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ABSTRACT

For a sample of Swift and Fermi GRBs, we show that the minimum variability timescale and the
spectral lag of the prompt emission is related to the bulk Lorentz factor in a complex manner: For
small Γ’s, the variability timescale exhibits a shallow (plateau) region. For large Γ’s, the variability
timescale declines steeply as a function of Γ (δT ∝ Γ−4.05±0.64). Evidence is also presented for an
intriguing correlation between the peak times, tp, of the afterglow emission and the prompt emission
variability timescale.
Subject headings: gamma-rays: general

1. INTRODUCTION

For a majority of Gamma-Ray Bursts (GRBs), the
emitted jet is highly relativistic, with a bulk Lorentz
factor of a few hundred and produces, through inter-
nal/external shell collisions, very diverse and highly
variable lightcurves. The observed prompt emission and
the early afterglow provide important clues about the
properties of the GRB central engine and the associated
radiation mechanisms. To further our understanding
of the prompt emission, the afterglow, and the possible
connections to the activity of the central engine and the
propagation phase of the jet, it is important to establish
the nature of the link between key factors such as the
bulk Lorentz factor and temporal properties such as the
variability timescale and spectral lags.

Liang et al. (2010) report strong mutual correla-
tions among various timescales including the peak
time (tp) for afterglow optical and X-ray light curves.
Assuming the peaks in the afterglow are indicative
of the deceleration of the jet in a constant medium,
they extract the initial bulk Lorentz factors (Γ0) for a
sample of GRBs. They also note the existence of a tight
correlation between the extracted Lorentz factors and
Eiso. Ghirlanda et al. (2012) also determine the bulk
Lorentz factors using afterglow peak times. They assume
different density profiles (i.e., homogenous and wind) for
the environment medium in which the jet propagates,
and find the correlations: Eiso and Liso∝ Γ2

0 and Epeak∝

Γ0. Their results are consistent with the magnetically
accelerated jet model simulations that are described by
Komissarov, Vlahakis & Koenigl (2010), Tchekhovskoy,
McKinney & Narayan (2009), Tchekhovskoy, Narayan
& McKinney (2010). Lu et al. (2012), estimated
Lorentz factors using beaming-corrected jet luminosity
from a neutrino-driven wind medium and extended the
correlations between Γ0 and Eγ,iso.

Temporal variability is also connected to the bulk
Lorentz factor. A robust method for extracting such
variability was recently described by MacLachlan et al.
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(2012, 2013), in which the authors used a technique
based on wavelets and analyzed a sample of Fermi/GBM
GRBs and showed that a variability (related to the
minimum timescale (MTS) that separates white noise
from red noise) of a few milliseconds is not uncommon
for GRBs. For similar studies involving a large Swift
sample see Dolek et al. (2014) and Golkhou et al.
(2014). MacLachlan et al. (2013) also demonstrated
that there is a direct link between the shortest pulse
structures as determined by the MTS and pulse-fit
parameters such as rise times as seen in GRB prompt
emission. Recently, Sonbas et al. (2013) applied the
same technique to analyze X-ray flares and confirmed
the validity of the relation between the MTS and
pulse-fit parameters and extended the relation from the
prompt emission to X-ray flares covering a temporal
scale ranging over several orders of magnitude.

In this paper, we explore the connection between
the temporal variability timescale (δT ), the peak times
(tp) for the optical emission, and the GRB bulk Lorentz
factor (Γ). The paper is organized as follows: In section
2 we outline briefly the procedures used in the selection
and processing of the GRB data, and the extraction of
the minimum variability time scales. We also mention
the methods employed in extracting the bulk Lorentz
factors. In section 3 we present and discuss the corre-
lations between the temporal variables and the Lorentz
factors. Our summary and conclusions are presented in
the last section.

2. DATA AND METHODOLOGY

We have generated mask-weighted, background
subtracted light curves by using batgrbproduct,
batmaskwtevt, and batbinevt tasks. These light curves
were generated with a time binning of 200 µseconds and
100 µseconds in the four standard Swift/BAT energy
bands, i.e. 15 - 25 keV, 25 - 50 keV, 50 -100 keV, 100 -
150 keV.

