x

Figure 1. The system undergoes
a time reversal transformation, the
time arrow is flipped at t = tf , and
the motion is followed back to the
initial state.

Both member of the chronon, x±, are dynamical variables therefore one needs an action, S[x̂],
to generate their dynamics. The obvious choice for a closed system is

S[x̂] =

∫ tf

ti

dt[L(x+(t), ẋ+(t))− L(x−(t), ẋ−(t))], (10)



where L(x, ẋ) denotes the traditional Lagrangian. The minus sign arises from the opposite
time arrow of the trajectories x+(t) and x−(t) and introduces a symplectic structure for the
CTP index. The same initial conditions are imposed for both members of the chronon. The
boundary term in the variational equation of motion, (6), should not be canceled in the usual
way, by requiring δx±(tf ) = 0, rather by imposing the constraint

x+(tf ) = x−(tf ), (11)

which leaves the final state of the motion free, an essential requirement for the environment of
dissipative systems.

There is a degeneracy in the action at x+(t) = x−(t) which has to be split in order to arrive
at unique Green functions. For this end we add an infinitesimal imaginary part to the CTP
Lagrangian,

L(x̂, ˙̂x) = L(x+, ẋ+)− L(x−, ẋ−) + Lspl(x̂, ˙̂x), (12)

with Lspl(x̂, ˙̂x) = iǫ(x+2+x−2)/2. The advantage of removing the degeneracy with an imaginary
term is the CTP symmetry, the transformation

S[τ x̂] = −S∗[x̂] (13)

of the action under the exchange, τ(x+, x−) = (x−, x+), which flips the time arrow.

2.4. Green functions

Let us first consider the Green function of a harmonic system, given by the action S[x̂] =

x̂K̂x̂/2 + x̂ĵ where ĵ = (j+, j−) is an external source. We use a condensed notation where
the trajectories are handled as vectors, the scalar product denotes the time integration and
x̂ĵ =

∑

σ x
σjσ. The CTP Green function is defined as D̂ = K̂−1 and allows us to write the

trajectory, corresponding to a physically realizable source, j+ = −j−, as

x(t) = −
∑

σ′

∫

dt′Dσσ′

0 (t, t′)σ′j(t′). (14)

This expression is independent of σ and leads to the CTP exchange symmetry, D++ +D−− =
D+− +D−+, of the Green function. Similar relation is satisfied by K̂, as well. These together
yield the block structure

D̂ =

(

Dn −Df

Df −Dn

)

+ iDi

(

1 1
1 1

)

(15)

and

K̂ = σ̂

[(

Kn −Kf

Kf −Kn

)

+ iKi

(

1 1
1 1

)]

σ̂, (16)

where

σ̂ =

(

1 0
0 −1

)

(17)

is the “metric tensor” of CTP. The application of these rules for the electromagnetic field

suggests the definition D
r
a ≡ Dn ± Df for the retarded and advanced Green functions. One

can define these components for the inverse, K
r
a ≡ Kn ± Kf , as well, and the relations

K
r
a = (D

r
a)−1 and Ki = −(Da)−1Di(Dr)−1 follow. The symmetry, Kσσ′(t, t′) = Kσ′σ(t′, t),

introduces similar equation for D̂ and the relations Dn(t, t′) = Dn(t′, t), Di(t, t′) = Di(t′, t) and
Df (t, t′) = −Df (t′, t).



The translation invariance in time is recovered by performing the limit ti → −∞, tf → ∞
and the Green function of the harmonic oscillator, L = mẋ2/2−mΩ2x2/2, turns out to be [5]

D̂(t, t′) =

∫

dω

2π
e−iω(t−t

′)D̂ω(Ω), (18)

with

D̂ω(Ω) =
1

m

( 1
ω2−Ω2+iǫ

−2πiΘ(−ω)δ(ω2 −Ω2)

−2πiΘ(ω)δ(ω2 − Ω2) − 1
ω2−Ω2−iǫ

)

. (19)

This result can be used to define the action in this limit, Kn = m(ω2 − Ω2), Kf = isign(ω)ǫ,
Ki = ǫ, S[x̂] = S[x+]− S[x−] + Sspl[x̂], where the infinitesimal imaginary part,

Sspl[x̂] =
iǫ

2

∫ ∞

−∞
dt[x+(t)− x−(t)]2 +

ǫ

π
P

∫ ∞

−∞
dtdt′

x+(t)x−(t′)

t− t′
, (20)

handles the boundary conditions in time, and P stands for the principal value prescription. Note
that the coupling between the chronons at the final time, (11), is replaced by infinitesimal, time
translation invariant mixing terms.

