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1. Introduction
The group algebra of the finite group G over the finite field Fq is denoted by FqG.
Let q and p be the order and characteristics of the finite field Fq, respectively
and q = pk. Let U(FqG) be the group of units of the group algebra FqG. Group
theory frequently runs into the issues with unit group of the group algebra. The
characterization of the unit groups is crucial for a number of applications, including
the study of the isomorphism problem [14], one of the most significant research
problems in the theory of group algebras, the development of convolutional codes
in group algebra (see [5, 9]) and other applications. The structure of the unit
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group of the semisimple group algebra FqG has been extensively studied (see [3,
4, 10, 12–18, 20, 22]). The study by Bakshi et al. [4], in which the unit groups of
the semisimple group algebras of all metabelian groups are studied, is one of the
most significant ones in this field. As a result, the majority of research in this field
focuses on understanding the unit group of non-metabelian group algebras. The
unit groups of the group algebras of non-metabelian groups up to order 72 were
described by Mittal et al. in [16]. Further, Sharma et al. determined the unit group
of the semisimple group algebra (SGA) of the respective groups SL(2, 3) (special
linear group over the finite field of 3 elements) and SL(2, 5) (See [11] and [19]).
In continuation, Sivaranjani et al. [21] determined the unit group of the SGA of
the group SL(2, 7). In addition, Arvind et al. [1] investigated the unit group of
the SGA of the group SL(3,Z2). The main objective of this paper is to derive the
unit group of the SGA of the groups SL(2, 8) and SL(2, 9), respectively. We notice
that the difficulty of exactly identifying the unit group of the SGA increases as the
size of the group increases. One may refer [15, 17] for some of the recent works in
this area. Our first goal in determining the unit group is to infer the Wedderburn
decomposition (WD) of FqSL(2, 8) and FqSL(2, 9), respectively. Further, it is
easy to derive the unit group from the WD. The rest of this paper is structured
as follows. The prerequisites for the article are covered in Section 2. In sections 3
and 4, we deduce the unit group of the group algebras FqSL(2, 8) and FqSL(2, 9)
in the form of theorems 3.1 and 4.1, respectively. Section 5 concludes the paper.

2. Preliminaries

Throughout this paper, SL(n, r) denotes the special linear group of n × n matrices
with determinant 1 over the finite field of order r. The order of SL(n, r) is given
by

(rn − 1)(rn − r) · · · (rn − rn−1)(r − 1)−1.

Next, we discuss some notations and results from [7]. Let J(FqG) denote the
Jacobson radical of FqG. Let s be the least common multiple of the orders of
p-regular elements of group G and let η be the primitive sth root of unity over
a finite field F . Let TG,F = {t : η → ηt is an automorphism of F(η) over F}.
Since the Galois group Gal(F(η) : F) is cyclic, for any σ ∈ Gal(F(η) : F), there
exists a positive integer s such that σ(η) = ηs. For any p-regular element g ∈ G
(i.e., p does not divide order of g), we define γg =

∑
h, where h runs over all the

elements in the conjugacy class Cg of g. The cyclotomic F-class of γg is defined as
SF(γg) = {γgt | t ∈ TG,F }. The following theorem characterizes the set TG,F .

Theorem 2.1 ([16, Theorem 2.3]). Let F be a finite field with prime power order
d such that gcd(d, s) = 1 and e = orders(d) is the multiplicative order of d modulo
s, then TG,F = {1, d, . . . , de−1} mod s.

To uniquely identify the Wedderburn decomposition (WD) of the group algebra,
the following six results will play an important role.
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Proposition 2.2 ([7, Proposition 1.2]). The number of non isomorphic simple
components of FG/J(FG) is equal to the number of cyclotomic F-classes in G.

Theorem 2.3 ([7, Theorem 1.3]). Assume that G has t cyclotomic F-classes and
Gal(F(η) : F)) is a cyclic group, then |Si| = [Fi : F ] with appropriate index
ordering if S1, S2, · · · , St are the cyclotomic F-classes of G and F1, F2, . . . , Ft are
the simple components of Z(FG/J(FG)).

