
ar
X

iv
:1

50
4.

03
68

7v
2

 [
as

tr
o-

ph
.I

M
]

 2
1

M
ay

 2
01

5

Mon. Not. R. Astron. Soc. 450, 4070-4080 (2015) Printed 22 May 2015 (MN LATEX style file v2.2)

NBODY6++GPU: Ready for the gravitational

million-body problem

Long Wang1,2⋆, Rainer Spurzem3,4,5,1, Sverre Aarseth6, Keigo Nitadori7,

Peter Berczik3,4,5,8, M.B.N. Kouwenhoven1,2, Thorsten Naab9
1Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871, Beijing, China
2Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871, Beijing, China
3National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences,

20A Datun Rd., Chaoyang District, 100012, Beijing, China
4Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,

Beijing, 100190, China
5Astronomisches Rechen-Institut, Zentrum für Astronomie, University of Heidelberg, Mönchhofstrasse 12-14,

69120, Heidelberg, Germany
6Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
7RIKEN Advanced Institute for Computational Science, Kobe, Japan
8Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680,

Kyiv, Ukraine
9Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

Accepted 2015 April 9. Received 2015 April 9; in original form 2015 January 9

ABSTRACT
Accurate direct N -body simulations help to obtain detailed information about the
dynamical evolution of star clusters. They also enable comparisons with analytical
models and Fokker-Planck or Monte-Carlo methods. NBODY6 is a well-known direct
N -body code for star clusters, and NBODY6++ is the extended version designed for
large particle number simulations by supercomputers. We present NBODY6++GPU,
an optimized version of NBODY6++ with hybrid parallelization methods (MPI,
GPU, OpenMP, and AVX/SSE) to accelerate large direct N -body simulations, and
in particular to solve the million-body problem. We discuss the new features of the
NBODY6++GPU code, benchmarks, as well as the first results from a simulation of a
realistic globular cluster initially containing a million particles. For million-body sim-
ulations, NBODY6++GPU is 400− 2000 times faster than NBODY6 with 320 CPU
cores and 32 NVIDIA K20X GPUs. With this computing cluster specification, the
simulations of million-body globular clusters including 5% primordial binaries require
about an hour per half-mass crossing time.

Key words: methods: numerical – globular clusters: general

1 INTRODUCTION

Direct simulations of star clusters have a long history. As
algorithms and hardware have improved, larger numbers of
stars could be simulated, allowing a more realistic represen-
tation of the dynamical evolution of globular star clusters.
NBODY6 (Aarseth 2003) is a state-of-the-art direct N-body
simulation code specifically designed for star clusters. It uses
several algorithms to enhance the computing speed and ac-
curacy, especially for strong interactions that arise from
a large fraction of binaries and relatively short relaxation

⋆ E-mail:long.wang@pku.edu.cn

timescales (≤ 100 Myr for typical open clusters and ≤ 1 Gyr
for typical globular clusters) in collisional and dense stellar
systems. Here, the terms “collisional” and “dense” are not
well defined in the literature. The classical two-body relax-
ation time, as defined e.g. by Chandrasekhar (1942); Spitzer
(1987), describes how important distant gravitational two-
body encounters are for the orbital motion of stars. If the
relaxation time is very long, a system is denoted as “colli-
sionless” (for example, galactic disks or bulges); the motion
of stars is entirely determined by the smooth mean gravi-
tational field of the system. If the relaxation time is short
(e.g., shorter than the lifetime of the system) we denote the
cluster as “collisional” (e.g., globular and open star clusters,

http://arxiv.org/abs/1504.03687v2

2 L. Wang et al.

nuclear star clusters). If the stellar density is high enough,
close two-body gravitational encounters and stellar collisions
may occur. This aspect is crucial when studying “dense” star
clusters. In dense and collisional star clusters a correct in-
tegration of stellar motions requires pairwise gravitational
interactions to be included between many if not all stars in
the cluster. This is the situation for which codes such as
NBODY6 are designed.

Direct N-body simulation of star clusters can be very
time consuming. In a system with N particles, the full force
calculation cost of one particle scales with O(N). With in-
dividual time steps for each particle, the cost per crossing
time (tcr) depends on the number of steps per particle (Ns)
which varies with different time step criteria, integration
methods and star cluster properties. Makino & Hut (1988)
and Makino & Aarseth (1992) found that for the Hermite
scheme with a time step criterion based on relative force
change (Aarseth 1985), Ns is roughly proportional to N1/3

for systems with homogeneous density. Thus, when using in-
dividual time steps the total computational cost per crossing
time of N particles scales with O(N7/3). For systems with a
power-law density distribution ρ ∝ r−α, Ns depends on the
power index α. Then the cost per crossing time scales with
O(N7/3) for α < 24/11 and O(N (6−α)/(6−2α)) for α ≥ 24/11
(Makino & Hut 1988). Considering the half-mass relaxation
timescale, trh is proportional to tcrN/ lnN (Spitzer 1987;
Sugimoto et al. 1990), the computational cost per trh is
O(N10/3/ lnN) for homogeneous systems and for power-law
systems with α < 24/11 and O(N (12−3α)/(6−2α)/ lnN) for
α ≥ 24/11. Thus, an efficient parallelization of a direct N-
body code is necessary for large particle numbers.

Sugimoto et al. (1990) discussed the fundamental
problem that direct numerical simulations of globular
star clusters could not be completed for decades if ex-
trapolating the standard evolution of computational
hardware (Moore’s law). They called for the construction
of a special-purpose computer GRAPE, which finally
was successfully initiated and completed by their team
(Makino, Kokubo, & Taiji 1993; Makino & Taiji 1998;
Makino et al. 2003). In the following years, graphical
processing units (GPU) widely replaced GRAPE (e.g.,
Harfst et al. 2007; Hennebelle, Audit & Miville-Deschênes
2007; Portegies Zwart, Belleman & Geldof 2007;
Belleman, Bédorf & Portegies Zwart 2008; Schive et al.
2008) and much of the GRAPE software could be ported to
GPU (Gaburov, Harfst & Portegies Zwart 2009).

Spurzem (1999); Spurzem et al. (2008) and
Hemsendorf, Khalisi, Omarov & Spurzem (2003) dis-
cussed several different types of hardware for parallelization
and extended NBODY6 to NBODY6++ for general parallel
supercomputers. Later, Nitadori & Aarseth (2012) devel-
oped a GPU-based parallel force calculation for NBODY6.
As a result, large N-body simulations (N ∼ 105) became
possible on a single desktop computer or workstation with
GPU hardware. They also implemented the parallel force
calculation based on Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions (AVX) for recent CPU archi-
tectures. Spurzem et al. (2011); Berczik, Spurzem & Wang
(2013) and Berczik et al. (2013) discussed the performance
of large N-body simulations with the GPU-accelerated
codes φGPU and a provisional version of NBODY6++GPU.

