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Abstract. We study the conjugation of overpartitions and give the gener-
ating function for the number of self-conjugate overpartitions of an integer.
Following the recent introduction of over q-binomial coefficients, we obtain
the over q-analogue of the Chu-Vandermonde identity. Consequently a new
generating function for the number of overpartitions is proved. We also give
a new over q-analogue of the Chu-Vandermonde identity.
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1. Introduction
A partition of a positive integer n is an integer sequence (λ1, λ2, . . . , λk) with
λ1 ≥ λ2 ≥ · · · ≥ λk > 0 such that λ1 + λ2 + · · · + λk = n. We call the summands
λi parts. For example, there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
An overpartition of n is an integer partition of n in which the last occurrence

of a part may be overlined [3]. The number of overpartitions of n is denoted by
p(n). For example, p(4) = 14, where the overpartitions of 4 are

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2), (2, 1, 1),
(2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

It is well known that
∞∑

n=0
p(n)qn =

∞∏
n=1

1 + qn

1 − qn
= (−q; q)∞

(q; q)∞
, (1.1)
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where (A; q)0 = 1 and

(A; q)n := (1 − A)(1 − Aq) · · · (1 − Aqn−1) =
n−1∏
j=0

(1 − Aqj),

(A; q)∞ := lim
n→∞

(A; q)n =
∞∏

j=0
(1 − Aqj).

The Young diagram (or Ferrers board) of an overpartition is the same as that of the
underlying ordinary partition with the exception that the last block of an overlined
part is marked. For example, the Young diagram of λ = (9, 7, 5, 4, 4, 2, 1, 1, 1) is

*

*
*

.

The Durfee square of an overpartition is the largest square that can fit into its
Ferrers board.

We emphasize that a Durfee square of length s consists of s ·s = s2 unit squares
in the Young diagram of an overpartition such that s is maximal. So it’s generating
function is

q1+···+1 ≡ qs·s = qs2
. (1.2)

Analogously one may consider Durfee rectangles of side lengths s and t, when
necessary, and apply the generating function qst.

The conjugate overpartition of λ is denoted by λ′ and is obtained by reading the
columns of the Ferrers board of λ. Thus for example, λ′ = (9, 6, 5, 5, 3, 2, 2, 1, 1).

A second method of obtaining the conjugate of an overpartition is as follows.
The conjugate of λ = (p1, p2, . . . , pk) is given by λ′ = (q1, q2, . . . , qs), where

qj =
{

|{r : pr ≥ j}| if j = pi is overlined
|{r : pr ≥ j}| otherwise.

In other words, let the overlined parts of λ be u1 > u2 > · · · > ut, and let the
underlying ordinary partition be f(λ). Then λ′ is obtained by overlining the parts
of the partition f(λ) that are in positions u1, u2, . . . , ut.

For instance, given λ = (9, 7, 5, 4, 4, 2, 1, 1, 1), then to obtain λ′, the 2nd, 4th
and 7th parts of the conjugate of f(λ) = (9, 7, 5, 4, 4, 2, 1, 1, 1) will be overlined.
That is, λ′ = (9, 6, 5, 5, 3, 2, 2, 1, 1).
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Definition 1.1. An overpartition is said to be self-conjugate if it is identical with
its conjugate.

For example, it may be verified that λ = (7, 6, 4, 4, 2, 2, 1) is self-conjugate.
One of our main results is the following:

Theorem 1.2. Let sc(N) be the number of self-conjugate overpartitions of N .
Then

∞∑
N=0

sc(N)qN = 1 +
∞∑

j=1
2qj2 (−q2; q2)j−1

(q2; q2)j
.