Proposition 2.4 ([14, Proposition 3.6.11]). Let G′ be the commutator subgroup of
G and let FG be a semisimple group algebra, then

FG ≃ F(G/G′) ⊕ △(G, G′),

where F(G/G′) is the sum of all commutative simple components of FG and
△(G, G′) is the sum of all others.

Proposition 2.5 ([14, Proposition 3.6.7]). Let N be a normal subgroup of G and
let FG be a semisimple group algebra (SGA), then

FG ≃ F(G/N) ⊕ △(G, N),

where △(G, N) is an ideal of FG generated by the set {n − 1 : n ∈ N}.

Proposition 2.6 ([6, Proposition 1]). Let FG be a finite SGA, where character-
istics of F is p. Let FG ∼=

⊕r
i=1 Mni

(Fi), where Fi are finite extensions of F and
r is a positive integer. Then p does not divide any of the ni.

Lemma 2.7 ([24]). Let p1 and p2 be two primes. Let Fq1 be a field with q1 = pk1
1

elements and let Fq2 be a field with q2 = pk2
2 elements, where k1, k2 ≥ 1. Let both

the group algebras Fq1G, Fq2G be semisimple. Suppose that

Fq1G ∼= ⊕t
i=1M(ni, Fq1), ni ≥ 1

and M
(
n, Fqr

2

)
is a Wedderburn component of the group algebra Fq2G for some

r ≥ 1 and any positive integer n, i.e.,

Fq2G ∼= ⊕s−1
i=1 M(mi, Fq2,i) ⊕ M(n, Fqr

2
), mi ≥ 1.

Here Fq2,i
is a field extension of Fq2 . Then M(n, Fq1) must be a Wedderburn

component of the group algebra Fq1G and it appears atleast r times in the WD of
Fq1G.

Proposition 2.8 ([1, Corollary 3.8]). Let FG be a finite SGA, where character-
istics of F is p. If there exists an irreducible representations of degree n over F ,
then one of the Wedderburn component of FG is M(n, F).
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3. Unit group of FqSL(2, 8)
Let G1 := SL(2, 8). Clearly, the order of G1 is 504. The group algebra FqG1 is
semi simple for p ̸= 2, 3, 7 by Maschke’s theorem [14]. Also, One can note that the
degrees of irreducible representations of G1 are 1, 7, 8 and 9 whenever |SFq(γg)| =
1, ∀g ∈ G1 (see [23]). The group G1 has 9 conjugacy classes (let the representative
of these classes be denoted by gi for i = 1, . . . , 9). The representatives (R) of the
conjugacy classes, sizes (S) and the orders (O) of representatives are tabulated
below.

R I2

[
0 1
1 0

] [
0 1
1 1

] [
0 1
1 x

] [
0 1
1 x2

] [
0 1
1 α

] [
x 0
0 β

]
S 1 63 56 56 56 56 72
O 1 2 3 9 9 9 7[

x2 0
0 α + 1

] [
x + 1 0

0 α

]
72 72
7 7

Here I2 is 2 × 2 identity matrix, x is the generator of multiplicative group of finite
field of order 8, α = x2 + x and β = x2 + 1. Also, G1 can be generated by two
elements a and b, where

a =
[

x 0
0 x2 + 1

]
and b =

[
1 1
1 0

]
. (3.1)

The exponent of G1 is 126. In this section, we characterize the unit group of the
group algebra FqG1 for p ̸= 2, 3, 7 such that the group algebra FqG1 is semisimple
and q = pk. In the following theorems, Fi denotes the finite extensions of Fq and
ni, r are positive integers.

Theorem 3.1. The unit group of FqG1, where q = pk and p ̸= 2, 3, 7 is given as
follows:
(1) for pk ≡ {1, 55, 71, 125} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq)4 ⊕ GL(8, Fq) ⊕ GL(9, Fq)3.

(2) for pk ≡ {13, 29, 41, 43, 83, 85, 97, 113} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq) ⊕ GL(8, Fq) ⊕ GL(9, Fq)3 ⊕ GL(7, Fq3).