Let us consider now a function of the coordinate, A(x), and perform the Legendre

transformation, W [ĵ] = S[x̂] + ĵÂ(x̂), where δ{S[x̂] + ĵÂ(x̂)}/δx̂ = 0. The Green functions
of A(x) for an interacting system are defined as the coefficient functions of the expansion

W [ĵ] =

∞
∑

n=0

1

n!

∑

σ1,...,σn

∫

dt1 · · · dtnD
σ1,...,σn(t1, . . . , tn)j

σ1(t1) · · · j
σn(tn), (21)

and can be calculated by iteration. The inverse transformation, Seff [Â] = W [ĵ] − ĵÂ(x̂) and

δW [ĵ]/δĵ = Â(x̂), gives the effective action. The solution of its equation of motion,

Â(x̂(t)) =

∞
∑

n=0

1

n!

∑

σ,σ1,...,σn

∫

dt1 · · · dtnD
σ,σ1,...,σn(t, t1, . . . , tn)j

σ1(t1) · · · j
σn(tn), (22)

is expressed by the help of the Green functions. Such a method to construct the solution of the
effective equation of motion does not produce runaways trajectories as long as we are allowed to
use the residuum theorem to calculate frequency integrals of the Green functions. This is how
this scheme realizes Dirac’s idea about the elimination of runaway solution for a point charge in
classical electrodynamics [9].

2.5. Effective action

After having included the initial conditions into the variational principle we return to the effective
action in the generic model, defined by the action S[x, y] = Ss[x] + Se[x, y]. The steps, leading
to eq. (2) are now well defined and yield

Seff [x̂] = Ss[x
+] + Se[x

+, y+[x̂]]− Ss[x
−]− Se[x

−, y−[x̂]] + Sspl[x̂] + Sspl[ŷ[x̂]]

= Ss[x
+]− Ss[x

−] + Sinfl[x̂] + Sspl[x̂], (23)

where the trajectory ŷ[x̂] satisfies the equation of motion, δSe[x̂, ŷ]/δŷ = 0. The second equation
defines the influence functional [10],

Sinfl[x̂] = Se[x
+, y+[x̂]]− Se[x

−, y−[x̂]]. (24)



A physically better motivated form of the effective action is

Seff [x̂] = S1[x
+]− S1[x

−] + S2[x̂] + Sspl[x̂] (25)

where the separation of the terms is rendered well defined by the condition S2[0, x
−] =

S2[x
+, 0] = 0. The role of the different actions, introduced in this manner, becomes clear

in the parametrization, x± = x ± xd/2, whose advantage in classical mechanics is that it is
sufficient to know the action in S = O(xd) since x+(t) = x−(t) holds for the solution of the
equations of motion. The variational equation of motion for xd at xd = 0,

0 =
δS1[x]

δx
+
δS2[x

+, x−]

δx+ |x+=x−=x
, (26)

represents the holonomic and the semiholonomic forces by the help of S1 and S2, respectively,
and realizes the scheme of Section 2.1: The dynamics, generated by the single coordinate, S1,
is conservative and obeys Noether theorem and the coupling of the doubler, S2, introduces the
dissipative forces [11]. The chronon couplings are due to the influence of the final environment
coordinate by the system trajectory and the CTP scheme reduces to two independent traditional
action principles if the final environment coordinates are kept fixed during variation. The CTP
symmetry, (13), is inherited by the effective action and provides the proof that the family of
semiholonomic forces is closed with respect to generating effective interactions.

A distinguishing feature of the CTP formalism is that the system-environment interactions are
mapped into the interactions within the chronon. This is an unexpected and a highly non-trivial
result, holding for arbitrary large and complex environment. We shall see in the quantum case,
discussed below, that the same chronon coupling encodes the system-environment entanglement,
as well, making entanglement and semiholonomic forces identical.

2.6. Quantum chrono-dynamics

The CTP formalism was introduced by Schwinger to carry out the perturbation expansion for an
expectation value Ā(t) = 〈ψ(0)|U †(t)AU(t)|ψ(0)〉 [1], where the need of the reduplication of the
degrees of freedom arises from the simultaneous use of bra and ket, two virtually independent
but physically identical state vectors. One is tempted to follow the naive quantization procedure
of Schrödinger for the chronon and to introduce the chronon wave function, ψ(x+, x−). This
function is actually the density matrix, ψ(x+, x−) = ρ(x+, x−), shedding a new light on Gleason
theorem.