The q-binomial coefficients (or Gaussian polynomials) are defined, for non-
negative integers m, n, as[

m + n

n

]
= (1 − qm+n)(1 − qm+n−1) · · · (1 − qm+1)

(1 − qn)(1 − qn−1) · · · (1 − q) . (1.3)

These polynomials have many important applications in Combinatorics, Number
Theory and Physics [1]. In partition theory, Eqn (1.3) is interpreted as the gener-
ating function for the number of partitions fitting inside an m × n rectangle, i.e.,
partitions that have parts of size ≤ m and a number of parts ≤ n.

Recently, Dousse and Kim [5] introduced the over q-binomial coefficient which
is an overpartition analogue of the q-binomial coefficients, defined by[

m + n

n

]
:=

min{m,n}∑
k=0

q(k+1
2 ) (q; q)m+n−k

(q; q)k(q; q)m−k(q; q)n−k
. (1.4)

This function is interpreted as the generating function for the number of overparti-
tions fitting inside an m × n rectangle. The over q-binomial coefficients have many
properties similar to those of ordinary q-binomial coefficients [4, 5].

In 2003 Prellberg and Stanton [8] published a proof of the monotonicity con-
jecture which states the coefficients of the function

(1 − q) 1
(qn; q)n

+ q

are non-negative, for all positive integers n. This conjecture was originally formu-
lated by Friedman et al. [6].

Subsequently, Dousse and Kim [4] formulated the following analogous conjecture
based on the geometry of over q-binomial coefficients.

Conjecture 1.3. For all positive integers n, the coefficients of

(1 − q) (−qn; q)n

(qn; q)n
+ q

are non-negative.
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Conjecture 1.3 is an over q-analogue of the monotonicity conjecture. We will
indicate a possible path to realizing a combinatorial proof of this conjecture in
Section 4.

In Section 2, we give a proof of Theorem 1.2. In Section 3, we prove a cer-
tain over q-binomial coefficient identity, and establish an over q-analogue of the
Chu-Vandermonde identity. We end the section with an alternative summative
generating function for the number of overpartitions of n.

2. Proof of Theorem 1.2

Suppose we have a self-conjugate overpartition λ of N with a Durfee square of
length j > 0. Then in the Ferrers graph of λ the jth part of λ, i.e., the last part of
the Durfee square, may be overlined or not. There are two cases to consider (see
the diagrams below).

• Case I: when the jth part is overlined (i.e., jth part = j and (j + 1)th part
< j);

j

j
R(λ)

B(λ)

• Case II: when the jth part is not overlined (i.e., jth part ≥ j and (j + 1)th

part ≤ j).

j

j
R(λ)

B(λ)
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In the first case, the Durfee square is generated by qj2 (from (1.2)). Since λ is
self-conjugate the overpartition R(λ) represented by the boxes on the right of the
Durfee square is the conjugate of the overpartition B(λ) represented by the boxes
below the Durfee square. Therefore each of these overpartitions is generated by
(−q;q)j−1
(q;q)j−1

, which is the generating function for the number of overpartitions with
at most j − 1 parts (cf. Eqn (1.1)). Adding the rows of B(λ) to the corresponding
columns of R(λ) gives an overpartition into even parts. So for each j ≥ 1 we deduce
that these overpartitions are generated by

qj2
j−1∏
r=1

1 + q2r

1 − q2r
= qj2 (−q2; q2)j−1

(q2; q2)j−1
.

Similarly in the second case, the Durfee square is generated by qj2 while the over-
partitions represented on the right of and below the Durfee square are generated
by (−q2;q2)j

(q2;q2)j
. Thus such overpartitions are generated, for all j ≥ 1, by

qj2
j∏

r=1

1 + q2r

1 − q2r
= qj2 (−q2; q2)j

(q2; q2)j
.

Hence, with 1 counting the empty (self-conjugate) overpartition, we have
∞∑

N=0
sc(N)qN = 1 +

∞∑
j=1

qj2 (−q2; q2)j−1

(q2; q2)j−1
+

∞∑
j=1

qj2 (−q2; q2)j

(q2; q2)j

= 1 +
∞∑

j=1
qj2 (−q2; q2)j−1

(q2; q2)j−1

(
1 + 1 + q2j

1 − q2j

)

= 1 +
∞∑

j=1
qj2 (−q2; q2)j−1

(q2; q2)j

(
1 − q2j + 1 + q2j

)
= 1 +

∞∑
j=0

2qj2 (−q2; q2)j−1

(q2; q2)j
.