(3) pk ≡ {17, 19, 37, 53, 73, 89, 107, 109} mod 126, we have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq)4 ⊕ GL(8, Fq) ⊕ GL(9, Fq3).
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(4) pk ≡ {5, 11, 23, 25, 31, 47, 59, 61, 65, 67, 79, 95, 101, 103, 115, 121} mod 126, we
have

U(FqG1) ≃ F∗
q ⊕ GL(7, Fq) ⊕ GL(8, Fq) ⊕ GL(7, Fq3) ⊕ GL(9, Fq3).

Proof. The group algebra FqG1 is semi simple, it follows from the Wedderburn
decomposition theorem [14] that FqG1 ≃ ⊕r

i=1M(ni, Fi). The derived subgroup G′
1

of G1 is G1 itself (i.e., G1 is a perfect one). This accompanying with Proposition 2.2
gives

FqG1 ≃ Fq

r−1⊕
i=1

M(ni, Fi), ni ≥ 2. (3.2)

Using Theorem 2.1, we construct the set TG,F of group G1 and divide the proof
into the following 4 cases.
Case 1: pk ≡ {1, 55, 71, 125} mod 126. In this case, we note that the cardinality of
cyclotomic Fq-class of γg is 1, for all g in G1. By employing this with Proposition 2.2
and Theorem 2.3, we further rewrite (3.2) as

FqG1 ≃ Fq

8⊕
i=1

M(ni, Fq) =⇒ 503 =
8∑

i=1
n2

i , ni ≥ 2. (3.3)

We have discussed earlier in this section that the degrees of irreducible representa-
tions of G1 are 1, 7, 8 and 9, whenever | SFq(γg) |= 1, ∀g ∈ G1. We note that there
are 158 choices of n′

is fulfilling (4.3). The only choice that only contains 7, 8 and 9
is (74, 8, 93). Hence, the Wedderburn decomposition (WD) is

FqG1 ≃ Fq ⊕ M(7, Fq)4 ⊕ M(8, Fq) ⊕ M(9, Fq)3.

Case 2: pk ≡ {13, 29, 41, 43, 83, 85, 97, 113} mod 126. In this case, the cyclotomic
Fq classes of γg are

SFq(γgi) = {γgi}, for i = 1, 2, 3, 7, 8, 9, SFq(γg4) = {γg4 , γg5 , γg6}.

By incorporating Proposition 2.2, we derive from (3.2) that

FqG1 ≃ Fq

5⊕
i=1

M(ni, Fq) ⊕ M(n6, Fq3) =⇒ 503 =
5∑

i=1
n2

i + 3n2
6, ni ≥ 2. (3.4)

Due to Lemma 2.7, it follows from (3.4) that ni ≥ 7. Consequently, the possible
choices of n′

is fulfilling (3.4) are (74, 8, 9), (73, 8, 10, 8), (7, 8, 93, 7) and (84, 10, 7).
Again, Lemma 2.7 implies that M(10, Fq) can not be a Wedderburn component.
Therefore, we are only remaining with two choices of n′

is given by (74, 8, 9) and
(7, 8, 93, 7). Next, to uniquely identify the correct choice, we show that M(9, Fq)
will always be a Wedderburn component in this case. In particular, we take p = 13

121



Annal. Math. et Inf. Sivaranjani N U, E. Nandakumar, G. Mittal, R. K. Sharma

and consider the following mapping from G1 to GL(9, F13):

a →



5 12 0 0 0 0 0 0 0
12 12 2 0 0 0 0 0 0
3 2 4 8 3 0 0 0 0
6 12 11 2 12 11 0 0 0
0 6 2 11 9 4 2 4 0
10 5 10 7 7 6 12 7 11
3 2 2 4 9 10 12 9 8
11 1 3 8 3 5 11 8 9
4 5 3 12 6 10 11 6 1


,

b →



8 9 4 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
11 7 4 0 0 0 0 0 0
3 12 2 4 3 1 12 0 0
3 10 1 4 6 0 8 1 11
2 5 3 8 1 10 0 10 2
9 8 5 6 2 8 1 5 11
6 1 5 0 9 2 8 8 0
12 4 0 10 8 12 6 7 10


.

This mapping is a homomorphism from G1 to GL(9, F13) (as a and b given in (3.1)
generates G1). It should be noted that this map is an irreducible representation
of G1 over F13. Therefore, according to Proposition 2.8, M(9, F13) will always be
a Wedderburn component of FqG1. Hence, it follows that (7, 8, 93, 7) is the only
possible value for ni. Hence, the WD is

FqG ≃ Fq ⊕ M(7, Fq) ⊕ M(8, Fq) ⊕ M(9, Fq)3 ⊕ M(7, Fq3).