The more systematical, perturbative treatment is facilitated by the generating functional,

e
i
~
W [ĵ] = TrT [e−

i
~

∫
dt(H(t)−j+(t)x(t))]ρiT

∗[e
i
~

∫
dt(H(t)+j−(t)x(t))], (27)

where ρi denotes the initial density matrix. Its path integral representation is

e
i
~
W [ĵ] =

∫

D[x̂]e
i
~
S[x̂]+ i

~

∫
dtĵ(t)x̂(t), (28)

where the integration extends over chronon trajectories which satisfy the condition (11) and the
action is the same as in the classical case.

The effective dynamics can be found in a manner, similar to the classical case. The
(Wilsonian) effective action is defined by

e
i
~
Seff [x̂] = te

i
~
Ss[x+]− i

~
Ss[x−]

∫

D[ŷ]e
i
~
Se[x+,y+]− i

~
Se[x−,y−]+ i

~
Sslp[x̂], (29)



and the form of eq. (25) applies again.
One may consider a generalization where one leaves out the trace in the generator functional

(27). The result is the Open Time Path scheme, an extension of the CTP formalism, based on
the density matrix,

ρ(x+f , x
−
f ) = 〈x+f |U(tf , ti)ρiU

†(tf , ti)|x
−
f 〉 (30)

The path integral representation of the reduced density matrix,

ρ(x+f , x
−
f ) =

∫

D[x̂]D[ŷ]e
i
~
S[x+,y+]− i

~
S[x−,y−]+ i

~
Sspl[x̂]+

i
~
Sspl[ŷ], (31)

where the trajectories satisfy the final conditions x̂(tf ) = x̂f and y+(tf ) = y−(tf ). Noteworthy
the effective action is the same as in the CTP scheme,

ρ(x+f , x
−
f ) =

∫

D[x̂]e
i
~
S1[x+]− i

~
S∗
1
[x−]+ i

~
S2[x̂]+

i
~
Sspl[x̂]. (32)

This form reveals that decoherence in the coordinate (field) diagonal representation consists of
the suppression of the contributions to the path integral of well separated trajectories within
a chronon and is generated by ℑSinfl. The couplings within a chronon, S2, are due to the
simultaneous contributions of several final environment states in the trace of (27), they render
the system state mixed and encode the system-environment entanglement. An important role
of the CTP formalism in quantum field theory is to visualize the elementary processes which
contribute to the full reduced density matrix, rather than to the transition amplitudes between
pure states, in terms of Feynman graphs.

3. Effective models

Now we look into model calculations where irreversibility, and decoherence in the quantum case,
are generated by non-interacting modes. Irreversibility and decoherence will be detected by the
dissipative terms in the effective equation of motion and the suppression of a chronon trajectory
contribution to the path integral with well separated trajectories, respectively.

3.1. Classical toy model

The simplest, non-trivial classical effective model corresponds to a set of linearly coupled
harmonic oscillators, given by the Lagrangian [12],

L =
m

2
ẋ2 −

mω2
0

2
x2 +

N
∑

n=1

(

m

2
ẏ2n −

mω2
n

2
y2n − gnynx

)

. (33)

It is sometime more advantageous to write it in a form where the system action alone is already
a good approximation for the slow system dynamics, ẋ→ 0,

L =
m

2
ẋ2 −

(

mω2
0

2
−
∑

n

g2n
2mω2

n

)

x2 +
∑

n

[

m

2

(

żn −
gn
mω2

n

ẋ

)2

−
mω2

n

2
z2n

]

. (34)

The action will be written in the form

S[x̂, ŷ] =
1

2
x̂D̂−1

0 x̂+
1

2
ŷĜ−1ŷ − x̂σgŷ, (35)



in condensed notation. The elimination of the environment coordinates by means of their
equation of motion leads to the effective action, Seff [x̂] = x̂D̂−1x̂/2, with D̂−1 = D̂−1

0 − σΣ̂σ,

where the self energy, Σ̂ = gĜg, contains the influence functional,

Sinfl[x̂] = −
1

2

∑

σσ′

σσ′
∫

dω

2π
dte−iω(t

′−t)Σσσ
′

ω xσ(t′)xσ
′

(t). (36)

The spectral function,

ρ(Ω) =
∑

n

g2n
2mωn

δ(ωn − Ω), (37)

can be used to parametrize the model. The self energy assumes the form

Σ̂ω =
1

m

∫ ∞

0
dΩ2Ωρ(Ω)D̂ω(Ω), (38)

where D̂ω(Ω) is given by eq. (19), in particular

Σnω =
2

m
P

∫ ∞

0
dΩ

Ωρ(Ω)