This completes the proof.

3. Over q-binomial coefficients
Basic properties of over q-binomial coefficients are given in [4, 5]. Several of these
properties resemble those of ordinary q-binomial coefficients. For example, we have
the symmetry property, [

m + n

n

]
=
[
m + n

m

]
. (3.1)

We recall the following series-product identities, known respectively, as Cauchy’s
Identity and q-Binomial Theorem (see [2, 7]).
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Theorem 3.1. For |q|, |z| < 1 we have

∞∑
n=0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
, (3.2)

∞∑
k=0

q
k(k+1)

2

[
n

k

]
zk =

n∏
k=1

(1 + zqk). (3.3)

The following theorem was proved combinatorially in [4]. Here we will give an
algebraic proof.

Theorem 3.2 (Dousse-Kim [4]). For every positive integer m, we have

∞∑
k=0

[
m + k − 1

k

]
zkqk = (−zq2; q)m−1

(zq; q)m
. (3.4)

Algebraic Proof. We will use the fact that

(q; q)m+k = (q; q)m(qm+1; q)k. (3.5)

We simplify the left-hand side of (3.4) (with m−1 replaced by m). Note that in
the second equality below we set min(m, k) = m since 0 ≤ j ≤ m but j ≤ k → ∞.

∞∑
k=0

[
m + k

k

]
zkqk =

∞∑
k=0

min(m,k)∑
j=0

q(j+1
2 ) (q; q)m+k−j

(q; q)j(q; q)m−j(q; q)k−j
(zq)k

=
m∑

j=0

q(j+1
2 )

(q; q)j(q; q)m−j

∞∑
k=j

(q; q)m+k−j

(q; q)k−j
(zq)k

=
m∑

j=0

q(j+1
2 )

(q; q)j(q; q)m−j
(zq)j

∞∑
k=0

(q; q)m+k

(q; q)k
(zq)k

=
m∑

j=0

(zq)jq(j+1
2 )

(q; q)j(q; q)m−j
(q; q)m

∞∑
k=0

(qm+1; q)k

(q; q)k
(zq)k (by Eqn (3.5))

=
m∑

j=0

(q; q)m

(q; q)j(q; q)m−j
(zq)jq(j+1

2 ) · (zqm+2; q)∞

(zq; q)∞
(by Eqn (3.2))

= (zqm+2; q)∞

(zq; q)∞
(−zq · q; q)m (by Eqn (3.3))

= (−zq2; q)m

(zq; q)m+1
.

This completes the proof.
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3.1. An over q-analogue of Chu-Vandermonde identity
Consider the classical combinatorial identity,

n∑
j=0

(
n

j

)2
=
(

2n

n

)
, n ≥ 0. (3.6)

It is known that this identity has the following q-analogue [2]:

n∑
j=0

qj2
[
n

j

]2
=
[
2n

n

]
.

We state a new over q-analogue of (3.6) using the over q-binomial coefficients.

Proposition 3.3. For any non-negative integer n, we have

[
2n

n

]
=

n∑
j=0

qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
.

Proof. It is clear that overpartitions fitting inside an n × n square are generated
by (cf. Eqn (1.4)) [

n + n

n

]
=
[
2n

n

]
.

Now assume the overpartitions have Durfee squares of length j. Such overpartitions
may be represented by either of the following diagrams depending on whether the
last part of the Durfee square is not overlined or overlined, respectively.

j

j

j

j

In either diagram the Durfee square is generated by qj2
, j ≥ 0.