Case 3: pk ≡ {17, 19, 37, 53, 73, 89, 107, 109} mod 124. The cyclotomic Fq classes
of γg are

SFq(γgi
) = {γgi

}, for 1, 2, 3, 4, 5, 6, SFq(γg7) = {γg7 , γg8 , γg9}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that

FqG1 ≃ Fq

5⊕
i=1

M(ni, Fq) ⊕ M(n6, Fq3) =⇒ 503 =
5∑

i=1
n2

i + 3n2
6, ni ≥ 2. (3.5)

By proceeding on the similar lines of case 2, one can show that we need to deduce
the unique choices among the 2 choices (74, 8, 9) and (7, 8, 93, 7). For this, we take
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p = 17 and show that there are two distinct homomorphisms from G1 to GL(7, F17).
We consider the following mappings:

a →



13 10 0 0 0 0 0
1 11 10 4 0 0 0
0 8 6 11 7 9 0
0 1 14 12 14 3 1
0 0 0 2 2 15 4
0 0 1 1 4 3 10
0 0 0 12 12 3 12


, b →



8 14 16 0 0 0 0
9 2 6 13 4 0 0
0 5 14 1 6 15 4
0 2 3 11 1 13 15
0 1 12 14 4 3 12
0 0 12 8 10 14 10
0 0 1 9 1 11 16


,

a →



14 14 0 0 0 0 0
13 16 0 4 0 0 0
16 12 12 15 0 0 0
5 8 9 0 15 7 2
10 9 13 13 9 1 12
9 1 6 3 13 15 0
1 5 11 8 2 14 2


, b →



6 8 16 0 0 0 0
12 1 16 14 0 16 0
11 12 13 7 4 12 0
0 15 9 6 0 13 0
9 7 2 9 13 13 14
12 14 10 6 9 9 4
5 9 14 13 4 16 4


.

These mappings are 2 irreducible representations of G1 over F17. Therefore, Propo-
sition 2.8 derives that M(7, F17)2 is a summand of the group algebra F17G1. Thus,
the required choices of n′

is fulfilling (3.5) is (74, 8, 9) Hence, the WD is

FqG1 ≃ Fq ⊕ M(7, Fq)4 ⊕ M(8, Fq) ⊕ M(9, Fq3).

Case 4: pk ≡ {5, 11, 23, 25, 31, 47, 59, 61, 67, 79, 101, 103, 115, 121, 65, 95} mod 124.
The cyclotomic Fq classes of γg are

SFq(γgi
) = {γgi

}, for 1, 2, 3, SFq(γg7) = {γg7 , γg8 , γg9}, SFq(γg4) = {γg4 , γg5 , γg6}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (3.2) that

FqG1 ≃ (Fq)
2⊕

i=1
M(ni, Fq) ⊕ M(n3, Fq3) ⊕ M(n4, Fq3)

=⇒ 503 =
2∑

i=1
n2

i + 3(n2
3 + n2

4), ni ≥ 2. (3.6)

By following the procedure as in case 1, we can show that the ni ≥ 7 in (3.6).
Hence, the only possible choice of ni’s is (7, 8, 7, 9), which means that

FqG1 ≃ Fq ⊕ M(7, Fq) ⊕ M(8, Fq) ⊕ M(7, Fq3) ⊕ M(9, Fq3).

This completes the proof.
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4. Unit group of FqSL(2, 9)
Let G2: = SL(2, 9). The order of G2 is 720. Since p > 5, it does not divide the order
of G2, the group algebra FqG2 is semisimple. Also, from [8] one can note that G2
has irreducible representations of degrees 1, 4, 5, 8, 9 and 10 whenever |SFq(γg)| =
1, ∀g ∈ G2. The group G2 has 13 conjugacy classes and it is represented as g′

is.
The representative of the conjugacy classes, size and the order of representatives
are tabulated below:

R
[

1 0
0 1

] [
0 2
1 1

] [
0 2x + 2

x + 2 1

] [
2 0
0 2

] [
0 2
1 2

] [
0 2x + 2

x + 2 2

]
S 1 40 40 1 40 40
O 1 6 6 2 3 3[

0 2
1 2x + 2

] [
0 2
1 x + 2

] [
0 2
1 x + 1

] [
0 2
1 2x + 1

] [
2x + 2 0

0 2x + 1

]
72 72 72 72 90
5 5 10 10 8[

x 0
0 2x

] [
x + 2 0

0 x + 1

]
90 90
4 8

Here x is the generator of multiplicative group of finite field of order 9. Also, G2
can be generated by two elements a and b, where

a =
[

x + 1 0
0 x + 2

]
and b =

[
2 1
2 0

]
. (4.1)

In this section, we characterize the unit group of the group algebra FqG2 for p > 5
such that the group algebra FqG2 is semisimple and q = pk. It is clear from the
above table that the exponent of G2 is 120.

Theorem 4.1. The unit group of FqG2 is as follows:
(1) for pk ≡ {1, 31, 41, 49, 71, 79, 89, 119} mod 120, we have

U(FqG2) ≃ F∗
q ⊕GL(4, Fq)2 ⊕GL(5, Fq)2 ⊕GL(8, Fq)4 ⊕GL(9, Fq)⊕GL(10, Fq)3.

(2) for pk ≡ {7, 17, 23, 47, 73, 97, 103, 113} mod 120, we have

U(FqG2) ≃ F∗
q ⊕GL(4, Fq)2⊕GL(5, Fq)2⊕GL(9, Fq)⊕GL(10, Fq)3⊕GL(8, Fq2)2.

(3) pk ≡ {11, 19, 29, 59, 61, 91, 101, 109} mod 120, we have

U(FqG2) ≃ F∗
q ⊕ GL(4, Fq)2 ⊕ GL(5, Fq)2 ⊕ GL(9, Fq) ⊕ GL(8, Fq)4
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⊕ GL(10, Fq) ⊕ GL(10, Fq2).

(4) pk ≡ {13, 37, 43, 53, 67, 77, 83, 107} mod 120 , we have

U(FqG2) ≃ F∗
q ⊕ GL(4, Fq)2 ⊕ GL(5, Fq)2 ⊕ GL(9, Fq) ⊕ GL(10, Fq)

⊕ GL(10, Fq2) ⊕ GL(8, Fq2)2.

Proof. It follows from the Wedderburn decomposition theorem that FqG2 ≃⊕r
i=1 M(ni, Fi). Also, G2 is a perfect group. This and Proposition 2.2 imply

that

FqG2 ≃ Fq

r−1⊕
i=1

M(ni, Fi), ni ≥ 2. (4.2)

As in the previous theorem, we construct the set TG,F of group G2 and divide the
proof into the following 4 cases.
Case 1: pk ≡ {1, 31, 41, 49, 71, 79, 89, 119} mod 120. In this case, it can be verified
that |SFq(γg)| = 1, ∀g ∈ G2. By utilizing this along with Proposition 2.2, we
further rewrite (4.2) as

FqG2 ≃ Fq

12⊕
i=1

M(ni, Fq) =⇒ 719 =
12∑

i=1
n2

i , ni ≥ 2. (4.3)

Next, we consider the normal subgroup N of G2 generated by [ 2 0
0 2 ]. One can

observe that with G2/N ≃ A6. We recall from [2, Proposition 4.7] that

FqA6 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq)2. (4.4)

Utilizing (4.4) and Proposition 2.5 in (4.3) to derive that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq)2
6⊕

i=1
M(ni, Fq) (4.5)

with 360 =
∑6

i=1 n2
i , ni ≥ 2. We note that G2 has irreducible representations of

degrees 1, 4, 5, 8, 9 and 10. This means n′
is in (4.5) are among the set {4, 5, 8, 9, 10}.

Among all the possible choices of ni’s fulfilling 360 =
∑6

i=1 n2
i , the only choice that

contains elements from the set {4, 5, 8, 9, 10} is (42, 82, 102). Hence, (4.5) implies
that

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(8, Fq)4 ⊕ M(9, Fq) ⊕ M(10, Fq)3.