ω2 − Ω2
, (39)

Σfω = −iπsign(ω)ρ(|ω|), and Σiω = −πρ(|ω|).
The influence functional is non-local in time but the expansion of the exponent in t′ − t and

the self energy in ω renders it local [13],

Linfl = −
1

2
(x~Σnxd + xd~Σnx+ xd~Σfx− x~Σfxd + xdi~Σixd), (40)

where

~Σσσ
′

=

∞
∑

ℓ=0

(−1)ℓ

ℓ!
∂ℓiωΣ

σσ′
0 ∂ℓt . (41)

The equation of motion, generated by the variation of xd, at xd = 0, is

mẍ = −(mω2
0 + ~Σr)x, (42)

with ~Σr = ~Σn + ~Σf , and contains the following terms up to O(∂2t ): The harmonic oscillator
frequency is renormalized, ω2

0 → ω2
0 −∆ω2, in O(∂0t ) with

∆ω2 =
2

m2

∫ ∞

0
dΩ

ρ(Ω)

Ω
, (43)

realizing the system potential, seen in eq. (34). A Newtonian friction force, F = −kẋ, arises in
O(∂t) with k = πρ′(0). The O(∂2t ) mass renormalization, m→ m+ δm, takes place with

δm =
4

m

∫ ∞

0
dΩ

ρ(Ω)

Ω3
, (44)

reflecting that the dressing by the environment increases the inertia (ρ ≥ 0).
The origin of dissipative forces in this harmonic model can be found by noting that the energy,

received by x, spreads over the whole system [14]. This is similar to the spread of energy within
an interactive system and leads to dissipation if there are sufficient strength at low frequencies.
A more physical insight can be found by viewing irreversibility as a spontaneous symmetry



breaking, an adiabatic approximation which becomes exact in the thermodynamical limit: To
test reversibility one has to monitor all normal modes. The observation of a normal mode needs
time at least in the order of magnitude of its period length. Hence the observations, carried
out in an arbitrary long, but finite time leave infinitely many normal modes unresolved and are
unable to establish reversibility if there is a condensation point in the spectrum at vanishing
frequency. The infinitely many unresolved slow normal mode drive a gradual loss of system
energy, diffusion.

3.2. Classical point charge

The spectral function of the toy model can freely be chosen and different dissipative features can
be modeled. This freedom is due to the lack of local space-time structure. When the degrees of
freedom are distributed in the space-time then their spectral weight and the emerging dissipative
forces are severely restricted by the space-time symmetries. This motivates our next model, the
effective theory of a classical point charge [15]. The electrodynamics of a single charge is defined
by the action S = Sch + SEMF + Si, where a point charge, the electromagnetic field (EMF)
dynamics and their interactions are described by

Sch = −mBc
∑

σ

σ

∫

ds
√

ẋσ2(s)

SEMF = −
1

8πc

∑

σ

σ

∫

d4p

(2π)4
Q(p2)p2Aσµ(−p)

(

gµν −
pµpν

p2

)

Aσν (p),

Si = −
e

c

∑

σ

σ

∫

dsẋσµ(s)Aσµ(x
σ(s)), (45)

Q(p2) being the regulator for the singular UV regime of the EMF. The influence functional with
the real part,

ℜSinfl =
2πe2

c

∫

dsds′ ˙̂x(s)ℜD̂(x(s)− x(s′)) ˙̂x(s′), (46)

can easily be found by eliminating of the EMF. It goes beyond the usual action-at-a-distance
action [16, 17, 18, 19] insofar as it contains the radiation field contribution, too. The EMF
Green function,

ℜD̂(x) =
δℓ(x

2)

4π

(

−1 −sign(x0)
sign(x0) 1

)

, (47)

needs some regularization. The diagonal, near field singularities are removed by smearing the
Dirac-delta, δ(z) → δℓ(z), over a distance ℓ. The far field singularity calls for special attention:
First, because it arises from the coincidence of the singular points of the two distributions in
the off-diagonal blocks. Second, any smearing of sign(x0) breaks Lorentz invariance. We keep
sign(x0) unchanged and require δℓ(0) = 0. Note that we do not need this latter condition in
QED, set in the usual formalism, to calculate transition amplitudes between pure states. A
simple regularization which satisfies all requirements is δℓ(z) = δ(z − ℓ2).

