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Abstract – Electrode impedance can be evaluated on the basis of the electrode reaction 

kinetics in many systems, even for complicated electrode reactions. However, when a surface 

layer is present on the electrode surface, the theoretically well-established impedance model 

of the electrode reaction is often completed with phenomenological equivalent circuit 

elements in order to achieve the number of time constants as derived from the electrode 

impedance spectra measured In these cases, the meaning of the phenomenological equivalent 

circuit elements are often unclear, though the presence of these elements is helpful to describe 

the system throughout the frequency domain used for the measurement. In the present work, 

an attempt will be shown to separate the effect of the electronic and ionic charge transfer in a 

surface layer and to identify the appropriate equivalent circuits. Examples are shown from the 

fields of lithium-ion batteries where a solid electrolyte interface as a surface layer is present at 

the negative electrode and the contribution of various charge carriers may be of importance. 

 



 2 

1. Introduction 

 Electrochemical impedance spectroscopy (EIS) is a well-established technique to 

reveal mechanistic details of various electrode processes. EIS is a popular and convenient tool 

to identify the contribution of the charge transfer, the diffusion of the reactant, the adsorption 

of the reactants and/or the intermediates, and the intercalation of the ions. The above 

mentioned steps – or those that are indeed a part of the actual electrode process – together 

make the impedance of the electrode reaction (ZER). The impedance or admittance functions 

of many electrode reactions can be calculated with exact mathematical methods, even though 

it might not be possible to construct an equivalent circuit in all cases. 

 Besides the electrode reaction, the impedance measured for a particular electrode as a 

whole comprises additional circuit elements. Due to the electric double layer that builds up 

between the first-order and second-order conducting phases (that are mostly a metal and an 

electrolyte solution, respectively), the interface exhibits an inherent capacitive nature. This is 

represented in the electrode impedance with the so-called double layer capacitance (CDL), 

which is connected parallel to the impedance of the electrode reaction, indicating the parallel 

ways of the current flow. A serial resistance element (that is called in most cases the solution 

resistance) must also be taken into account to evaluate the data measured. This element is 

unrelated to the electrode processes themselves but accounts for the cell geometry; namely, 

the non-infinitely close position of the potential reference point to the working electrode 

certainly leads to an ohmic drop. The solution resistance is a serial circuit element. The 

conventional representation of the equivalent circuit of an electrode reaction can be depicted 

with the circuit as shown in Figure 1a. When the impedance of the electrode reaction includes 

the charge transfer resistance and a diffusion (Warburg) impedance, it is known as the 

Randles circuit. 

 However, the above described treatment of the electrode impedance can be applied 

under special circumstances only. The most important criterion is that the electrolyte 

components accounting for the double layer behaviour have to be present in a large enough 

concentration (supporting electrolyte). Also, it should be provided that the double layer 

charge/discharge process is fully independent of both the electrode reaction and the specific 

adsorption on the electrode surface; i.e., the supporting electrolyte must be electrochemically 

incative. If this condition is not fulfilled, the equivalent circuit of the electrode process needs 

to be modified, and even a diffusion impedance element may have to be included if the 

species responsible for the capacitive processes are present in a small concentration only [1, 
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2]. In the case when the species taking part in the Faraday reaction are the same as those 

responsible for the double layer properties, the Warburg impedance is often connected in 

series with the (CDL║RCT) branch. This is often the case when electrodes for lithium-ion 

batteries are studied, and the fit of the parameters by using such circuits are generally 

satisfactory [3-10]. Nevertheless, such circuits have not been theoretically established so far. 

 All features mentioned above hold for an electrode in which there is a direct contact 

between the electron-conducting and the single ion-conducting phase. This is a scheme in 

which the interface with capacitive properties can be unambiguously identified, and the 

resistance RS can be connected serial with all other circuit elements. However, in many kinds 

of electrode the electron-conducting phase is covered with another solid layer and, hence, the 

interface where the Faraday reaction takes place is separated from the electrolyte solution. 

Two typical examples are shortly described below: 

(i) When a corroding electrode is covered with a passive (and typically oxide-type) surface 

layer, the oxidation of the metal takes place at the metal/passive layer interface. The oxide 

layer may exhibit a mixed conductivity, and all possible interfaces may have their capacitive 

contribution to the overall electrode behaviour. Similarly, the surface layer can have a 

resistive contribution to the total electrode impedance. 

(ii) On the negative (carbonaceous or Li) electrode of Li-ion batteries, an intermediate layer 

must form to provide the functionality of the electrode and to make it possible to intercalate 

Li in a reversible manner. This layer is generally called the solid-electrolyte interface (SEI) 

that is created by the first charge-discharge cycle of the cell and which also protects the 

electrolyte solution from any further decomposition.  