In the second diagram the subdiagram attached to the right side of the Durfee
square represents an overpartition fitting inside an (n − j) × (j − 1) rectangle,
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and the subdiagram attached below the Durfee square represents an overpartition
fitting inside a (j − 1) × (n − j) rectangle. So both subdiagrams are generated by[

(n − j) + (j − 1)
j − 1

]
×
[
(j − 1) + (n − j)

n − j

]
=
[
n − 1
j − 1

]
×
[
n − 1
n − j

]
=
[
n − 1
j − 1

]
×
[
n − 1
j − 1

]
(by symmetry, (3.1))

=
[
n − 1
j − 1

]2

.

Similarly for the first diagram, the subdiagram on the right side of the Durfee
square represents an overpartition fitting inside an (n − j) × j rectangle, and the
subdiagram below the Durfee square is an overpartition fitting inside a j × (n − j)
rectangle. Thus they are generated by[

(n − j) + j

j

]
×
[
j + (n − j)

n − j

]
=
[
n

j

]
×
[

n

n − j

]
=
[
n

j

]
×
[
n

j

]
=
[
n

j

]2

.

Hence the generating function for the number of partitions into at most n parts
with part-sizes ≤ n, and Durfee square of length j, is given by

qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
.

Lastly, we sum over 0 ≤ j ≤ n to obtain the stated identity.

Proposition 3.3 may be regarded as a ‘finite’ version of the following identity
which provides another generating function for p(n) (cf. Eqn (1.1)).

Corollary 3.4. We have

(−q; q)∞

(q; q)∞
=

∞∑
j=0

2qj2
(

(−q; q)j−1

(q; q)j

)2
(1 + q2j).

Proof. Let n → ∞ in Proposition 3.3. Then

lim
n→∞

[
2n

n

]
= lim

n→∞

n∑
k=0

q
k(k+1)

2
(q; q)2n−k

(q; q)k(q; q)n−k(q; q)n−k

=
∞∑

k=0

q
k(k+1)

2

(q; q)k
· 1

(q; q)∞

= (−q; q)∞

(q; q)∞
.

78



Annal. Math. et Inf. Conjugation of overpartitions and some applications . . .

Proceeding to the limit we also have

lim
n→∞

n∑
j=0

qj2

([
n

j

]2

+
[
n − 1
j − 1

]2)
=

∞∑
j=0

qj2

((
(−q; q)j

(q; q)j

)2

+
(

(−q; q)j−1

(q; q)j−1

)2)

=
∞∑

j=0
qj2

(
(−q; q)j−1

(q; q)j−1

)2((
1 + qj

1 − qj

)2

+ 1
)

=
∞∑

j=0
qj2

(
(−q; q)j−1

(q; q)j−1

)2

· 2(1 + q2j)
(1 − qj)2

=
∞∑

j=0
2qj2

(
(−q; q)j−1

(q; q)j

)2
(1 + q2j).

Hence the result.

Remark 3.5. Note that Corollary 3.4 may also be proved by pure combinatorial
reasoning by splitting the set of overpartitions into two classes, in the spirit of the
proof of Theorem 1.2.

Direct Combinatorial proof of Corollary 3.4. It is clear that

1
(q; q)∞

∞∑
k=0

1
(q; q)k

q
k(k+1)

2 = (−q; q)∞

(q; q)∞
=

∞∑
n=0

p(n)qn.

Now suppose we have an overpartition λ of N with Durfee square of side j. Separate
λ into two classes as in the proof of Theorem 1.2 (see Section 2). In both cases, the
Durfee square is obviously generated by qj2 . However, in the first case the top-right
and bottom-left subdiagrams are generated by (−q;q)j−1

(q;q)j−1
. Such overpartitions are

generated by

qj2 (−q; q)2
j−1

(q; q)2
j−1

.

Similarly, in the second case, the top-right and bottom-left subdiagrams are gen-
erated by (−q;q)j

(q;q)j
. Hence this class is generated by

qj2 (−q; q)2
j

(q; q)2
j

.