For the Fermi sample we have extracted light curves for
the GBM NaI detectors over the entire energy range
(8 keV to 1 MeV). Typically, the brightest three NaI
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detectors were chosen for the extraction. Light curves
for both long and short GRBs were extracted at a time
binning of 200 µseconds.

The time variability of the light curves was extracted
by employing the wavelet technique of MacLachlan et.
2013. In this method the variability is related to the
minimum time scale that separates the white noise and
the red noise in a power density spectrum depicted by
the dominant wavelet coefficients used to represent the
sample lightcurves. For full details of the data and MTS
extraction procedures, we refer the reader to MacLach-
lan et al. (2013). The spectral lags were extracted
by using the technique described by Ukwatta et al (2012).

A number of methods exist for extracting the bulk
Lorentz factor: (1) One method relies on knowing the
peak time of the early afterglow and relating that to the
deceleration time of the external forward shock. This
technique (Sari and Piran 1999) is used to extract the
so-called ’initial’ Lorentz factor which is approximated
to be twice the Lorentz factor at the deceleration time,
(2) The use of the ’compactness’ condition (sometimes
referred to as the ’opacity’ argument) (Piran 1999), the
requirement that bursts are optically thin to pair pro-
duction. This approach (Lithwick and Sari 2001; Gupta
and Zhang 2008; Abdo et al. 2009) yields a lower limit
for the initial Γ0, (3) The use of the approximation that
the emission due to the external shock is not prominent
during the prompt phase (Zou and Piran 2010), and
finally, (4) Pe′er et al (2007) describe a method based
on the observation that a thermal component may play
a significant role in the prompt emission in GRBs.

We take the Γ′s from the samples of Lu et al (2012)
and Ghirlanda et al. (2012). We assigned error bars of
10% to the Ghirlanda values because the original data
set came without uncertainties. We discarded a number
of GRBs from the Lu et al. (2012) sample because only
a limit is given for the Lorentz factors. We include
a number of Fermi GRBs that have been recently
analyzed by Ghisellini et al. (2010) and Kumar and
Duran (2010). These GRBs are particularly interesting
because they have significant prompt emission in the
MeV and GeV energy region as well as late-time X-ray
and optical emission, and have relatively high Lorentz
factors compared to the Swift sample. We list in Table
1 the GRBs used in our analysis.

3. RESULTS AND DISCUSSION

From kinematics alone (Fenimore et al. 1996, Dermer
1998, Salmonson 2000, Sultana et al. 2012), a connec-
tion between the time variability and the bulk Lorentz
factor is expected. Regarding the temporal structures
in GRBs, Kobayashi et al. (1997) and Wu et al. (2000)
mention several timescales; in particular, they note the
angular spreading time scale. This scale is the delay
between the arrival times of the photons emitted at the
line of sight and those emitted at some latitude along
the side of the spreading region of the shell. As the
flow is relativistic, the beaming effect of the radiating
particles leads to emission from a narrow cone with an
opening angle of ∼ 1/Γ. This produces a time delay

of the order tang ∼ Γ−2. If we assume this scale is
related to the variability time scale, then we can expect
a correlation between MTS and the bulk Lorentz factor.
We explore such a possibility by plotting MTS versus
the reported Lorentz factor, Γ: See Figure 1. The MTS
is corrected for the 1/(1+z) time dilation factor, where z
is the redshift for a given burst. The data exhibit a very
interesting knee-like feature in the MTS-Γ plots: The
MTS shows a shallow (plateau) region for small Γ’s and
then decreases rather sharply for high Γ’s. The knee or
break in Γ lies in the range 200 - 300. We have fitted
the data with a broken power-law function (with the
plateau region treated as a constant); the fit is depicted
in the figure as a solid line. The best-fit for the sloped
region for the Lu et al. (2012) sample is -3.84 ± 0.30
and the one for the Ghirlanda et al. (2012) sample (not
shown) is -4.27 ± 0.64. The mean of the fitted break for
the two data sets is Γ = 225± 30 and beyond this Γ, the
MTS declines steeply.