The expansion of (46) in (s − s′)/ℓ is straightforward and produces the non-local influence
Lagrangian

Linfl(s) = xd(s)
4e2

c

∫ 0

−∞
duδ′ℓ(u

2)[x(s + u)− uẋ(s+ u)− x], (48)

up to terms O(x2). The corresponding equation of motion for xd, at xd = 0, is

mBcẍ
µ = −

e2

cℓ
ẍµ + (gµν − ẋµẋν)

[

Kν +O(x3)
]

(49)



with

K(s) =
2e2

3c

{

...
x (s)− 6

∫ 0

−∞
duδ′ℓ(u

2)

[

x(s+ u)− uẋ(s+ u)− x(s) +
u2

2
ẍ(s) +

u3

3

...
x (s)

]}

.

(50)
The convergence of the integral in the influence Lagrangian, (48), is not uniform when the cutoff
is removed, ℓ → 0, and the first term of (50), the well known Abraham-Lorentz force, owes its
existence to this irregularity. The emergence of the cutoff-independent Abraham-Lorentz force is
reminiscent of quantum anomalies: Both arise as finite cutoff effects, left behind after the removal
of the cutoff. In the case of the renormalized classical EMF one finds a light cone anomaly, as
well, the modification of the retarded Green function, Drℓ(x, y) → Drℓ(x, y)[1 + (x − y)2/s20],
amounts to an O(e2/c2s0) change of the mass of the charge. In other words, the EMF field
which is placed slightly off shell by the regulator remains sensitive to the off-shell modifications
of its dynamics even after the removal of the cutoff. The second term in (50), the integral is
O(ℓ) and generates a crossover, reminiscent of the Landau pole of QED, in the scaling laws at
the classical electron radius, r0 = e2/mc2, the only scale parameter of the model. The usual
electromagnetic interaction is recovered in the IR side and an acausal theory emerges in the UV
regime of this hypothetical model, without quantum physics.

3.3. Test particle in an ideal quantum gas

What changes in the previously discussed models when their quantum version is considered?
The classical equation of motion remains an operator equation for harmonic systems, hence
the effective equation of motion, derived for the harmonic toy model, remains valid for the
expectation values of the coordinate. The toy model has already extensively been studied in the
CTP formalism [20]. Similarly trivial extension of the classical results to the quantum case is
possible for the effective theory of a point charge, too. One has naturally to restrict the motion
of the charge to the non-relativistic domain to keep its path integral Gaussian.

Let us now move to a more realistic problem of a quantum test particle, interacting with an
ideal gas and determine its effective Lagrangian in the leading order of the Landau-Ginzburg
double expansion [13]. The effective dynamics of a particle which interacts with an ideal gas
has already been considered by using the traditional effective action approach in imaginary time
[21] and by means of the CTP formalism [22]. The quantum master equation [23] has been
used extensively, too: The dephasing has been described in the pioneering work [24], followed
by the inclusion of relaxation [25, 26, 27]. The calculation, reviewed here, goes beyond these
works insofar as it is based on the CTP formalism, needed to keep track of dissipative forces, and
retains all contributions of the CTP self energy and offers a simpler and more flexible alternative
to arrive at the effective dynamics.

The action of this model, S = Sp + Sg + Si, is given by

Sp[x] =

∫

dt

[

M

2
ẋ2(t)− V (x(t))

]

,

Sg[ψ
†, ψ] =

∫

dtd3yψ†(t,y)

[

i~∂t +
~
2

2m
∆+ µ

]

ψ(t,y),

Si[x, ψ
†, ψ] =

∫

dtd3yU(y − x(t))ψ†(t,y)ψ(t,y), (51)

where M denotes the mass of the test particle which propagates under the influence of an
external potential V . The gas is described by the field ψ and its density is coupled to the test
particle by the potential U . The influence functional of the test particle,

e
i
~
Sinfl[x̂] =

∫

D[ψ̂]D[ψ̂†]e
i
~
ψ̂†(F̂−1+Γ̂[x̂])ψ̂, (52)



can be found by integrating over the gas degrees of freedom. The propagator of the gas, the
inverse of the quadratic form of Sg, is

F̂ (t,y, t′,y′) =

∫

dω

2π

d3q

(2π)3
e−iω(t−t

′)+iq(y−y
′)F̂ωq, (53)

with

F̂ωq =





1

ω− ~q2

2m
+iǫ

0

−i2πδ(ω − ωq)
1

~q2

2m
−ω+iǫ



− ξnqi2πδ

(

ω −
~q2

2m

)(

1 1
1 1

)

, (54)

where ξ = 1 for bosons and ξ = −1 for fermions and nq stands for the occupation number. The
temperature should be high enough for bosons to suppress the condensate. The test particle-gas
interaction is represented by the term ψ̂†Γ̂[x̂]ψ̂ =