Hence we have
∞∑

n=0
p(n)qn =

∞∑
j=0

qj2 (−q; q)2
j−1

(q; q)2
j−1

+
∞∑

j=0
qj2 (−q; q)2

j

(q; q)2
j

=
∞∑

j=0
qj2

((
(−q; q)j

(q; q)j

)2

+
(

(−q; q)j−1

(q; q)j−1

)2)
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=
∞∑

j=0
2qj2

(
(−q; q)j−1

(q; q)j

)2
(1 + q2j).

4. Remarks on Conjecture 1.3
The combinatorial proof of the following lemma is given in [5]. For completeness
we provide an algebraic proof below.

Lemma 4.1 (Dousse-Kim [5]). For every positive integer n, we have

(−zq; q)n

(zq; q)n
= 1 +

∑
k≥1

zkqk

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])
.

Proof. We have that the right-hand side

= 1 +
∑
k≥1

zkqk

[
n + k − 1

k

]
+
∑
k≥1

zkqk

[
n + k − 2

k − 1

]

=
∑
k≥0

zkqk

[
n + k − 1

k

]
+
∑
k≥0

zk+1qk+1
[
n + k − 1

k

]

= (−zq2; q)n−1

(zq; q)n
+ zq

(−zq2; q)n−1

(zq; q)n
(by Theorem 3.2)

= (−zq2; q)n−1

(zq; q)n
(1 + zq) = (−zq; q)n

(zq; q)n
.

This result enables the translation of the coefficients of the conjectured gener-
ating function into the coefficients of generating functions of overpartitions.

Set z = qn−1 in Lemma 4.1 to get

(−qn; q)n

(qn; q)n
= 1 +

∑
k≥1

qk(n−1)qk

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])

= 1 +
∑
k≥1

qkn

([
n + k − 1

k

]
+
[
n + k − 2

k − 1

])
.

Thus we have

(1 − q) (−qn; q)n

(qn; q)n
+ q = 1 +

∑
k≥1

qkn(1 − q)
([

n + k − 1
k

]
+
[
n + k − 2

k − 1

])
, (4.1)

= 1 +
∑
k≥1

qkn

([
n + k − 1

k

]
− q

[
n + k − 2

k − 1

])
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+
∑
k≥1

qkn

[
n + k − 2

k − 1

]
−
∑
k≥1

qkn+1
[
n + k − 1

k

]
. (4.2)

It is clear that the right-hand-sides of (4.1) and (4.2) enumerate overpartitions.
Hence one approach to proving Conjecture 1.3 combinatorially relies on interpreting
the right-hand-side of the equation as the generating function of a non-vacuous
union of certain sets of restricted overpartitions.

It is hoped that this will enhance the discovery of a purely combinatorial proof
of the conjecture.

Lastly, we lend credence to the conjecture by providing the results of a compu-
tational study of the actual coefficients of the associated generating function.

Let [qN ]f(q) denote that coefficient of qN in the Maclaurin series expansion of
f(q).

For all n > 2, the terms of the number sequences
S(N, n) = [qN ]

(
(1 − q) (−qn;q)n

(qn;q)n
+ q
)

, N > 0, are mostly positive, assuming
zero values for few initial values of N . The following properties of the sequences
were discovered using the computer algebra system Maple [9].

1. S(0, n) = 1 for all n > 0,

2. S(1, 1) = 2, S(N, 1) = 0 for N > 1,

3. S(N, 2) ∈ {0, 2} for all N > 0,

4. S(N, 3) ∈ {0, 2}, 1 ≤ N ≤ 11,
S(12, 3) = 4, S(13, 3) = S(14, 3) = 0,
and S(N, 3) > 1 for N ≥ 15,

5. S(N, n) ∈ {0, 2}, 1 ≤ n ≤ m, and S(N, n) ≥ 2, n ≥ m, where m = 3n +
2, n ≥ 4.
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