The rapidly declining phase of MTS - Γ can be
qualitatively viewed as an opacity effect. One of the
main lines of argument for associating GRBs with rela-
tivistic sources is the fact that we observe GeV photons
(and non-thermal spectra), whereas in a non-relativistic
source these photons would pair-produce and MeV-GeV
range photons would not be observable. This argument
requires Lorentz factors of the order of 100 or greater
to reduce the pair creation optical depth so that high
energy photons can escape.

We take the optical depth to pair production from
Lithwick & Sari (2001) and express the Lorentz fac-
tor for τγγ ≈ 1 (the transparency condition), and

get: Γ ∝ δT−1/(2β+2). The temporal variability δT
enters this expression as a characteristic timescale for
the burst governing the radius of the emission, and
we associate it with the MTS. The exponent β is the
photon index of the spectrum, assumed to be a simple
power law. A characteristic value from observations
can be the taken as the high-energy index of the Band
function (Band et al. 1993) i.e., β = 2. With this
value we recover the limiting behavior MTS ∝ Γ−6

at high energies. We note this is the lower limit of
Γ. In this interpretation the steep decline of the MTS
with increasing Lorentz factor can be seen as a ”bias”
i.e., for very small variability times, one needs a high
Lorentz factor to avoid pair creation and produce a GRB.

To understand the plateau region of the MTS-Γ
plots, we follow the work of Gupta and Zhang (2008).
These authors note that the relation between the
Lorentz factor, Γ, the radius of the emission site, R, and
the variability time scale, δT , need not follow the usual
relation that is often used i.e., R ∝ Γ2cδT /(1+z). They
point out that while this relation is appropriate in the
case of the internal shock model, it is not necessarily
applicable for photospheric models nor models that
invoke magnetic dissipation as the leading cause of the
prompt emission. Gupta and Zhang (2008) develop an
expression for the opacity to pair production without
the internal shock assumption. Their result for R, the
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radius of the emission site, has the following form:

R2
∝ A(E)(Γ/(1 + z))(2−2β) (1)

where A(E) carries terms relating to the luminosity
distance, the flux, the Thompson cross section and
a threshold energy related to pair production. If we
assume that R is proportional to the variability time
scale MTS, and that the index β is in the range 1 - 2,
then we can expect from the above expression a slope
in the range -( 0 - 1) for a plot of MTS versus Γ i.e., a
very shallow dependence of MTS with Γ, which is what
the data seem to indicate for low Γ’s. Indeed, Gupta
and Zhang (2008) further show that for certain energy
constraints i.e., when the threshold energy falls below
the break energy but is still higher than the overall
cutoff energy of the spectrum, the expression for the
opacity (for β = 1) is such that the radius R and the
bulk Lorentz factor, Γ, become decoupled from each
other. In this energy regime, Γ is not directly related to
R, implying no obvious connection between MTS and Γ.

In the curvature model, the spectral lag is expected to
scale with the angular spreading time scale (tang), i.e.,
spectral lags should also exhibit a correlation with the
bulk Lorentz factor. Indeed, Qin et al. (2004), Shen
et al. (2005), and Lu et al. (2006), have examined
the effect of the bulk Lorentz factor on spectral lags.
Shen et al. (2005), show that spectral lag decreases
with the Lorentz factor as lag ∝ Γ−1. However, Lu
et al. (2006), suggests that the spectral lag decreases
much more rapidly as a function of the Lorentz factor
i.e., as lag ∝ Γ−ǫ where ǫ > 2. Both models predict
a negative correlation but with significantly different
exponents. As seen in Figure 2, a negative correlation is
seen for large Γ′s. Large Γ′s imply small wavefronts and
therefore smaller path lengths due to curvature, leading
to smaller lags. Small Γ′s on the other hand mean large
wavefronts and thus greater paths lengths. However,
the degree of coherence is expected to decrease with
the size of the wavefront, and with it, diminishing the
variability at small timescales, thus producing little or
no dependence of spectral lag with Γ.

