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Abstract

Tidal Disruption of stars by supermassive central black holes from dense rotating star clusters is
modelled by high-accuracy direct N-body simulation. As in a previous paper on spherical star clusters
we study the time evolution of the stellar tidal disruption rate and the origin of tidally disrupted stars,
now according to several classes of orbits which only occur in axisymmetric systems (short axis tube
and saucer). Compared with that in spherical systems, we found a higher TD rate in axisymmetric
systems. The enhancement can be explained by an enlarged loss-cone in phase space which is raised
from the fact that total angular momentum J is not conserved. As in the case of spherical systems, the
distribution of the last apocenter distance of tidally accreted stars peaks at the classical critical radius.
However, the angular distribution of the origin of the accreted stars reveals interesting features. Inside
the influence radius of the supermassive black hole the angular distribution of disrupted stars has a
conspicuous bimodal structure with a local minimum near the equatorial plane. Outside the influence
radius this dependence is weak. We show that the bimodal structure of orbital parameters can be
explained by the presence of two families of regular orbits, namely short axis tube and saucer orbits.
Also the consequences of our results for the loss cone in axisymmetric galactic nuclei are presented.

Subject headings: black holes — galactic nuclei — stellar dynamics

1. INTRODUCTION

A large fraction of galaxies show evidence of supermas-
sive black holes (henceforth SMBH) residing in their cen-
ter. They are typically embedded in nuclear star clusters
(NSC); if resolution allows to observe the NSCs, they are
among the densest clusters known. Their size is similar
to galactic globular clusters, but they are much heav-
ier and brighter (Boker et all 2002, [2004). In massive
galaxies NSCs may not be significant or even do not ex-
ist, however, the SMBHs are still surrounded by enor-
mous number of stars. SMBH residing in these NSCs
will tidally disrupt stars that come close to its tidal ra-
dius and eventually accrete the gaseous debris, which can
licht up the central SMBH for a period of time (Reed
[1988; [Evans & Kochanek [1989). This kind of event is a
useful tool to examine the relativistic physics near SMBH
since the disruption occurs at a place very close to the
BH’s Schwarzschild radius. Also it can help us to in-
vestigate SMBH in non-active galactic center. Although
tidal disruption of stars has been proposed for almost
half a century, only until last decade do people realize
the importance of such events, after the discovery of a

dozens of tidal disruption candidates 2002;
IKomossa & Merritt 2008). [Liu et all (2014) discovered
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a candidate of binary SMBH system by analyzing the
break in the light curve of TD event, demonstrate it
as a promising tool for searching hidden SMBH bina-
ries in quiescent galactic center. In order to compute the
tidal disruption event rate, many theoretic works have
been done in the past few decades (Frank & Reed [1976;
[Lightman & Shapird [1977; Magorrian & Tremaind|1999;
[Wang & Merrittl2004). The core of the story is loss cone

theory, which was first established in the case of spherical
symmetric systems.

Stars with orbital pericenter smaller than the tidal ra-
dius r; are defined to be inside the loss cone, with r; be
expressed by
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where r,, m, are the radius and mass of a star, n
is its polytropic index (assuming the stellar structure
can be approximated by a polytropic sphere) and « is
a free parameter used by us for scaling. Stars with an-
gular momentum J < Jj. & 2GM,4r; are inside the
loss cone. Typically, loss cone stars are consumed in
dynamical time scales. If no new star is supplied to loss
cone, there will be no more tidal disruption event. Based
on the status of loss cone, it can be divided into two
regime, namely empty and full loss cone. Due to the
short “lifetime” of the loss cone stars, loss cone will be-
come empty quickly. Refilling of loss cone happens in
relaxation timescales and is often referred to as diffusion
process in angular momentum space. Thus in empty loss
cone regime it is the refilling rate which controls the dis-
ruption rate. Note that throughout this paper, and like
in most if not all of the cited papers on tidal accretion
of stars onto SMBH, we assume that a star is disrupted
completely at r; and all its mass, energy and angular
momentum absorbed momentarily by the SMBH. We
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know that this is not realistic, and more detailed nu-
merical models of the process of disruption, possible disk
formation and accretion show that only fractions of the
material are absorbed into the SMBH after a number of
orbits (Guillochon & Ramirez-Rui2013; [Hayasaki et all
2013). However, the assumption that the process is fast
is reasonable compared to the orbital time scales of stars
further out in the cluster.

In a previous paper (2014), henceforth
Paper I) we have shown that the classical loss cone ap-
proximation, for a spherically symmetric system in the
diffusive empty loss cone regime, can be well reproduced
by large direct N-body models with tidal accretion of
stars onto SMBH. Now we are focusing on the general-
ization to axisymmetric galactic nuclei and compare our
new results in an otherwise very similar study to those
of Paper L.

Tidal disruption of stars is one possible way of growth
for SMBH, especially in quiescent galactic nuclei. Since
most models assumed spherical stellar clusters, SMBH
growth rates by tidal disruption are very low, limited by
the very long relaxation time to refill the loss cone, and
the contribution of the process to the overall growth of
SMBH is considered as relatively insignificant. However,
the stellar distribution in real galactic nuclei might not
be spherically symmetric. Many galactic nuclei show ev-
idence of rotation in their centers, even very close to the
SMBH (Miyoshi et all [1995; Neufeld & Maloney [1995;
Greenhill et all[1995).