∑

σ σSi[x
σ, ψσ†, ψσ ]. We assume that the

potential localizes the particle strong enough to justify the expansion in the coordinate and seek
the leading, O(x2) contributions to the influence functional. Hence we retain the O(Γ̂2) part,

Sinfl[x̂] = −
1

2
ĵσ̂Ĝσ̂ĵ, (55)

only. The tadpole contribution is canceled by introducing a homogeneous, neutralizing classical
background charge and

Gσ1σ2(x1, x2) = iξ~nsF̂
σ1σ2(x1, x2)F̂

σ2σ1(x2, x1) (56)

denotes the density two-point function and jσ(t,y) = U(y − xσ(t)). The two-point function

is given by well known one-loop integrals, Gnωq = G+
ωq + G+

−ωq, G
f
ωq = G−

ωq − G−
−ωq and

iGiωq = G−
ωq +G−

−ωq , with

G+
ωq = −ξ

ns
~2
P

∫

d3q

(2π)3
nq

ω − ωq+q + ωq

,

G−
ωq = −iξπ

ns
~2

∫

d3q

(2π)3
nq(nq+q + ξ)δ(ω − ωq+q + ωq), (57)

where ns = 2s + 1 and s denotes the spin of the particles of the gas. These integrals are
analytic functions of the dimensionless variables x = ω/|q|vF , y = |q|/kF where vF = ~kF /m,

kF = 3
√

6π2n/ns, n being the density of the gas, if the gas is in thermal equilibrium at finite
temperature. The characteristic frequency of the particle-gas interaction is |qẋ| hence the second
expansion of the Landau-Ginzburg scheme, the expansion in the time derivative, is possible for
|x| ≪ 1, if the test particle moves slower than the gas particles, |ẋ| ≪ vF .

In calculating the influence Lagrangian we follow the strategy of Section 3.1 and start with
the influence functional

Sinfl = −
1

2

∑

σσ′

σσ′
∫

dω

2π

d3q

(2π)3
dtdt′U2

q
e−iω(t

′−t)+iq(xσ (t′)−x
σ′
(t))Gσ,σ

′

ωq , (58)

whose O(x2) part gives the influence Lagrangian,

Linfl =
1

4

∑

σσ′

σσ′
∫

q

U2
q
[q(xσ − xσ

′

+∆xσ)]2Gσσ
′

0q , (59)



with

∆x =

∞
∑

n=1

x(n)

n!
∂niω, (60)

and x = x(t), x(n) = dnx/dtn. The influence Lagrangian can be brought into the form

Linfl =
1

24π2

∫ ∞

0
dqq2U2

q [2∆x∆xdGn0q + (2∆x∆xd + 4xd∆x)Gf0q

−2(xd2 + xd∆xd)iGi0q], (61)

by the help of the block structure (15). The leading order terms in the expansion of the time
derivative lead to

Linfl = −kxdẋ+ δM ẋdẋ+ id0x
d2 − id2ẋ

d2 +O(∂3t ) +O(x4), (62)

with the coefficients

k = −
1

6π2vF

∫ ∞

0
dqq3U2

q ∂ixG
f (x, y)|x=0,

δM =
1

12π2v2F

∫ ∞

0
dqq2U2

q ∂
2
ixG

n(x, y)|x=0,

d0 = −
1

12π2

∫ ∞

0
dqq4U2

qG
i(x, y)|x=0,

d2 =
1

24π2v2F

∫ ∞

0
dqq2U2

q ∂
2
ixG

i(x, y)|x=0. (63)

The expectation value of the real part of the Euler-Lagrange equation for xd at 〈xd〉 = 0,

MR〈ẍ〉 = −〈∇V (x)〉 − k〈ẋ〉+O(∂3t ) +O(〈x3〉), (64)

comes from ℜLinfl and includes a mass renormalization,MR =M+δM , and a friction force. The
imaginary part of Linfl generates decoherence, a suppression factor, exp−ℑSinfl, in the path
integral. The terms involving xd2 and ẋd2 represent the decoherence strength in the coordinate
and in the momentum basis, respectively.

Note that the Newtonian friction force allows us to determine the velocity with respect to
the gas. This is possible due to the breakdown of the boost invariance for the test particle
by its environment. In our calculation of the effective dynamics of a point charge the EMF
started in a Lorentz invariant intial state, Aµ = 0, and the dissipative effective interaction, the
Abraham-Lorentz force, must contain higher, odd-order time derivative.

3.4. Quantum ideal gas

The emergence of dissipative forces and decoherence when a particle interacts with a gas raises
the question whether dissipative forces could be found within the ideal gas itself, without any
test particle [28].