 The conduction mechanism of the surface layers on the electrodes is difficult to 

describe since they usually cannot be synthesized in bulk form. Nevertheless, the presence of 

an additional non-insulating solid layer at the electrode surface is known to increase the 

number of time constants in the alternating current behaviour of the electrode. Due to the 

insufficient knowledge on the conduction mechanism and the uncertainty in the involvement 

of such layers in the electrode process, a phenomenological approach is usually applied to 

account for the behaviour of these layers. Namely, a parallel RC sub-circuit is added to the 

theoretically established impedance related to the electrode reaction. The possible ways of 

adding this sub-circuit in order to account for the number of the time constants found 

experimentally are shown in Figs. 1b and 1c. Apparently, the circuit shown in Fig. 1b is 

widespread [11-13] but not exclusively used [14, 15] in the corrosion literature, while 
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researchers dealing with lithium-ion batteries favor the circuit shown in Fig. 1c [16-34] in an 

overwhelming majority. Another concept is applied by Lewandowski and coworkers [35,36] 

who prefer an  REL–ZW–{CSEI║ (RSEI (CDL║RCT))} type equivalent circuit, which exhibits time 

constants in the same number as the circuits shown in Figs. 1b and 1c. It is difficult to judge 

the quality of the models since practically no paper reports on the impedance data fitted with 

more than a single model circuit; therefore, there is a great room for elucidation trials.  

 Although the quantitative description of the alternating current behaviour of the coated 

electrodes becomes satisfactory with the inclusion of one or even several [37-44] additional 

parallel RC sub-circuits, this may also give rise to some doubts concerning the relevance of 

the phenomenological approach: 

(i) No processes are identified that give rise to the occurrence of an additional time constant in 

the overall electrode behaviour. Therefore, the fit values of the circuit elements added may 

miss any meaning; or, at least, these parameters cannot be connected to elemental processes. 

(ii) It is doubtful with which other circuit elements the double layer capacitance is to be 

connected in parallel. Depending on the assumption on the location of the capacitive interface, 

the resistance of the surface layer must be taken into account, in connection with either the 

ionic or electrical transport in this layer. 

 In the following part, an attempt will be made to take into account the role of the 

surface layer in a theoretically correct manner. 

 

2. Theoretical 

 Below, an electrode with a solid surface layer will be considered. In the surface layer, 

both ionic and electron transport will be allowed. The charge transfer caused by the ion 

motion (diffusion or migration) and the electron transport will be considered as independent 

and parallel conduction channels. In this model, two interfaces appear: one between the 

electrode metal and the solid surface layer and another between the surface layer and the 

electrolyte solution. Both interfaces are allowed to serve as a capacitive one. Therefore, the 

inner part of the surface layer may behave in a similar way as the electrolyte solution in a 

simple electrode; i.e., the charge accumulated at the metal surface is compensated by a diffuse 

ion cloud in the solid surface layer. At the same time, the outmost boundary of the solid 

surface layer is also capable to accumulate some extra charge, the compensation of which is 

provided by the ion redistribution in the Helmholtz layer of the solution, similarly to the 
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conventional solid electrodes. The charge transfer to both surfaces with capacitive properties 

is hindered by a respective resistance originating from either the ion or the electron transfer 

through the solid surface layer. The charge transfer between chemical species (i.e., the 

electrode reaction itself) is allowed to take place at a single boundary only. Hence, all possible 

kinds of electrochemical reactions occur at the boundary of the first-order conductor/SEI 

interface only. The schematic representation of the equivalent circuit of this layer structure is 

depicted in Figure 2 showing also both the geometric separation of the layers and the 

independent conduction channels. 

 The immediate consequence of the separation of the roles of the charge carriers is that 

the high-frequency limit of the real part of the impedance will be RSOL+(RSL,e
-1+RSL,ion

-1)-1. 

Therefore, the high-frequency limit has a different meaning as compared to the case of a bare 

metal electrode when the resistance of the surface layer is substantial. Depending on the 

density and on the mobility of the charge carriers in the surface layer, either the electrical or 

ionic resistance of the surface layer may have a dominant contribution to the high-frequency 

impedance of the system. In any case, the high-frequency impedance is no longer a simple 

and meaningless parameter to be deduced from the total impedance.  