With these parallelization methods, we can now study

star clusters with a number of stars exceeding 105.
Hurley & Shara (2012) simulated 200, 000 stars includ-
ing 5000 primordial binaries with initial half-mass radius
4.7 pc using NBODY4 on a GRAPE-6 based computer
to investigate core collapse and core oscillation. Later,
Sippel & Hurley (2013) studied the multiple stellar-mass
black holes in globular clusters by simulating 262, 500 stars
including 12, 500 primordial binaries with initial half-mass
radius 6.2 pc using NBODY6-GPU. The current largest
direct N-body simulation modeling the globular cluster
M4 used one computing node including 12 Intel Xeon
X5650 cores (2.66 GHz per core) and 2 NVIDIA TESLA
C2050 GPUs with 448 cores each (1.15 GHz per core) with
NBODY6-GPU (Heggie 2014). This simulation contained
500, 000 stars with 7% binaries and a small half mass radius
of 0.58 pc. Nowadays, we can make an effort to reach one
million stars by using parallel supercomputers with GPUs.

In this paper, we first introduce the parallel algorithm
used by NBODY6-GPU and NBODY6++ in Section 2.
Then we describe the new version of NBODY6++GPU with
a hybrid parallel method and also the new algorithms that
are necessary for large number of particle parallelization in
Section 3. Performance tests are carried out in Section 4. In
Section 5 we show an application to a globular cluster with
one million stars. In Section 6, we discuss the parallelization
limit and future development of NBODY6++GPU. Finally,
we present our conclusions in Section 7.

2 THE FEATURES OF NBODY6/6++

NBODY6 uses the fourth-order Hermite integration method.
Makino (1991) presented a careful analysis of the per-
formance and energy error of the Hermite integrator. He
showed that it reduces to the similar asymptotic error
behaviour as the standard Aarseth scheme (fourth-order
method; see Aarseth 1985) but it has some advantages in
the time step choice and data structure.

The hierarchical block time steps method is used to-
gether with the Hermite integrator (McMillan 1986; Makino
1991) in NBODY6, which avoids the overheads of particle
position and velocity prediction in an individual time step
method. In this method, particle time steps are adjusted to
quantized values, usually an integer power of 0.5. Then at
each time step, active particles (the particles that satisfy the
time step criterion) are integrated together.

To speed up the force calculation, NBODY6 uses the
Ahmad-Cohen (AC) neighbor scheme (Ahmad & Cohen
1973). The basic idea is to employ a neighbor list for each
particle. The integration is separated into two parts: reg-
ular force integration for large time steps (regular steps)
and irregular force integration for small time steps (irregu-
lar steps). The regular force is the summation of the forces
from particles outside the neighbor radius and the irregu-
lar force accumulates only the neighbor forces. During the
irregular step, the regular force and its first order deriva-
tive calculated at the last regular step are used for position
and velocity prediction. The AC scheme gains efficiency with
sequential computing (without parallelization). The speed
gained by the AC scheme is roughly proportional to N1/4

(Makino & Hut 1988; Makino & Aarseth 1992). However, in
parallel computing, this gain is limited by the complexity of

NBODY6++GPU: Ready for the million-body problem 3

the implementation of this algorithm (see Section 4). Also,
the benefit of reducing overheads of particle prediction in the
block time step method is strongly limited in the neighbor
scheme.

Portegies Zwart & Boekholt (2014) discussed the inte-
gration accuracy requirement for self-gravitating systems
simulated with direct N-body codes. They found that for
three-body systems the integration should have total en-
ergy conserved better than 1/10th. Although this accuracy
requirement is uncertain when the simulation is extended to
large particle number systems, this work indicates the im-
portance of careful integration treatment for direct N-body
systems. One important feature of NBODY6 is that it uses
the algorithms of Kustaanheimo & Stiefel (1965) (hereafter
KS) and chain regularization (Mikkola & Aarseth 1993) to
deal with an accurate solution of close encounters, bina-
ries and multiple systems, which play a significant role in
star cluster dynamical evolution. These strong interactions
require very small time steps during integration and may
produce large errors with standard integrators such as the
Hermite scheme. Using KS and chain regularization is also
the most important feature of NBODY6 for star cluster sim-
ulations.

Here, we have briefly introduced the main algorithm
used in NBODY6/6++. In the next section we will focus on
the parallelization of the codes.

3 PARALLELIZATION OF NBODY6++GPU

3.1 MPI parallelization of NBODY6++

Spurzem (1999) and Hemsendorf, Khalisi, Omarov & Spurzem
(2003) developed NBODY6++ based on NBODY6 using
MPI parallelization with the copy algorithm. Both regu-
lar and irregular forces were parallelized. Here different
MPI processors calculate different subsets of the active
particles. Each MPI processor has the complete particle
dataset. Another available parallel algorithm is the ring
algorithm which splits the full particle dataset for different
MPI processors. It reduces the memory cost in each MPI
process. The benefit of the copy algorithm compared to
the ring algorithm is that there is no requirement for
extra communication of the neighbor particle data which
is not in the same MPI process during the irregular force
calculation. The disadvantage is the particle number limit
due to memory size on the computing node. The MPI
communication with the copy algorithm has constant time
cost (independent of MPI processor number except for
latency). The scaling of the regular force with different MPI
processors is very good. Since the regular force dominates
the calculation, this results in a good scaling of the total
computing time. Dorband, Hemsendorf & Merritt (2003)
provided a detailed discussion of these communication algo-
rithms. Lippert et al. (1998) and Makino (2002) suggested
an efficient communication algorithm (hypersystolic) for
extremely large processor numbers.

3.2 Basic NBODY6-GPU implementation

After the GPU computing (CUDA) became popular, the
shared memory parallel NBODY6-GPU code was developed

for workstation and desktop computers (Nitadori & Aarseth
2012). The OpenMP, GPU (CUDA) and AVX/SSE paral-
lel methods are used to make the code as fast as possible.
However, NBODY6-GPU can only be used in a single node
(no massively parallel MPI implementation) so the number
of particles is limited for a reasonable simulation time.

3.2.1 Regular force and potential (GPU)

The GPU library of Nitadori & Aarseth (2012) is used for
calculating the regular force, which dominates the direct in-
tegration, and potential energy calculation. The cost for reg-
ular force calculation per particle scales with O(N) and for
potential energy calculation scales with O(N2). The perfor-
mance of GPU force calculation is very good since the pure
force calculation is easy to parallelize. GPUs also help to ac-
cumulate the neighbor list very efficiently during the regular
force calculation.

3.2.2 Prediction and irregular force (AVX/SSE)

When GPU accelerates the regular force very efficiently,
the irregular force becomes expensive. However, this part
is hard to parallelize on GPUs due to the complexity of
the AC neighbor scheme. Thus, Nitadori & Aarseth (2012)
developed the AVX/SSE and OpenMP parallel library for
neighbor particle prediction and irregular force calculation.
AVX/SSE is an instruction set for CPUs developed in re-
cent years, which supports vector calculation in the specific
cache. The advantage of AVX/SSE with OpenMP is that
there is no extra memory copy compared to GPU. For both
AVX/SSE and GPU libraries, the data needs to be copied
once for changing data structure to obtain computing effi-
ciency. This is because that NBODY6 has a very long devel-
opment history, thus to completely change the data struc-
ture to be consistent with AVX/SSE and GPU libraries is
very time consuming. But for GPU, there is extra data copy
from the host memory on the mother board to the device
memory on GPU. Besides, since the neighbor force calcu-
lation is not efficient for the distributed memory parallel
method (with MPI parallelization; see discussion below),
this kind of shared memory parallel method is more effi-
cient.