Case 2: pk ≡ {7, 17, 23, 47, 73, 97, 103, 113} mod 120. The cyclotomic Fq classes of
γg are

SFq(γgi
) = {γgi

}, for 1-6, 11-3, SFq(γg7) = {γg7 , γg8}, SFq(γg9) = {γg9 , γg10}.
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By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

8⊕
i=1

M(ni, Fq) ⊕ M(n9, Fq2) ⊕ M(n10, Fq2),

719 =
8∑

i=1
n2

i + 2(n2
9 + n2

10),

(4.6)

where ni ≥ 2. We observe the WD of FqA6 in this case is (see [2, Proposition 4.7])

FqA6 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq2). (4.7)

Using (4.7) and Proposition 2.5, we further obtain from (4.3) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)

⊕ M(8, Fq2)
4⊕

i=1
M(ni, Fq) ⊕ M(n5, Fq2),

(4.8)

with

360 =
4∑

i=1
n2

i + 2n2
5, ni ≥ 2. (4.9)

According to Lemma 2.7 and Case 1, 4 ≤ ni ≤ 10. Moreover, Proposition 2.6
confirms that ni ̸= 7 in this case. Thus, we are remaining with the three choices of
n′

is fulfilling (4.9) given by (42, 82, 10), (42, 102, 8) and (82, 102, 4). Next, to uniquely
identify the correct choice, we show that M(4, Fq) will always be a Wedderburn
component in this case. In particular, we take p = 7 and consider the following
mapping from G2 to GL(4, F7):

a →


3 6 2 0
5 6 0 0
0 5 4 2
5 2 1 1

, b →


4 2 5 2
4 5 4 0
4 6 3 5
0 3 4 0

.

This mapping is a homomorphism from G2 to GL(4, F7) (as a and b given in (4.1)
generates G2). It should be noted that this map is an irreducible representation
of G2 over F7. Therefore, according to Proposition 2.8, M(4, F7) will always be
a Wedderburn component of FqG2. Consequently, we are left with two possible
choices of n′

is given by (42, 82, 10) and (42, 102, 8). Finally, we show that M(10, Fq)2
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is a summand of FqG2. For this, we define the following two maps:

a →



0 1 0 0 0 0 0 0 0 0
6 2 3 4 0 0 0 0 0 0
4 6 3 3 0 0 0 0 0 0
2 5 0 2 0 0 0 0 0 0
5 1 0 6 0 1 6 0 1 0
3 3 0 5 1 1 3 3 4 0
3 5 6 0 4 1 2 5 0 3
6 0 4 4 2 3 6 6 1 5
6 6 1 4 4 1 2 3 5 1
3 2 5 1 1 0 4 1 4 4



, b →



0 4 4 0 0 0 0 0 0 0
2 1 4 3 5 0 0 0 0 0
6 3 4 3 3 4 0 0 0 0
2 5 2 5 2 4 3 0 0 0
6 0 3 3 1 4 6 0 0 0
3 2 6 2 5 6 1 0 0 0
4 3 0 3 2 2 5 0 0 0
4 1 6 5 5 1 2 4 3 4
2 3 6 6 0 0 6 0 1 3
4 1 0 3 5 4 4 3 3 2



a →



4 5 0 0 0 0 0 0 0 0
0 4 3 5 0 0 0 0 0 0
6 6 2 4 6 0 4 0 0 0
4 1 4 5 1 3 1 6 0 0
4 3 0 3 4 3 4 0 4 5
3 6 2 2 5 0 4 4 6 5
2 0 5 3 3 3 4 1 0 5
3 2 3 1 0 3 0 0 0 6
5 4 0 1 6 2 2 5 3 0
5 1 0 4 1 6 3 1 0 5



, b →



1 0 4 0 0 0 0 0 0 0
0 6 1 6 3 0 0 0 0 0
0 4 0 5 3 5 6 0 0 0
0 1 0 5 2 2 0 3 6 0
0 3 3 0 6 5 4 2 1 2
0 3 2 2 4 1 1 4 1 0
0 1 3 1 0 0 2 6 3 6
0 1 3 3 6 1 5 1 0 1
0 6 4 2 2 6 5 4 1 6
0 5 1 5 0 6 5 3 0 6


These mappings are 2 irreducible representations of G2 over F7. Therefore, Propo-
sition 2.8 derives that M(10, F7)2 is a summand of the group algebra F7G2. Con-
sequently, the required choice of n′

is is (42, 102, 8). Hence, using (4.8), we get

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)3 ⊕ M(8, Fq2)2.