In the standard internal-external shock scenario
the GRB is the result of internal shocks produced by
a relativistic flow and the afterglow is produced via
external shocks when the GRB flow interacts with
the interstellar medium (ISM). According to Sari and
Piran 1999, the reverse shock produced as a result of
the impact can contain as much energy as the GRB
itself but is at much lower temperature compared to
the related forward shock and hence radiates at lower
frequencies. These frequencies are typically in the
optical regime. In order to ascertain if there is any
correlation between a temporal scale for the GRB i.e.,
the prompt emission, and that for the optical emission
in the afterglow, we plot in Figure 3, the peak times
for the optical emission (taken from Liang et al. 2010)
versus the MTS for the prompt emission. Although the
error bars are large, a clear positive correlation between
these temporal properties is seen in the plot. A simple
power law leads to the following best-fit:

log (MTS) = (1.04 ± 0.05) log (tp) - (2.45 ± 0.10)(2)

This new correlation, if further substantiated by addi-
tional and more precise data, is very intriguing because
it suggests a direct link between temporal properties of
the prompt emission and the afterglow optical emission.
Using the simple internal-external shock scenario, Sari
and Piran 1999 show that the evolution of the GRB
can be broken into two main stages, an initial stage
where the Lorentz factor (Γ0) is constant and a latter
stage, often referred to as the deceleration stage, is
characterized by the evolution of the Lorentz factor (Γ)
as t−3/8. It is from this measured decay (of light curves
in the optical emission) that the extracted Lorentz
factor (for the afterglow) is related back to the initial
Lorentz factor (Γ0) for the GRB (see Sari and Piran
1999, Panaitescu and Kumar 2000; Meszaros 2006), and
Liang et al 2010).

The optical peak occurs at the deceleration time
and in the constant ISM can be expressed as:

tp ≈ 10s E
1/3
53 n

−1/3
0 Γ

−8/3
300 for an adiabatic blast

wave, and tp ∝ Γ−7/3 in the radiative case. If we think
of the MTS as a variability timescale which through
causality arguments defines the size of the emitting
region, we can write MTS∝ R/Γ2 where R is the size
of the emitting region. By relating the two expressions

through the Lorentz factor, we get MTS∝ t
3/4
p for the

adiabatic case and MTS∝ t
6/7
p for the radiative case.

The extracted exponent from the best fit (see Fig. 3)
is 1.04 ± 0.05. While not conclusive, the MTS-tp fit
seems to favor a coefficient closer to (6/7) and therefore
suggestive of radiative dissipation of the blast wave as
opposed to adiabatic.

We explore the possibility that the MTS is corre-
lated with the isotropic luminosity (Liso). For the
majority of the bursts, we use the luminosity values
reported by Lu et al. (2012). We note here that we have
only included those bursts for which the uncertainties in
the derived Γ’s are given in the literature. There are a
number of bursts reported by Lu et al. (2012) for which
only limits on Γ are reported – these are not included
in our sample. For the few Fermi GRBs, we have taken
the luminosities found in the literature (Ghirlanda et al.
2012, Ackermann et al. 2010, Lu et. al. 2012, Maselli,
et al. 2014, MacLachlan et al. 2013). The resulting
plot of MTS (corrected for redshift) versus the isotropic
luminosity is shown in Figure 4. As is clear from the
figure, the MTS-Luminosity plot essentially exhibits the
same features seen in the MTS-Γ correlation (see Figure
1) i.e., a shallow/plateau phase (low luminosity) and a
steeply declining phase (high luminosity). By in large,
the low-luminosity region is dominated by bursts with
small Γ’s and the high-luminosity bursts tend to have
large Γ’s. We note that it is primarily the Fermi bursts
with very high luminosities that particularly feature in
the steep declining phase of the MTS-Luminosity plot
while most of the Swift bursts tend to populate the
plateau region. In passing, we note that the isotropic
luminosities for the combined sample in our study (Lu
et al. (2012) and the Fermi bursts) tightly follow the
Γ-Liso correlation reported by Liang et al 2012 and Lu et
al 2012. Indeed, Lu et al. (2012) construct a theoretical
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model and derive a jet luminosity powered by neutrino
annihilation that is consistent with the correlation seen
in the data. As MTS seems to correlates with the mean
isotropic Luminosity (in the steep decline phase), we
speculate that both of the newly found correlations i.e.,
MTS-Γ and MTS-Liso are likely to be intrinsic in nature.