3.3 Code improvements in NBODY6++GPU

In this subsection we describe our new implementations in
NBODY6++GPU.

The GPU acceleration, especially of the long-range (reg-
ular) gravitational forces, is very efficient so this part does
not dominate the computational time any more, as we show
below. Secondly, the AVX/SSE implementation accelerates
prediction and neighbor (irregular) forces, which is the next
most time consuming part of the code.

We have combined the GPU and AVX/SSE acceler-
ation, which was done for a single node in NBODY6-
GPU, with the MPI parallelized NBODY6++ designed
for multi-node computing clusters for the new version
NBODY6++GPU. This work requires additional efforts to
keep the code consistent (see below). In addition, we have

4 L. Wang et al.

worked on remaining bottlenecks, such as time step schedul-
ing and stellar evolution, which become important for mil-
lion bodies because the usual computationally intensive
tasks have been accelerated very effectively by GPU and
AVX/SSE.

3.3.1 New algorithm of selecting active particles for block
time steps

For the block time step method, active particles should be
selected at every time step. It is very expensive to search
all particles for the active ones, especially for the irregu-
lar force calculation. In this case, for one block time step
the cost of selecting active particles scales with O(N) while
the irregular force calculation cost scale with O(Ni〈Nb〉). If
N ≫ Ni〈Nb〉, the former can be more expensive. When the
simulation reaches millions of particles, the block time step
levels can be quite deep (the smallest time step can reach
0.520 − 0.522) and the deep blocks with few particles and
small time steps can easily satisfy this condition. One may
consider to use a temporary list to save particles with small
time steps and only search all particles at some selected
time interval from the temporary list each time step. How-
ever, this method is still expensive where there are many
particles with small time steps (such as the wide binaries
that are not KS regularized). Indeed, we find that the time
of selecting active particles can be much larger than the
irregular integration time, even with this temporary list al-
gorithm for one million particles including 5% primordial
binaries. Another reason that forces us to deal with this is-
sue is that the active particles selection is very difficult to
parallelize efficiently (the cost is almost independent of pro-
cessor numbers) and would be prohibitive for a million-body
simulation. Thus, we propose a better algorithm that uses
a time step sorting list (hereafter sorting list algorithm; see
Figures 1 and 2). Zhong (2014) implemented a similar algo-
rithm for φ-GRAPE+GPU and evaluated its performance.
The basic idea is that when we have the index list sorted
by particle time step from smallest to largest, and the indi-
cators of each boundary offset Ioff(i) between the block of
the same step particles (the largest particle index with step
0.5i), we only need to find the correct offset at each block
time step by using the algorithm shown in Figure 1 to select
active particles (shown as black squares in Figure 2). After
integration, we adjust the sorted list by sorting the active
particles’ new time steps. The specific sorting method for
this adjustment can be optimized to O(Ni) if we ignore the
stability of sorting (stability means no exchange of the or-
der for the particles with same steps) and assume that many
active particles keep the same step as before or have small
time step changes.

3.3.2 The initialization

The initialization of a simulation in NBODY6 is relatively
expensive. We improve it with MPI, GPU and OpenMP
parallelization and a better algorithm. The initial model for
million-body simulations is very important and needs to be
carefully tested. This improvement is very useful for fast
testing of the initial models with large particle numbers,
especially for a large number of primordial binaries.

Figure 1. The flow chart for obtaining the correct offset in the
sorting list algorithm. Tnew is the time after next integration.
Tnow is current time. dTmin is the current smallest time step (the
time step of the first particle in sorting list). iprev is the previous
offset.

Figure 2. Diagrammatic sketch of sorting list algorithm for se-
lecting active particles. The time step of each particle block is
0.5i separated by boundary indicators Ioff(i) (vertical lines). The
integration advances vertically in the chart. Active particles are
shown as black squares.

The initialization of NBODY6 can be divided into four
parts:

(i) reading or generating masses, positions, velocities and
stellar evolution parameters of all stars;

(ii) scaling all parameters into N-body units (the N-body
units1 are defined in Heggie & Mathieu 1986);

1 It has been suggested to name the N-body time unit to honour
M. Hénon as Hénon time unit (D.C. Heggie, private communica-
tion)

NBODY6++GPU: Ready for the million-body problem 5

(iii) initialization of forces, neighbor lists and time steps
of all stars;

(iv) initialization of primordial KS binaries.

In the second part of the intialization, the total potential
energy of the system is needed and costs O(N2). Actually,
NBODY6-GPU does this calculation twice for scaling pur-
pose in the case of an external tidal field. The GPU is used in
NBODY6-GPU to speed up this part and it is very efficient.
Our new improvements are for the third and fourth parts.
In the traditional NBODY6-GPU version forces and neigh-
bor lists are initialized separately without parallelization.
NBODY6++ parallelizes the scaling and initialization of the
force parts, but only through MPI. For million-body simu-
lations this is very slow and requires hours to be finished.
We improved it by using GPU based force and neighbor list
calculations (the same as for the regular force calculation).
The fourth part is very costly with more than 5% primor-
dial KS binaries in the traditional NBODY6-GPU (several
hours). During initialization of KS binaries, the force and its
three derivatives (Hermite scheme) need to be renewed for
center-of-mass particles. All neighbor lists that contain KS
binary component indices also need to be replaced by the
center-of-mass particle indices. The cost is approximately
O(N〈Nb〉NKS) where NKS is the number of primordial KS
binaries. We find a much simpler way to initialize KS bina-
ries (cost scales with O(NKS)) by just switching the order of
the third and fourth parts: initialize KS binaries first with-
out recalculating forces, their derivatives and neighbor lists
(only the KS transformation is needed) and then do the third
process with the new center-of-mass particles data generated
by former process instead of each binary component in the
old way. In this case there is no need to update the forces
and neighbor lists.

3.3.3 Position and velocity prediction

During the force calculation, the predicted positions and ve-
locities are used to calculate the force and its first derivative
for the Hermite integrator. In principle, we can avoid predic-
tion of the same particles with the AC neighbor scheme and
block time steps. However, in practice we need to search all
neighbors of each active particle and the search itself is com-
putationally expensive. Thus, it does not save much time to
avoid neighbor prediction overlap and it is much simpler to
predict all neighbors and do the force calculation within one
loop. The disadvantage of this method is that it costs more
when the average neighbor number 〈Nb〉 multiplied by the
active particle number Ni is larger than the total particle
number N , compared to all the particle predictions with a
non-AC scheme block time step. One solution is to try pre-
dicting all particles once instead of predicting each neighbor
when 〈Nb〉Ni > N . But the mixture of predicting only neigh-
bors and predicting all particles increases the complexity of
code. We therefore use only neighbor prediction in the code.