 It has to be noticed that the equivalent circuit shown in Figure 2 necessarily leads to a 

so-called “depressed semicircle behaviour” (referring to the Nyquist plot of the electrode 

impedance). As the frequency of the measurement decreases, the resistance in series to the 

impedance of the electrode process will become RSOL+RSL,ion, which is higher than the high-

frequency limit of the real part of the impedance. Therefore, the high to medium-frequency 

part of the impedance is stretched along the real axis of the Nyquist plot, giving rise to a 

depressed semicircle. Although such depressed semicircles are often modeled with a constant 

phase element (CPE) replacing a capacitor in a regular equivalent circuit, the present 

approach draws the attention to the fact that the application of the CPE is often a 

phenomenological tool to describe a system quantitatively when our knowledge on the system 

is insufficient. 

 Although the complete quantitative analysis of the circuit shown in Fig. 2 is difficult, 

some trends can be clearly established. The present model can also be responsible for the 

occurrence of a new high-frequency semicircle in the Nyquist plot, similarly to the circuits 

shown in Figs. 1b and 1c. The two semicircles are in some cases well expressed, while the 

formation of a single depressed semicircle is also possible. A few simulated results are shown 

in Figure 3 where the impedance of the electrode reaction was taken to be a simple resistor 
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(RER) for sake of simplicity. It can be seen that, apart from extreme cases, the properties of the 

solid surface layer influence the high-frequency behavior of the system but lead to the same 

low-frequency behavior as for any other combination of the circuit elements related to the 

surface layer. At sufficiently low frequencies where the diffusion process can be noticed as 

the occurrence of a Warburg-type impedance, the circuit in Fig. 2 can be simplified and 

capacitors can be taken as elements with infinitely high impedance. 

 The occurrence of the semicircle related to the capacitance of the solution side of the 

surface layer is possible until the total impedance related to the electron transfer through the 

surface layer is lower or only comparably high to the other resistive elements. The separation 

of the two arcs in the Nyquist plot is related to the difference in the time constants of the 

processes related to the electron and ion transfer through the surface layer. 

 Figure 3c indicates that once the ionic conductivity of the surface layer is reduced, the 

entire impedance diagram shifts along the real axis. Although RSL in the diagrams shown in 

Figs. 1b and 1c is introduced pronouncedly for the resistance of the surface layer, its change 

does not modify the high-frequency behavior, unlike the parameter RSL,ion in the circuit 

presented in Fig. 2. 

 Figure 4 shows the comparison of two impedance functions calculated with different 

equivalent circuits. Although the calculation of the exact equivalence conditions is not easy, it 

can be seen that the impedance functions calculated with different circuits correspond to each 

other at least at the same level that is accepted during the fit of experimental impedance 

functions. 

 

3. Comparison with result for electrode covered with a solid electrolyte interface 

 SEI formation on the negative electrode of a lithium-ion battery is an important but 

badly understood process. On the surface of both carbon-type and metallic Li negative 

electrodes, the decomposition of the solvent results in an insoluble and presumably polymer-

type layer that plays a crucial role in the functionality of the electrode. The formation of SEI 

can be followed by the excess charge needed for the first charging process. 

 Due to the lack of an ex-situ synthesis method, the properties of SEI cannot be studied 

independently of the electrode itself. The big majority of the impedance studies of the 

negative electrodes of Li batteries underpin that the number of time constants is larger than 

what is needed for the description of the metal deposition/dissolution (for Li anode) or 



 7 

intercalation/de-intercalation (for carbon-type anode). Therefore, an (CSL║RSL) subcircuit is 

added to the system for the mathematical description of the alternating current behavior. 

Although it is straightforward to elucidate the meaning of the resistive element added, the 

explanation of the capacitive element is rather troublesome. The complications are even worse 

when a constant phase element is needed for the description of the electrode behavior [4, 6-8, 

10, 17, 18, 22, 26, 29-34, 45, 46]. No wonder that in many studies only the resistive elements 

obtained from the fit of the experimental impedance data are given [3, 6-9, 16, 21, 23-25, 28-

30, 32-34, 36, 37, 43, 44, 46, 47], and the indication of all parameters fitted is rather scarce 

[18, 26, 31, 38, 40, 45]. The impedance of an electrode applied in lithium-ion batteries can 

seldom be fitted with the classical Randles circuit [48, 49] .  