However the recent study of Hascoet et al. (2014)
suggests a word of caution; these authors point to
possible observational selection effects in the extraction
of Γ’s from the peak times associated with afterglow
measurements. Lu et al. (2012) also considered such
effects but concluded that the Γ-Liso correlation is
intrinsic citing insignificant observational bias in the
Γ sample. With the question of selection bias and
observational effects in mind, we have investigated, via a
simulation, the possibility that the extracted MTS could
suffer from such effects. We briefly describe the details of
the simulation here: the GRB light curves were denoised
with a hard-threshold wavelet process described by
Donoho et. al in which wavelet coefficients smaller than
some threshold are discarded. The remaining or the
filtered coefficients are then used to reconstruct denoised
versions of the light curves. These simulated lightcurves
then serve as probability distribution functions (PDFs)
to seed an event generator sampling from a Poisson
distribution. The portion of the PDFs corresponding
to the background level was held constant while the
amplitude of the signal portion of the PDFs was scaled
by various factors 25%, 50%, 100%, and 200%, relative
to the background level. We generated 1000 realizations
of lightcurves at each of the scale factors. MTS values
were extracted for the simulated lightcurves using the
wavelet technique of MacLachlan et al 2012. The results
are depicted in Fig. 4. The extracted MTS values
indicate a dependence on the S/N ratio and as such
should conservatively be considered upper limits for a
given S/N ratio and for a given time scale especially
for bursts that are noise dominated. However, very
importantly, the main features of the plot i.e, the
shallow/plateau region for low-luminosity bursts and
the steep decaying phase for high-luminosity bursts,
is still preserved thus indicating a possible underlying
correlation. The scatter does seem to increase the break
between the two regions but the shift is within the noted
uncertainties. We emphasize that the spectral lag also
exhibits the same features as the MTS-Γ correlation.
Moreover, the extraction of the spectral lag does not
suffer from the same level of sensitivity to the S/N as
the MTS and is therefore likley to be a more robust
indicator of the underlying correlation with the bulk
Lorentz factor. We finish by noting that the question of
possible observational selection effects warrants further
investigation.

4. CONCLUSIONS

We summarize our main findings as follows:

• the MTS-Γ plots exhibit a knee-like feature with a
break around Γ = 225±30. Beyond the break, the
MTS decreases steeply with Γ with a mean expo-
nent of 4.05±0.64,

 0.001

 0.01

 0.1

 1

 10

 100  1000

M
T

S
/(

1+
z)

 [s
ec

]

Lorentz Factor

Fig. 1.— MTS for the prompt emission vs Lorentz Factor (Lu et
al. 2012). For GRB 080916C (shown as a filled square) the wind
medium Lorentz Factor is plotted.

• the shallow-plateau region of the MTS-Γ correla-
tion can be understood if one assumes that for low
Γ’s, the radius of the emission site does not nec-
essarily follow the often employed relation, R ∝

(Γ2cδT )/(1 + z),

• the declining phase of the MTS-Γ correlation could
be an opacity effect. A sufficiently large Lorentz
factor is required to reduce the optical depth in
order for high energy photons to escape without the
creation of electron pairs. The extracted power-law
exponent is −4.05± 0.64,

• the MTS-Liso correlation exhibits the same fea-
tures as the MTS-Γ correlation. These two newly
found correlations taken together (and barring sig-
nificant selection effects) suggest an intrinsic con-
nection between the prompt emission temporal
variability (MTS) and the relativistic blast wave
parameters, Γ and Liso,

• the spectral lag-Γ plot exhibits a similar knee-like
feature as the MTS-Γ correlation,

• we find an intriguing correlation between MTS, a
prompt emission temporal variable, and the peak
time, tp, of the afterglow emission. The extracted
power-law exponent (1.04±0.05) is consistent with
the case of radiative dissipation of the blast wave
although the adiabatic possibility is not ruled out
by the data.