However, there is a major complication for the parallel
neighbor prediction in NBODY6++GPU, which does not
exist in NBODY6-GPU. Since we use AVX/SSE and GPU
and the code is mixed with CUDA, C++ and Fortran 77 pro-
gramming language, the AVX/SSE and GPU libraries keep
the individual copies of particle datasets. Thus, the predic-
tions of particles have overlaps and are usually inconsistent

for different copies distributed on MPI processors. Due to
the complexity of NBODY6/6++ (e.g., using predicted po-
sitions for regularization) this leads to problems of synchro-
nization later on, such as differences of time steps for the
same particle on different processors. The safest but very
costly way is to always predict all particles at every irregu-
lar integration step, which is the case in the older versions of
NBODY6++. To solve this problem, much effort has been
made to ensure that every particle is predicted to the current
time before it is used in stellar evolution, KS and hierarchi-
cal regularization, because these parts are not parallelized
and should have the same computing results on every MPI
processor.

3.3.4 Stellar evolution and neighbor force correction

The neighbor scheme also leads to performance losses for
the calculation of stellar evolution. When a star experiences
mass loss, other stars feel a smaller force. In the neighbor
scheme, the regular force is predicted from the value calcu-
lated at the last regular time step, thus if particles outside
the neighbor radius experience mass loss between the pre-
vious and next regular time steps, the regular force will be
inconsistent after that. The correction for the regular force
should be done for all particles which have the mass loss par-
ticle outside their neighbor radius. To avoid a large value of
the third and fourth derivatives of the force, the irregular
force also needs to be updated if the mass loss particle is in-
side the neighbor radius. When mass loss is frequent, the cal-
culation performance will be reduced significantly. We cur-
rently use OpenMP to speed up the force correction, but it
cannot completely solve this issue since the force correction
with cost of O(N) per particle cannot be avoided.

3.4 Hybrid MPI parallelization

Based on the above parallel methods, we develop a new ver-
sion of NBODY6++GPU to include hybrid parallel proce-
dures. The parallel structure of NBODY6++GPU is shown
in Figure 3. In computer clusters, each computing node uses
one MPI process. Each MPI process opens multiple threads
via OpenMP for the irregular force calculation. GPUs inside
one node are controlled by OpenMP threads. Each GPU has
a similar particle dataset size for regular force and poten-
tial energy calculation. GPUs of different nodes are isolated
without communication. Thus all GPUs in the same node
together access the complete particle dataset. The best code
configuration is to use multiple CPU cores (such as 8 − 16
cores) and several GPUs (such as 1 − 4 GPUs with a few
thousand cores) per node, and choose node numbers based
on the total number of particles.

4 PERFORMANCE TEST

4.1 Pure MPI and hybrid MPI

Figure 4 shows significant improvement of
NBODY6++GPU by using hybrid MPI including GPU, as
compared to the pure MPI case. We see that the GPU gives
about 33 times faster regular force integration. This is to
be expected since GPU is designed for large parallelization

6 L. Wang et al.

Table 1. The definitions of abbreviations for all figures

Abbreviation Definition

Reg. Regular integration (force) and neighbor list determination
Irr. Irregular integration (force, prediction (AVX/SSE version) and correction)
Pred. Neighbor (Non-AVX/SSE version) and all particles (for regular force) prediction
Init.B Initialization of active particle list for block time step
Move Particle data copy prepared for MPI communication
Comm.I. MPI communication for irregular integration
Comm.R. MPI communication for receiving integration
Send.I. Particle data copy for AVX/SSE irregular force calculation
Send.R. Particle data copy for GPU regular force calculation
Adjust Energy checking, adjustment of parameters and data results
KS KS regularization calculation (binary and hierarchical systems)
Barr. MPI communication barrier waiting time due to the imbalance and network traffic between different nodes

Figure 3. NBODY6++GPU code structure. It shows one cycle of simulation. Based on the time steps, the integration can be divided
into three hierarchical parts (see Table 1): KS calculation (KS), irregular integration (Irr.) and regular integration (Reg.). The KS has
smallest time step distribution. Thus, between two nearest Irr. block time steps there are several KS steps. Similarly, between two Reg.
block time steps there are several Irr. time steps. After several Reg. time steps there is one “Adjust” (see Table 1). Inside one node, Reg.
and Adjust are parallelized by multiple GPUs and Irr. is parallelized by AVX/SSE with OpenMP. MPI parallelization are done for all 4
parts between different nodes.

by using many computing cores and large memory band-
width within one card. Using AVX/SSE with OpenMP
gives about 3 times faster irregular integration including
predictions. OpenMP reduces the MPI communication cost
by a factor of 5 − 10. The individual MPI communication
process is not directly sped up by OpenMP. When we use
MPI parallelization together with OpenMP method, inside
one node the irregular and regular force calculations are
done by multiple threads with OpenMP instead of MPI
parallelization, thus we can set a larger block particle
number threshold for MPI parallelization by a factor of
the OpenMP thread number and reduce the total MPI

communication frequency. This then results in shorter total
MPI communication time.

4.2 Scaling with different particle numbers and
processors

The scaling with different particle numbers and pro-
cessors demonstrate the possibility of using large com-
puting resources for simulations. We test hybrid paral-
lel NBODY6++GPU scaling with different node numbers
Nnode (1, 2, 4, 8 and 16; up to 320 CPU cores and about
80k GPU cores) and different particle numbers (16k, 32k,
64k, 128k, 256k and 1024k) on the “Hydra” cluster of the

NBODY6++GPU: Ready for the million-body problem 7

Figure 4. Comparison of performance between pure MPI and hybrid MPI (GPU + AVX/SSE + OpenMP + MPI) on the “Kepler”
cluster at ARI, Heidelberg University. The test uses 256k particles with a Plummer model, IMF from Kroupa (2001) with mass range
0.08−100M⊙. The hybrid MPI test uses 4 nodes and each node includes 32 Intel Xeon E5-2650 cores (2.00 GHz per core) and 4 NVIDIA
K20m with 2496 cores each (706 MHz per core). The pure MPI test uses the same configuration of nodes and CPU cores. The label
“Total” means total time cost for 1 N-body unit and “Init.” denotes the initialization time of the simulations.

Max-Planck Supercomputing Centre (RZG) Germany. Each
node is completely controlled (no other tasks on the node)
and has two NVIDIA K20X with 2688 cores each (732
MHz per core) and 20 Intel Ivy Bridge cores (2.8 GHz per
core). The total computing time for one N-body time unit
Ttot/TNB is shown in Figure 5. The irregular and regular
force integration computing time (Tirr and Treg) are shown
in Figure 6. All these three times are the averaged com-
puting times of the first two N-body time units of each
simulation. We test two basic initial models. One has no
primordial binaries and another has 5% binaries. Both use
a Plummer sphere (Plummer 1911) and initial mass func-
tion (IMF) from Kroupa, Tout & Gilmore (1993) with mass
range 0.08 − 20M⊙ and no stellar evolution.