The simplest, hand-waving way to argue about the possibility of finding a non-trivial effective
dynamics for a non-linear combination of the fundamental coordinates in a harmonic system is
to recall that a non-linear coordinate transformation generates inertial forces. For instance, if
one observe the function y = x2/2 of the coordinate of a harmonic oscillator, defined by the
Lagrangian L = mẋ2/2 − mω2x2/2 then the effective dynamics is given by the Lagrangian
L = mẏ2/4y − mω2y which seems to generate a non-trivial dynamics. The inertial forces
superficially seem as complicated as the forces, arising from genuine interactions.



To find a more systematical approach to the effective forces in a quantum gas we exploit
the stability of the particles within the gas. Owing to the conserved particle number the
elementary excitations, driven by some coupling to the environment, are handled by a bi-local
operator, Φ(x, y) = ψ(x)ψ†(y), where the elementary field, ψ(x), belongs to the gas particles.
By borrowing from the idea of operator product expansion we can replace the non-local operator
by infinitely many local composite operators,

Φµ1,...,µnn (x) =
∂n

∂zµ1 · · · ∂zµn
ψ(x+ z)ψ†(x− z). (65)

These operators serve as possible terms in describing the interactions with the environment and
as possible observables to use in diagnosing the gas dynamics. When they appear in the gas-
environment coupling then the energy-momentum, received from the environment, is spread over
infinitely many normal modes. If they are used as observables then they receive contributions
from equally infinitely many normal modes.

The simplicity of the ideal gas dynamics appears only if the elementary fields, ψ and ψ†,
are used to diagnose the system. In fact, the Wick theorem, stating the factorization of the
n-point functions of ψ and ψ† into the product of the free propagators, implies the absence of
1PI vertex functions. But there are non-factorizable, 1PI composite operator n-point functions
for arbitrary n! When can we use the elementary fields, ψ or ψ†, and uncover the non-interacting
particle picture and when are we forced to deal with the bi-local or composite operators? The
answer is easy to find if the symmetry, behind the conservation of the gas particle number, is
gauged, as in the case for the electron gas, whatever weak the gauge coupling constant might
be. The dynamics of a single quasi-particle of such a model is given in terms of non-local
observables, such as the scattering amplitudes. The local observables are constructed by the
help of the composite operator family, Φn. Thus the price of using local observables is the loss
of the simplicity, offered by the quasi-particle picture. When is the locality a more important
feature than the simplicity in describing the interactive system as a gas of quasi-particles with
weak residual interactions? When we want to study the structure of a single quasi-particle,
rather than the long distance correlations. The local fields which appear in the microscopic,
local interaction Hamiltonian are the natural variables to understand the internal structure of
the quasi-particles, c.f. the restricted hydrodynamical regime of the ideal gas collective modes
in an interacting gas, given by eq. (75) below.

It is natural to inquire about the effective dynamics of a restricted subset of the composite
operators. We follow up this question by considering the effective dynamics of the n = 0, ultra-
local operators in a non-interacting electron gas. There are 16 possibilities and we retain 4,
jµ = ψ̄γµψ, the current. Note that the current has an environment, provided by the remaining
local composite operators, Φn, even if the Fock-space is not a system⊗environment type direct
product [29].

The generator functional of the current Green functions is

e
i
~
W [â] =

∫

D[ψ̂]D[ ˆ̄ψ]e
i
~

ˆ̄ψ(F̂−1+â/)ψ̂, (66)

where ˆ̄ψâ/ψ̂ =
∑

σ a
σ
µψ̄

σγµψσ. The Gaussian integral is easy to perform,

W [â] = −i~Tr[F̂−1 + â/], (67)

and indeed we find 1PI Green functions at arbitrary orders. However there is an important
difference between the ideal gas dynamics and a truly interactive system: The former has one-
loop 1PI graphs only and the vertex functions receive contributions from arbitrarily high orders of



the loop-expansion in the latter case. Nevertheless the functional W [â] of the ideal gas, together
with its Legendre transform present a formidable problem, they contain arbitrary high order
contributions, without adjustable coupling constant to organize an expansion. The correlations,
generated by the composite operators, used in diagnosing the gas, generate strong long range
correlations. Fortunately, one can consider the weak external perturbations limit where one
finds

W [â] = −
1

2
âĜâ, (68)

by ignoring the O(â3) contributions, with

Gσ1σ2µ1µ2(x1, x2) = −i~ tr[γµ1 F̂ σ1σ2(x1, x2)γ
µ2 F̂ σ2σ1(x2, x1)], (69)

denoting the current two-point function. The corresponding effective action,

Γ[Ĵ ] =
1

2
ĴĜ−1Ĵ , (70)

can be written as

Γ[J, Jd] =
1

2
JdKrJ +

1

2
JKaJd −

i

2
JdKrKaJd, (71)

where J = (J+ + J−)/2, Jd = J+ − J−, K̂ = σ̂Ĝ−1σ̂ and the linearized equation of motion for
a physically realizable external source, â = (a,−a),

a = −KrJ, (72)

sometime called as the resistivity formula [30], is the inverse of Kubo’s linear response equation,
J = −Gra.