Case 3: pk ≡ {11, 19, 29, 59, 61, 91, 101, 109} mod 120. The cyclotomic Fq classes
of γg are

SFq(γgi
) = {γgi

}, for 1-10, 12, SFq(γg11) = {γg11 , γg13}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

10⊕
i=1

M(ni, Fq) ⊕ M(n11, Fq2), 719 =
10∑

i=1
n2

i + 2n2
11, ni ≥ 2. (4.10)

We observe the WD of FqA6 in this case same as in Case 1. Using this and
Proposition 2.5, we further obtain from (4.10) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(8, Fq)2M(9, Fq) ⊕ M(10, Fq)
4⊕

i=1
M(ni, Fq) ⊕ M(n5, Fq2).

(4.11)
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By proceeding as in the previous case, we are remaining with the three choices
of n′

is fulfilling (4.9) given by (42, 82, 10), (42, 102, 8) and (82, 102, 4). Further, on
the similar lines of the previous case, we can show that the final choice of n′

is is
(4, 4, 8, 8, 10). Hence, it follows from (4.11) that the WD is

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(8, Fq)4

⊕ M(10, Fq) ⊕ M(10, Fq2).

Case 4: pk ≡ {13, 37, 43, 53, 67, 77, 83, 107} mod 120. The cyclotomic Fq classes of
γg are

SFq(γgi) = {γgi}, for i = 1-6, 12, SFq(γgi) = {γgi , γgi+1} for i = 7, 9,

SFq(γg11) = {γg11 , γg13}.

By incorporating Proposition 2.2 and Theorem 2.3, we derive from (4.2) that

FqG2 ≃ Fq

6⊕
i=1

M(ni, Fq)
9⊕

i=7
M(ni, Fq2)

=⇒ 719 =
6∑

i=1
n2

i + 2
9∑

i=7
n2

i , ni ≥ 2.

(4.12)

In this case, the WD of FqA6 is given by (4.7). Using this and proposition 2.5, we
further obtain from (4.12) that

FqG2 ≃ Fq ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq) ⊕ M(8, Fq2)
2⊕

i=1
M(ni, Fq)

4⊕
i=3

M(ni, Fq2),

with 360 = n2
1 + n2

2 + 2n2
3 + 2n2

4, ni ≥ 2. According to lemma 2.7 and case 1,
4 ≤ ni ≤ 10 for each i. Furthermore, lemma 2.7 and case 1 implies that ni ̸= 7
for any i. This leaves us with three possible values of n′

is given by (4, 4, 8, 10),
(8, 8, 4, 10) and (10, 10, 4, 8). Next, to uniquely identify the correct choice, we show
that M(4, Fq) will always be a Wedderburn component in this case. In particular,
we take p = 13 and consider the following mapping from G2 to GL(4, F13):

a →


0 12 0 0
1 1 0 1
0 2 4 9
0 1 2 8

, b →


0 2 7 0
9 3 3 3
1 10 0 1
0 10 1 8

.

This mapping is an irreducible representation of G2 over F13. Therefore, according
to proposition 2.8, M(4, Fq) will always be a Wedderburn component of FqG2.
Hence, we get

FqG2 ≃ Fq ⊕ M(4, Fq)2 ⊕ M(5, Fq)2 ⊕ M(9, Fq) ⊕ M(10, Fq)
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⊕ M(10, Fq2) ⊕ M(8, Fq2)2.

This completes the proof.

5. Conclusion
In this paper, we focused on deriving the unit groups of the semisimple group al-
gebras of groups SL(2, 8) and SL(2, 9). In order to derive these, we computed the
Wedderburn decomposition using the findings from the classical theory of group
algebras. Having the wide range of possible Wedderburn components, it is evi-
dent that it becomes more and more challenging to characterize the Wedderburn
decomposition with increasing group size. Finally, this paper further motivates to
deduce the unit groups of special linear groups of higher order.
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