In the non-binary case, the scaling with different Nnode

for the total time is not ideal because of the communica-
tion cost. Here the speed-up saturates at about 8−16 nodes
depending on the particle number. But if we consider the
number of cores per node (20 CPU cores and 5376 GPU
cores), the scaling with cores is excellent, since with 16 nodes
320 CPU cores and 86016 GPU cores are used. With one
node, the performance of NBODY6++GPU is similar to
that of NBODY6-GPU. Nitadori & Aarseth (2012) showed
that NBODY6-GPU gives about 100 times speed-up com-
pared to the sequential NBODY6 with two NVIDIA GeForce
GTX 560 Ti with 384 cores each (822 MHz per core) and 4
Intel i7-2600K cores (3.40 GHz per core). On the “Hydra”
cluster node, the speed-up can reach 100 − 500 depending
on the particle number. Thus, with 16 nodes for one million
particles, we can reach a factor of 400−2000 speed-up com-
pared to the sequential NBODY6. Besides, the absolute time
cost is very good, especially for the million-body case, the

total time is about 800 s for Nnode = 16. For the φGPU code
tested in the “Laohu” cluster with 32 NVIDIA K20 GPU,
one million particles take about 1500 s. Although we can-
not compare the two codes directly with different computing
cluster specifications, with the similar GPU type and num-
ber NBODY6++GPU can reach better performance. CPU
cores are ignored here because the time fractions on the CPU
for these two codes are very different: φGPU spends about
90% computing time on the GPU while NBODY6++GPU
has much less time fraction (Section 4.3). In the case with
5% primordial binaries, the scaling is not as good as for the
case with no binaries due to the KS calculation. We discuss
this issue in more detail in Section 6.

The regular and irregular integration times in Figure 6
are close to ideal for million-body simulations. It means that
when ignoring MPI communications, the MPI paralleliza-
tion speeds up regular and irregular calculation excellently
for large number of particles. For small particle numbers
(< 105) the scalings of both regular and irregular integra-
tions depart from the ideal parallel limit. The reason is that
the number of operations on each node (for regular integra-
tion is on GPU) is small. Thus, the cost of internal memory
accessing and modification during integration, which can-
not be scaled with computing cores or nodes, dominates the
time.

4.3 Time fraction for different parts

We show the fraction of time spent on different parts of
NBODY6++GPU in Figure 7. In the model without bina-
ries, MPI communication and data moving consumes about

8 L. Wang et al.

without primordial binaries

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 4 8 16

T
to
t/

T
N
B
 [

s]

Nnode

Hydra cluster specification per node:
 CPU: 20 Intel Ivy Bridge 2.8 GHz cores
 GPU: 2 Nvidia K20X
(each GPU: 2688 cores; 732 MHz per core)

16000
32000
64000

128000
256000
512000

1024000

with 5% primordial binaries

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 4 8 16

T
to
t/

T
N
B
 [

s]

Nnode

Hydra cluster specification per node:
 CPU: 20 Intel Ivy Bridge 2.8 GHz cores
 GPU: 2 Nvidia K20X
(each GPU: 2688 cores; 732 MHz per core)

16800
33600
67200

134400
268800
537600

1075200

Figure 5. Performance of NBODY6++GPU with hybrid MPI
on the “Hydra” cluster as the function of node number Nnode.
Ttot/TNB shows the computing time cost per N-body time unit.
The configurations of each node are indicated in the panels. The
dashed line shows the ideal parallel limit with zero communication
cost. Different colors represent different particle numbers.

half of the total time in the case of 1024k particles with
Nnode = 16 and 128k particles with Nnode = 8, which means
the scaling reaches the MPI parallelization speed-up break-
even point. For the 1024k particles with 5% binaries, the KS
takes about half of the calculation time when Nnode ≥ 8.
Thus, the KS procedures become the performance bottle-
neck.

4.4 Sorting list algorithm for selecting active
particles

In Figure 8, we compare the performance of the sorting list
algorithm and temporary list algorithm described in Sec-
tion 3.3.1. The star cluster in our test simulation is modelled
as a King sphere (King 1966) with W0 = 6 using 1024k stars,

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16

T
ir
r/

T
N
B
 [

s]

Nnode

16000

32000

64000

128000

256000

512000

1024000

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 16

T
re
g
/T
N
B
 [

s]

Nnode

16000

32000

64000

128000

256000

512000

1024000

Figure 6. Performance of regular and irregular integration on
the “Hydra” cluster as the function of Nnode. Here the same node
configurations and line types as in Figure 5 are used. Tirr/TNB and
Treg/TNB shows the irregular and regular integration computing
time cost per N-body time unit respectively.

5% of primordial binaries and 8 nodes with the same node
configuration as in Figure 5. To indicate that the sorting is
very fast, the time of pure sorting part in this algorithm is
also shown. We can see the sorting list algorithm is about 5
times faster than temporary list algorithm.

The time fraction of active particle selection with the
new algorithm is shown as yellow part (Init.B.) in Figure 7.
We can see Init.B. costs more for simulations with a larger
number of particles. Even with this new method, it is close
to irregular integration cost for the one million particles case
(∼ 7%).

5 APPLICATION

The main task for NBODY6++GPU is to simulate large
star clusters. For a typical globular cluster, the total mass
is 105 − 106 M⊙, thus the total number of particles is of the

NBODY6++GPU: Ready for the million-body problem 9

1 2 4 8 16

1024k without primordial binaries 1024k singles + 51.2k primordial binaries

128k without primordial binaries

Figure 7. Pie charts showing the same test as Figure 5 but
time fraction of different components in Hybrid MPI parallel
NBODY6++. In each chart different rings show different Nnode.
From inside to outside rings, Nnode are 1, 2, 4, 8 and 16. The two
pie charts on the left show the model without primordial binaries
and the pie chart on the right shows the model with 5% binaries.
The models in top two pie charts include 1024k particles (singles
+ binaries) and the model in the pie chart at the bottom include
128k single particles. An explanation of the legends is provided
in Table 1

 0

 100

 200

 300

 400

 500

 600

 700

Temporary list Sorting list Pure Sorting

T
/T
N
B
 [

s]

652.50

109.95

18.23

Figure 8. Comparison of performance between the sorting list
algorithm and the temporary list algorithm. The “Pure Sorting”
means the time cost of sorting part in sorting list algorithm.

order 106. The typical age is about 12 Gyr. In our 1M stars
with 5% primordial binary globular cluster model (the same
as shown in Figure 8), we choose the parameters similar
to NGC 4372 (Harris 1996). The initial half-mass radius is
7.5 pc and the tidal radius is 89.2 pc with a circular orbit
around a point-mass galactic potential. One N-body time
unit corresponds to 0.622 Myr. The computing time and
number of particles are shown in Figure 9.