We conclude by noting that the MTS-Γ correlation (in
the steep decline phase) provides a method for extract-
ing the bulk Lorentz factor for bursts directly from the
observed temporal variability in the prompt emission.
The MTS-tp correlation, if substantiated by more pre-
cise data, will provide a simple method for predicting
the peak times for the optical emission.
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Fig. 2.— Spectral Lag for the prompt emission vs Lorentz Factor
(Lu et al. 2012).
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TABLE 1
Minimum variability times, afterglow peak times and bulk Lorentz factors for selected GRBs

GRB Name τ [sec] δτ− [sec] δτ+ [sec] Γa Γ b tp c

GRB 050730 7.88 0.88 17.61 - 201+28
−19 590.7 ± 131.5

GRB 050820A 2.99 0.65 3.39 142 282+29
−14 391.0 ± 16.7

GRB 050922C 0.56 0.22 0.36 138 - -
GRB 060210 2.07 0.35 3.04 133 264±4 -
GRB 060418 0.78 0.14 0.59 137 263+23

−7 153.3 ± 3.3

GRB 060605 5.40 0.72 10.20 101 197+30
−6 399.1 ± 13.0

GRB 060607A 2.18 0.32 3.67 153 296+28
−8 180.9 ± 2.4

GRB 060904B 1.58 0.28 2.22 50 108±10 467.9 ± 48.4
GRB 061007 0.23 0.08 0.15 215 436±3 78.3 ± 0.4
GRB 061121 0.29 0.10 0.20 88 175±2 -
GRB 070110 6.75 0.89 12.78 64 127±4 -
GRB 070318 2.09 0.55 1.98 - 143±7 301.0 ± 21.3
GRB 070411 2.72 0.41 4.54 - 208+21

−5 450.1 ± 5.0

GRB 070419A 3.27 0.82 3.27 - 91+11
−3 587.0 ± 20.9

GRB 071010A 1.64 1.64 0.41 - 101+23
−3 368.2 ± 24.4

GRB 071010B 0.873 0.22 0.87 105 209 ± 4 -
GRB 071031 6.96 0.96 12.65 - 133+17

−3 1018.6 ±1.6

GRB 080319B 0.077 0.027 0.055 - - 18±5d

GRB 080319C 1.19 0.35 1.01 109 228±5 338.3 ± 5.6
GRB 080330 1.46 0.35 1.51 - 10430

−2 621.9 ± 17.0

GRB 080710 4.27 0.99 4.60 - 63+8
−4 2200.9 ± 4.1

GRB 080804 2.76 0.57 3.33 157 - -
GRB 080810 0.87 0.20 0.94 214 409±34 117.6 ± 1.1
GRB 080916C 0.2266e 0.0630 0.0872 419 - 8.03f

GRB 081203A 2.74 0.75 2.49 121 219+21
−6 367.1 ± 0.8

GRB 090102 2.11 0.34 3.23 221 - -
GRB 090323 0.1598e 0.0436 0.0599 - - 40g±30
GRB 090328 0.0682e 0.0139 0.0175 - - 40g±30
GRB 090424 0.11 0.04 0.08 - 300±79 -
GRB 090510 0.0049e 0.0009 0.0011 773 - 0.84f

GRB 090618 0.38 0.13 0.28 158 - -
GRB 090812 1.23 0.36 1.05 253 - -
GRB 090902B 0.0223e 0.0029 0.0026 643 - 9.03f

GRB 090926A 0.0435e 0.0061 0.0070 605 - 9.01f

GRB 091003 0.0300 0.0051 0.0062 - - 22g±9
GRB 091024 4.31 0.85 5.46 59 - -
GRB 091029 3.02 0.86 2.65 111 - -
GRB 100414 0.0418 0.0074 0.0090 - - 20g±10
GRB 100621A 0.92 0.29 0.71 26 - -
GRB 100728B 1.81 0.27 2.98 188 - -
GRB 100906A 0.75 0.24 0.59 186 - -
GRB 110205A 0.60 0.09 1.02 89 - -
GRB 110213A 1.11 0.36 0.85 113 - -
GRB 130427A 0.04h 0.01 0.01 455h±15 - 15±5

aGhirlanda et al. 2012
bLu et al. 2012
cLiang et al. 2010
dRacusin et al. 2008
eMacLachlan et al. 2013
fGhisellini et al. 2010
gAckerman et al. 2013
hAckerman et al. 2014