The Green function, (69), can be calculated in a straightforward manner for zero temperature
fermion gas and leads to the equation of motion for the inhomogeneous part of the current,
jµ = (n0 + n, j),

−
vF
π2~

φ =





∞
∑

jk=0

bℓ,j,k

(

iω

vF |q|

)j (
q2

k2F

)k


n (73)

T 2

vF~
a−

bt,2,0
bℓ,2,0

vF
π2~

ωq

q2
φ =

[ ∞
∑

jk=0

bt,j,k

(

iω

vF |q|

)j (
q2

k2F

)k

+
q ⊗ q

q2

∞
∑

jk=0

bj,k

(

iω

vF |q|

)j (
q2

k2F

)k]

j,

where aµ = (φ,a), kF denotes the Fermi wave number, vF = ~kF /m, and bℓ,j,k, bt,j,k and bj,k
are dimensionless constants. This equation holds for

qµ = (ω, q) ∈ D0
hydr =

{

(ω, q)|

∣

∣

∣

∣

|ω|

vF |q|
−

|q|

kF

∣

∣

∣

∣

< 1

}

. (74)

It is instructive to compare eq. (73) with the Navier-Stokes equation of phenomenological
hydrodynamics. Despite the obvious similarities, both mix the odd and the even powers of ω
and describe dissipative dynamics, there are important differences:

(i) Hydrodynamics refers to the energy-momentum current, rather than the Noether current,
appearing in the effective action (70).

(ii) The hydrodynamical equations are closed by relying on local equilibrium and
thermodynamic considerations while the assumption of the stability of the ground state,
the smallness of the inhomogeneity of the current, is enough to arrive at the closed equation
(72).



(iii) The gradient expansion of the phenomenological hydrodynamics assumes that the equations
are analytic at qµ = 0 and the IR dynamics in the hydrodynamical regime is independent
of the way the point qµ = 0 is approached. The Fermi-level makes the ω-dependence of the
the Green function to appear through the combination ω/|q| thereby making the IR point,
qµ = 0, singular and the IR dynamics dependent on the slope of the curve at this point
on the (ω, |q|) plane. The result is a Laurent series in |q|. The factor 1/|q|, accompanying
each iω in the equation of motion, can not be foreseen in the phenomenological approach.

(iv) The O(∂t) phenomenological hydrodynamical equations describe collective modes, sound
waves. The effective equation of motion, (73), describes sound waves, as well, but it has
to be truncated at least at O(∂2t ) to yield a qualitatively stable, truncation independent
form. This composite sound, neither the known zero nor first sound, is damped, displays
long range correlations and dominates the current decoherence. The long range correlations
arise because the effective equation of motion, written in the space-time, contains the powers
of ∆ and the convolutions of the Fourier transforms of ω/|q|, the latter being divergent at
large distance beyond the order O(ω2).

The physics of the ideal gas hydrodynamics, described by eqs. (73) seems to be rather
different from the usual Fermi-liquid picture. To resolve this conflict we return to a remark,
made previously, namely that interactions lead to higher order 1PI graphs. One of their effects,
the finite life-time of the quasi-particles, restores the analycity at qµ = 0. The collisions in
a realistic, interacting gas form the usual collective modes and quasi-particles at the distance
scale of the mean-free path, rmfp > 1/kF . The ideal gas description with its composite sound is
thereby limited to the regime

Dint
hydr =

{

(ω, q)|

∣

∣

∣

∣

|ω|

vF |q|
−

|q|

kF

∣

∣

∣

∣

< 1,
|q|

kF
>

1

kF rmfp

}

. (75)

Therefore the composite sound is relevant at distances between 1/kF and rmfp and plays an
important role in forming the structure of the quasi-particles, in agreement with the remark,
made above. It is interesting to look at the QCD vacuum from this point of view, where the
single gluon modes play the role of composite sound within the quasi-particles of the vacuum,
glueballs, and display strong correlation beyond the quasi-particle size.
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