Initially, the computing time per N-body time unit was
about 3000 s and this increased when several small time step
particles formed. Later, we carried out several adjustments,
then the simulation sped up and became about 1500 s. The
number of particles only decreased slightly during 4500 N-
body time units, but the computing speed actually increased
at a later stage. The reason for the early slow speed was the
two unsuitable criteria for triggering or terminating the two-
body KS regularization. The first is the separation criterion
Rcl and the second is the time step criterion ∆tcl. If the auto-
adjustment of Rcl and ∆tcl are used, they are determined
following Aarseth (2003)

Rcl =
4Rh

N(ρd/ρh)1/3
,

∆tcl ≃ 0.04
(ηI
0.02

)1/2
(

R3
cl

〈m〉

)1/2

,

(1)

where ρd/ρh is the central density contrast, ηI is the stan-
dard irregular time step coefficient and 〈m〉 is average mass.
The factor 4Rh/N is the impact parameter for a 90 degree
deflection in a two-body encounter. The auto-adjustment re-
sults in Rcl = 1.4×10−6 and ∆tcl = 6.8×10−8 N-body units
at the beginning of this simulation. But these values are too
small and many wide binaries including some unperturbed
binaries are not regularized. Thus we switched off auto-
adjustment and used Rcl = 5.0×10−6 and ∆tcl ≤ 2.0×10−7

before about 2800 time units. We found that the Rcl and
∆tcl parameters were still too small, thus we enlarged Rcl to
1.0×10−5 and ∆tcl to 5.0×10−7. Then the computing sped
up after 2800 time units. The small parameters from auto-
adjustment is because Eq. 1 is originally designed for small
number of particles (N = 102 − 103). For the million-body
simulation, the central density is usually high and ρd/ρh is
large. The criterion from Eq. 1 is only suitable for the cen-
tral region of the cluster but too small for the outer region.
There were several jumps in the computing time after the
auto-restart with reduced time steps. These happened when
a large energy error appeared due to specific events, such as
difficult triple systems or the sudden change of force caused
by large mass loss or premature perturbation of the neigh-
bor sphere (such as neutron stars with high kick velocities).
After we restore the normal time step parameters the com-
puting time was again reduced.

There are also a few more models currently in progress
and we will report in detail about the results from these
simulations in a future publication.

6 DISCUSSION

While standard Hermite codes report a high efficiency us-
ing up to 700,000 cores on hundreds if not thousands
of GPUs (Berczik, Spurzem & Wang 2013; Berczik et al.
2013), we find that our performance saturates at about

10 L. Wang et al.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

 1020

 1025

 1030

 1035

 1040

 1045

 1050

T
to
t
[s

]

N
 [

u
n
it
 o

f
1
0
3
]

TNB

Ttot
N

Figure 9. The evolution of the computing time per N-body time
unit and the number of particles for the 1M globular cluster sim-
ulation as function of N-body time.

86,000 GPU cores and 320 CPU cores. This is not surprising,
because NBODY6 and NBODY6++ are inherently more ef-
ficient than standard Hermite codes (less operations for the
same physical result). A more detailed scaling analysis of
NBODY6++GPU will be published separately (Huang et
al., private communication).

As discussed in sections 4.2 and 4.3, the data move-
ment and MPI communications become the bottleneck when
the node number Nnode is large since they have constant
cost and the KS integration dominates the calculation when
there are many primordial binaries. For the data copying
and communication limit, a better communication algo-
rithm (such as non-blocking communication as suggested
by Dorband, Hemsendorf & Merritt (2003), which we will
probably work on in the future), a higher network bandwidth
between nodes and faster memory access are required.

In the common computer architecture today, the pure
calculation operations for CPU is about two orders of mag-
nitude faster than to access data from the host memory.
For the non-shared memory parallelization like MPI, if the
data communication consumption is larger than the calcu-
lation, the parallelization cannot improve the performance
and sometimes even reduces the speed. Table 2 compares the
calculation and communication costs for the regular force,
the irregular force and the KS perturbation calculations.
The ratio of calculation cost to communication cost, Rc, for
the regular force is proportional to the full particle number
N . Thus, the GPU and MPI parallelization for the regular
force gives a very good scaling. For the irregular force, Rc is
proportional to the average neighbor number. When there
are many neighbors, the MPI parallelization is good. For
typical star cluster simulations, the neighbor number Nb is
a few hundred, thus it is acceptable. In NBODY6++GPU,
the data movement and MPI communication is significant
for the irregular force (Figure 7). For KS perturbation calcu-
lation, Rc is proportional to the average perturber number
Np, which is usually quite small (less than 100). Thus, MPI
parallelization for KS can be inefficient. The reason for the

Table 2. Estimation of calculation and communication cost

Cost Regular force Irregular force KS perturbation

Calculation O(NiN) O(Ni〈Nb〉) O(Ni〈Np〉)
Communication O(Ni) O(Ni) O(Ni)

*Ni: Active particle number
*N : Full particle number
*〈Nb〉: Average neighbor number
*〈Np〉: Average perturber number for KS

small Np is that usually in star cluster simulations, a large
fraction of the KS binaries is unperturbed with Np = 0, and
perturbed KS binaries also tend to have small Np (otherwise
they would be terminated or transformed to hierarchical sys-
tems). Therefore, to get good performance of KS paralleliza-
tion, the unperturbed and perturbed KS parts should be
treated separately, since unperturbed KS only needs few op-
erations and should avoid communication when parallelized
(shared memory parallelization such as OpenMP or MPI-3).
We are working on this and will show our KS parallelization
method and benchmarks in a future publication. There is
also another effort to parallelize KS with block time steps
(Nitadori 2014, private communication).

We also find that the KS initialization and termination
can be costly when there are wide binaries that frequently
switch between KS and Hermite solutions. As discussed in
Section 3.3.2, during the KS initialization and termination,
the force and its first three derivatives need to be renewed for
center-of-mass particles or two components (cost of O(N))
and the neighbor list of every particle and perturber list of
KS pairs should be updated with new particle index (cost
of O(N〈Nb〉)). The regular part can be improved by using
existing values instead of a direct calculation. The latter
can be improved by using a reverse neighbor list for fast
searching which particle has the KS pair as its neighbors.
However, this requires large memory cost and coding effort.

When testing the code performance in computer clus-
ters, we usually use the empty nodes where no other tasks
are performed simultaneously. But for the applications,
whether we can use scheduling whole nodes depends on
the task management system in the clusters. Some clus-
ters, such as “Laohu” at NAOC and “Milkyway” at the
Jülich Computing center, only allow very few CPU cores for
GPU tasks (1− 2 CPU cores per GPU) and all other CPU
cores in the same nodes are reserved for pure CPU tasks.
NBODY6++GPU is not suitable for these kinds of clus-
ters since it relies on heavy calculation on CPU (irregular
and KS integration, data movements; see Figure 7). More-
over, in the shared nodes, different tasks compete with each
other for network bandwidth, CPU loading and host mem-
ory. This sometimes results in a serious load imbalance: The
MPI barrier time (Table 1) covers almost half of the total
computing time. The only solution is to use computing clus-
ters in which GPU nodes can be fully occupied by one GPU
task each time.

Both NBODY6 and NBODY6++ have been developed
over a long time. The codes have become more and more
complicated which makes it difficult for beginners. There-
fore, we also present documentation for the new version
of NBODY6++GPU. The document includes a detailed

NBODY6++GPU: Ready for the million-body problem 11

description of all input parameters and output data and
will be updated with more details and new implementa-
tions. We also show several important differences between
NBODY6++GPU and NBODY6-GPU in the Appendix.