 It is a common experience of the studies performed for both the negative electrodes of 

the Li ion batteries and the entire cells themselves that an increase of the high-frequency 

impedance is obtained upon cycling the system [10, 39-41, 45-47, 49-55]. Whichever popular 

model is used to describe this behavior (see, e.g., Figs. 1b and 1c), the high-frequency 

impedance should be invariant, unless something happens to the electrolyte. However, a large 

electrolyte excess is customarily used for the study of single electrodes and the solute content 

of a full Li-ion cell is presumably unchanged. Therefore, the positive shift of the impedance 

functions along the real axis of the Nyquist plot cannot be explained on the basis of the 

conventional models. The model proposed in this work and shown as the equivalent circuit in 

Fig. 2 offers a natural explanation for the rise of the high-frequency impedance because a 

conductivity decrease in SEI due to ageing leads to the enhancement of the real part of the 

impedance and does not require to include any capacitive element with an ill-defined 

meaning. This is well exemplified by the impedance diagrams shown in Fig. 3c. 

 

4. Conclusion 

 The impedance of an electrode covered with a surface layer of mixed conductivity was 

considered. It was suggested that the electronic and ionic currents passed through the surface 

layer can be considered as parallel conduction channels. Sample impedance diagrams were 

shown that are in agreement with the impedance functions normally obtained for electrodes 

covered with a surface layer. In the model proposed, the capacitances of the inner and outmost 

boundary of the surface layer are naturally separated, and there is no need to connect an 

(C║R) sub-circuit to either of the arm of the impedance function, eliminating the difficulty of 

the explanation of the meaning of the capacitance in this part of the equivalent circuit. It was 
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also noted that the blind correction of the "solution resistance" may lead to the loss of 

important data that are indicative of the behavior of the system studied. An overview of the 

literature of the solid electrolyte interface showed that the model proposed is worthwhile of 

testing for electrode impedance measurements and the change in the high-frequency limit of 

the impedance data measured may gain a natural explanation.  
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Figure 1 – 1a: The generally accepted equivalent circuit for an electrode reaction where no 

additional surface layer is present on the electrode surface. Figs. 1b and 1c: Frequently 

applied equivalent circuits for modeling electrode impedance where a solid surface layer is 

present on the electrode surface. SL denotes the surface layer and the other notations are the 

same as in the main text. 
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Figure 2 – The suggested equivalent circuit of an electrode covered with a solid surface layer 

exhibiting mixed electronic and ionic conductivity. Dashed lines indicate the phase 

boundaries and the thick dotted line separates the parts of the system where electrical and 

ionic means of charge transfer are dominant. 

 



 15 

0

5

10

0 5 10 15 20 25 30

Re(Z ) / ohm cm2

-Im
(Z

) /
 o

hm
 c

m
2

1
4
10
25
100

1 kHz
10 Hz

100 Hz

R SL,e  / ohm cm2 = Fig. 3a

 

0

5

10

0 5 10 15 20 25 30

Re(Z ) / ohm cm2

-Im
(Z

) /
 o

hm
 c

m
2

0.08
0.2
0.6
2
9

1 kHz

10 Hz

100 HzC ME/SL  / mF cm-2 = Fig. 3b

1 Hz

 



 16 

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Re(Z ) / ohm cm2

-Im
(Z

) /
 o

hm
 c

m
2

1
4
6
8

10 Hz

100 Hz

1 Hz

R SL,ion  / ohm cm2 = 
Fig. 3c

 

 

Figure 3 – Typical impedance diagrams obtained for the circuit shown in Figure 2 as a 

function of some parameters. RSOL = 0.5 ohm cm2 and CSL/SOL = 2x10-5 F cm-2 for all curves; 

dashed lines indicate the frequency of the perturbation.  

a: CME/SL = 6x10-4 F cm-2, ZER = RER = 15 ohm cm2, RSL,ion= 15 ohm cm2; RSL,e is indicated in 

the legend.  

b: RSL,e = 1 ohm cm2, ZER = RER = 15 ohm cm2, RSL,ion= 15 ohm cm2; CME/SL is indicated in the 

legend. 

c: CME/SL = 6x10-4 F cm-2, ZER = RER = 19.5 ohm cm2; RSL,e = 4 ohm cm2, RSL,ion is indicated in 

the legend. 
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Figure 4 – Comparison of two impedance functions calculated with different equivalent 

circuits (Bode plot).  

Symbols: Equivalent circuit as shown in Fig. 1c by using the following parameters: RS = 

1.452 ohm cm2, RSL = 17.908 ohm cm2, CSL = 0.185 mF cm-2, ZER = RER = 11.14 ohm cm2 and 

CDL = 0.0252 mF cm-2. 

Line: Equivalent circuit shown in Fig. 2 by using the same parameters as in Fig. 3b, CME/SL =  

0.2 mF cm-2 (see the open squares in Fig. 3b). 

 

 

 