The future improvements of the codes and hardware
may lead to simulating even larger particle numbers, e.g.,
for nuclear star clusters using more GPU nodes appears
feasible. The key to keep total wall clock times reasonable
will be further optimization of communication and data
management, especially for particles with very small time
steps near a central black hole. Also, bandwidth and la-
tency of communication hardware may help to gain one
more order of magnitude, but not to reach the Exaflop/s
regime. For the latter, hybrid codes seem more appropriate,
which treat a large number of particles in the outskirts self-
consistently, but not with full N2 accuracy of the force com-
putation (see, for recent examples, e.g., Meiron et al. 2014;
Karl, Aarseth, Naab & Haehnelt 2015).

7 CONCLUSIONS

Direct numerical simulations of star clusters contribute sig-
nificantly to the theoretical understanding of star cluster
dynamics. Due to hardware and software limits, direct N-
body simulations of real globular clusters with large number
of particles have been a major challenge for many years.
Sugimoto et al. (1990) pointed out that direct numerical
simulations of globular star clusters could not be completed
for the next decades unless there are breakthroughs in par-
allel computing which violate Moore’s law. After that, many
efforts were made to reach this goal by using specially de-
signed acceleration hardware (GRAPE and GPU).

In this paper, we present NBODY6++GPU. It com-
bines for the first time the massively parallel multi-
node code (MPI parallelized) NBODY6++ (Spurzem 1999;
Hemsendorf, Khalisi, Omarov & Spurzem 2003) with the
GPU and AVX/SSE acceleration on each node, using the
libraries of Nitadori & Aarseth (2012). We discuss the per-
formance tests (Figure 4, 5, 6 and 7) and new algorithms
(Figure 1, 2 and 8) to accelerate the NBODY6++GPU. For
the non-binary case, the overall scaling is good up to 16
nodes (320 CPU cores and 32 NIVDIA K20x GPUs includ-
ing 86016 GPU cores) with a speed up of 400 up to 2000
depending on the particle numbers. The speed up is mainly
achieved by the usage of GPUs to accelerate the long-range
(regular) gravitational forces, which gives about 33 times
faster force calculation (Figure 4). The AVX/SSE increase
the speed of prediction of positions and velocities and neigh-
bor (irregular) forces by a factor of 3. We also worked on
the consistency of the code when combining several parallel
methods together to ensure the stability. When GPU and
AVX/SSE accelerate the force calculation very efficiently,
other parts become bottlenecks of performance, such as time
step scheduling and stellar evolution. We designed new al-
gorithms to improve these parts.

We have demonstrated how NBODY6++GPU can sim-
ulate a realistic globular cluster with one million particles,
stellar evolution and 5% primordial binaries for several Gyr
(one half-mass crossing time requiring about an hour com-
putational time; see Figure 9). A few more models are cur-
rently in progress and we will report the detailed results of

these simulations in future publications. With our final code
version, which is publicly available2, we can claim to have
finally reached the goal of Sugimoto’s “dream” of 1990. A
million-body cluster can be simulated for about 20 crossing
times in one day on 320 cores with 32 GPUs. In the future,
with the faster bandwidth and latency of hardware as well
as optimizations of communication and data management,
even larger system like the nuclear star clusters may be sim-
ulated by direct N-body codes.

The previous paragraphs show that our contribution
to this would be impossible without the achievements of
our predecessors and collaborators; in particular the cur-
rent dominance of GPU hardware has been assisted by the
development of GRAPE software over the last few decades
which finally could be ported to GPU without fundamental
problems.

ACKNOWLEDGMENTS

This work has been partly funded by National Natu-
ral Science Foundation of China, No. 11073025 (RS). We
acknowledge support through the Silk Road Project at
National Astronomical Observatories of China (NAOC,
http://silkroad.bao.ac.cn).

R.S. and P.B are grateful for support by the Chinese
Academy of Sciences Visiting Professorship for Senior Inter-
national Scientists, Grant Number 2009S1−5, and through
the “Qianren” special foreign experts program of China,
both at NAOC.

Most of the numerical simulations have been done on
the “Hydra” GPU cluster of the Max-Planck Supercomput-
ing Centre (RZG) Germany.

R.S. and P.B. and L.W. are grateful for kind hospital-
ity and support during several visits at the Max-Planck-
Institute for Astrophysics. Other resources used for numeri-
cal simulations in the preparation of this paper are: “Laohu”
GPU cluster at the Center of Information and Computing at
NAOC, “Kepler” GPU cluster at ARI/ZAH, University of
Heidelberg, Germany (funded by Volkswagen Foundation)
and the “MilkyWay” cluster of SFB 881 The Milky Way
System at the University of Heidelberg, Germany, hosted
and co-funded by the Jülich Supercomputing Center (JSC).

S.A. and K.N. are grateful for support during their visits
at Kavli Institute for Astronomy and Astrophysics, Peking
University and NAOC.

P.B. acknowledges the special support by the NASU un-
der the Main Astronomical Observatory GRID/GPU com-
puting cluster project.

M.B.N.K. was supported by the Peter and Patricia
Gruber Foundation through the PPGF fellowship, by the
Peking University One Hundred Talent Fund (985), and by
the National Natural Science Foundation of China (grants
11010237, 11050110414, 11173004). This publication was
made possible through the support of a grant from the John
Templeton Foundation and NAOC. The opinions expressed

2 We use Subversion and Github to manage NBODY6++GPU
. The beta version can be downloaded by commands
“svn co http://silkroad.bao.ac.cn/repos/betanb6” or “git clone
https://github.com/lwang-astro/betanb6pp.git”

http://silkroad.bao.ac.cn
http://silkroad.bao.ac.cn/repos/betanb6

12 L. Wang et al.

in this publication are those of the author(s) do not neces-
sarily reflect the views of the John Templeton Foundation or
NAOC. The funds from John Templeton Foundation were
awarded in a grant to The University of Chicago which also
managed the program in conjunction with NAOC.

TN acknowledges support by the DFG cluster of excel-
lence Origin and Structure of the Universe.

We thank the anonymous referee for many useful com-
ments that helped to improve the paper.

REFERENCES

Aarseth S. J., 1985, in Multiple Time Scales, ed. J. U.
Brackhill and B. I. Cohen (Academic Press, New York),
p. 377

Aarseth S. J., 2003, Gravitational N-Body Simulations,
Cambridge University Press

Ahmad A., Cohen L., 1973, JCoPh, 12, 389
Belczynski K., Kalogera V., Bulik T., 2002, ApJ, 572, 407
Belleman R. G., Bédorf J., Portegies Zwart S. F., 2008,
NewA, 13, 103

Berczik P., Spurzem R., Wang L., 2013, Third Interna-
tional Conference “High Performance Computing”, HPC-
UA 2013, p. 52-59, 52

Berczik P., Spurzem R., Zhong S., Wang L., Nitadori K.,
Hamada T., Veles A., 2013, Lecture Notes in Computer
Science, Vol. 7905; Springer Vlg., 13-25

Chandrasekhar S., 1942, Chicago, Ill., The University of
Chicago press

Dorband E. N., Hemsendorf M., Merritt D., 2003, JCoPh,
185, 484

Eldridge J. J., Tout C. A., 2004, MNRAS, 353, 87
Gaburov E., Harfst S., Portegies Zwart S., 2009, NewA, 14,
630

Harris W. E., 1996, AJ, 112, 1487
Harfst S., Gualandris A., Merritt D., Spurzem R., Portegies
Zwart S., Berczik P., 2007, NewA, 12, 357

Heggie D. C., Mathieu R. D., 1986, LNP, 267, 233
Heggie D. C., 2014, MNRAS, 445, 3435
Hemsendorf M., Khalisi E., Omarov C. T., Spurzem R.,
2003, High Performance Computing in Science and Engi-
neering. Springer Verlag, 71, 388

Hennebelle P., Audit E., Miville-Deschênes M.-A., 2007,
A&A, 465, 445

Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005,
MNRAS, 360, 974

Hurley J. R., Shara M. M., 2012, MNRAS, 425, 2872
Karl S. J., Aarseth S. J., Naab T., Haehnelt M. G., 2015,
MNRAS, submitted

King I. R., 1966, AJ, 71, 64
Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262,
545

Kroupa P., 1995, MNRAS, 277, 1491
Kroupa P., 2001, MNRAS, 322, 231
Kustaanheimo P., Stiefel E., 1965, J. Reine Angew. Math.,
218, 204

Lippert T., Petkov N., Palazzari P., Schilling K., 1998, cs,
arXiv:cs/9809105

Makino J., Hut P., 1988, ApJS, 68, 833
Makino J., 1991, ApJ, 369, 200
Makino J., Aarseth S. J., 1992, PASJ, 44, 141

Makino J., Kokubo E., Taiji M., 1993, PASJ, 45, 349
Makino J., Taiji M., 1998, Scientific Simulations with
Special-Purpose Computers–the GRAPE Systems, by Ju-
nichiro Makino, Makoto Taiji, pp. 248. ISBN 0-471-96946-
X. Wiley-VCH

Makino J., 2002, NewA, 7, 373
Makino J., Fukushige T., Koga M., Namura K., 2003,
PASJ, 55, 1163

McMillan S. L. W., 1986, LNP, 267, 156
Meiron Y., Li B., Holley-Bockelmann K., Spurzem R.,
2014, ApJ, 792, 98

Mikkola S., Aarseth S. J., 1993, CeMDA, 57, 439
Nitadori K., Aarseth S. J., 2012, MNRAS, 424, 545
Plummer H. C., 1911, MNRAS, 71, 460
Portegies Zwart S. F., Belleman R. G., Geldof P. M., 2007,
NewA, 12, 641

Portegies Zwart S., Boekholt T., 2014, ApJ, 785, LL3
Schive H.-Y., Chien C.-H., Wong S.-K., Tsai Y.-C., Chiueh
T., 2008, NewA, 13, 418

Sippel A. C., Hurley J. R., 2013, MNRAS, 430, L30
Spitzer L., 1987, Dynamical evolution of globular clusters,
Princeton University Press

Spurzem R., 1999, JCoAM, 109, 407
Spurzem R., Berentzen I., Berczik P., Merritt D., Amaro-
Seoane P., Harfst S., Gualandris A., 2008, LNP, 760, 377

Spurzem R., Berczik P., Hamada T., Nitadori K., Mar-
cus G., Kugel A., Männer R., Berentzen I., Fiestas J.,
Banerjee R., Klessen R., 2011, Astrophysical Particle Sim-
ulations with Large Custom GPU clusters on three con-
tinents. International Supercomputing Conference ISC
2011, Computer Science - Research and Development
(CSRD), 26, 145

Sugimoto D., Chikada Y., Makino J., Ito T., Ebisuzaki T.,
Umemura M., 1990, Natur, 345, 33

Zhong S., 2014, arXiv, arXiv:1409.0706

http://arxiv.org/abs/cs/9809105
http://arxiv.org/abs/1409.0706

NBODY6++GPU: Ready for the million-body problem 13

Table A1. Differences between NBODY6++ and NBODY6

Subroutine NBODY6++ NBODY6

Installation Use configure script (see GPU Autoconf
software1)

Use Makefile

Parallelization Can enable/disable features among MPI,
GPU, OpenMP and AVX/SSE, except
AVX/SSE requires OpenMP enabled

Use GPU, OpenMP and AVX/SSE to-
gether or OpenMP with AVX/SSE (only
OpenMP or GPU with OpenMP are not
supported)

Data files Rename most of output data files, change
contents of some files and describe all
data in a manual

Describe in a document

Basic data ini-
tialization

Support different reading data format
(see the manual for option KZ(22))

Support N-body and astronomical unit
data format

Primordial bi-
nary initializa-
tion

binpop.[f/F] Support period distribution (Kroupa
1995)

Support modified period distribution
with maximum semi-major axis 1000 AU
and mimimum period 1 day

Neighbor crite-
rion

regcor gpu.f
gpucor.f

Adjust neighbor number to input param-
eter NNBOPT

Adjust neighbor number based on density
contrast

Stellar evolu-
tion

kick.[f/F] Use Maxwellian distribution of neutron
star kick velocity with velocity dispersion
265 km/s (one dimension; Hobbs et al.
2005)

Use Maxwellian distribution of kick ve-
locity with velocity dispersion 2× VSTAR

(velocity scaling factor) and maximum
kick velocity 10× VSTAR

hrdiag.f
kick.[f/F]

Use mass fall back for black hole kick (in-
crease the remnant mass and reduce kick
velocity; Belczynski, Kalogera & Bulik
2002)

Use black hole mass based on
Eldridge & Tout (2004) (may add
Belczynski, Kalogera & Bulik 2002 kick
method in the future)

brake4.f – Support gravitational radiation analyti-
cal orbit shrinkage

intgrt.[f/F] int-
grt omp.f

Apply mass loss only during regular step
for thread-safety

Apply mass loss with minimum time step
100 years

mdot.[f/F] Only apply force correction when large
mass loss happens (less accuracy but
much faster)

Calculate new force and its derivates for
large mass loss

Galactic tidal
force

xtrnlf.f fbulge.f Support point-mass + disk + halo +
Plummer model

Support point-mass + disk + halo +
bulge + Plummer model

1 http://www.gnu.org/software/autoconf/

APPENDIX A: DIFFERENCES BETWEEN NBODY6++ AND NBODY6

There are several differences with NBODY6 . Table A lists some of the most important. The manual in the NBODY6++GPU
code directory gives more details.

	1 Introduction
	2 The features of NBODY6/6++
	3 Parallelization of NBODY6++GPU
	3.1 MPI parallelization of NBODY6++
	3.2 Basic NBODY6-GPU implementation
	3.3 Code improvements in NBODY6++GPU
	3.4 Hybrid MPI parallelization

	4 Performance test
	4.1 Pure MPI and hybrid MPI
	4.2 Scaling with different particle numbers and processors
	4.3 Time fraction for different parts
	4.4 Sorting list algorithm for selecting active particles

	5 Application
	6 Discussion
	7 Conclusions
	A Differences between NBODY6++ and NBODY6