According to the current standard model of structure
formation massive galaxies have undergone quite signif-
icant mergers (in number and mass ratio). Numerical
models of the merging process of galaxies show that
the merger remnant shows rotation, axial symmetry or
even triaxiality in the central regions (Khan et alll2011;
IP@QLQ et_alll2011; IGualandris & Merritt[2012; [Bois et _all

).

In the center of our own Milky Way the NSC can be
observed in unparalleled high resolution
2014; [Schodel et all 2014). Tt consists of 1.4 x 10" M
within its effective radius (4.2 pc); kinematic data in-
dicate that it possesses bulk rotation
2014). The formation mechanism of NSCs is still un-
der debate. There are two scenarios, in situ forma-

tion (Milosavljevid[2004) and a sinking scenario %lobular

cluster sink to the center and merge)
[1975; Lotz et all 2001)). NSCs in a sample of nearby
galaxies observed by [Seth et all (2006, [2008) show that
these objects are non-spherical and even contain multi-
component (younger disk plus older spherical com-
ponent) Wthh favor the in situ scenario. However,
(2012) have performed a series of N- body
simulations to study the formation of NSCs, which sup-
port the sinking scenario. The model NSCS formed in
their simulations by merging between infalling globular
clusters initially have mildly triaxial shape. After the
final infall, the shape of the NSC will gradually become
axisymmetric in following dynamical evolution.

Despite the debate between different formation scenar-
ios, we think that it is quite likely that NSC are non-
spherical. This provides a good motivation to study the
tidal disruption rate in axisymmetric (and triaxial) clus-
ters. Some works have already been done but the mission

is not over. [Fiestas & Spurzem (2010) used 2D Fokker-
Plank model (Einsel & Spurzem 1999; Kim et all [2002)
to study rotating dense stellar clusters with BHs and
cross checked with N-body models (Fiestas et alll2012).
Both works find that BH embedded in rotating model
have higher tidal disruption rate (hereafter TDR) com-
pare to spherical models. BH mass at the end of simu-
lation is roughly 20% higher in rotating case. They find
an excess of accreted prograde rotating stars which are
originated mainly outside the influence radius r; and call
for a further investigation of the roles of stars with non-
conserved J,,J, angular momentum. As shown by the
works of i (2004), in non-spherical sys-
tems chaotic orbits (existing in regions outside rp) can
keep the loss cone full for sufficient long time, thus tidal
disruption can contribute a lot of mass within Hubble
time and could play an important role in the BH growth
across cosmic time.

On the other hand, the loss cone itself might be en-
larged as pointed out by M&ggman_&_’l}mmmnd (1999),
due to the fact that angular momentum J is not con-
served in axisymmetric potential. [Vasiliev & Merritd]
(2013) confirmed this picture in a detailed analysis of the
loss cone problem in axisymmetric galactic nuclei. They
analyzed the depletion and refilling of loss cone orbits
and found that tidal disruption rates could be increased
by a moderate factor due to axisymmetry as compared
to spherical symmetry. In their work chaotic orbits with
low angular momentum, which can reach just outside
the influence radius at apocenter, but also get close to
the central SMBH at pericenter, cause some difficulty in
comparison with Fokker-Planck models, as was already
found by Malkov et all (1993) (Note that the last au-
thor of this paper is the same person than the last au-
thor of [Malkov et all (1993), there was a mistake in re-
translating the name from Russian language).

In this work we follow an experimental numerical ap-
proach to the problem, following Paper I for the case of
spherically symmetric systems. We treat particle num-
ber and tidal radius as free parameters and analyze the
tidal accretion rate of the system as a function of the
strength of deviation from spherical symmetry. We mea-
sure the shape of the loss cone in axisymmetric potential
and and characterize the characteristic orbits of stars in
the loss cone. We find that it is indeed enlarged and can
account for the higher TDR as compared to spherically
symmetric galactic nuclei.

This paper is organized as follows: we describe the
model setup of the simulation in Section 2 and present
the result of TDR measurement in Section 3. Section
4 is devoted to the measurement of loss cone shape in
axisymmetric potential and we demonstrate the enlarge-
ment of loss cone. In Section 5, we present the result for
the origin and orbital classification of disrupted stars.
In Section 6, we discuss the potential application of our
results.

2. N-BODY MODEL
We adopt the standard N-body unit definitions from

Heggie & Mathieu (1986), namely G = M = 1 and F
= —1/4, where G is the gravitational constant, M is the
total mass of the model cluster and E is the total energy.
In our N-body models we assume that all the particles
have the same mass, so m = 1/N, where m is the particle
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mass and NV is the total particle number. To preserve the
scale invariance of our N-body simulations we fix the
initial black hole mass relative to the total mass of the
star cluster (0.01) and use the particle number and the
tidal radius r; in N-body units (which is a dimensionless
number) as free parameters. We have shown in Paper I
that the method of scaling to realistic parameters for N
and r; can be used to obtain astrophysically meaningful
results from the collection of our models. In order to
support our scaling procedure we even do not change
the tidal radius during the simulations - since the BH
mass changes within one order of magnitude only during
the simulation, relative changes in tidal radius are small
(notice that 7 oc (M,)'/3).

The initial distribution of particles follows a general-
ized King model with rotation. The distribution function

is (Einsel & Spurzenl [1999; [Ernst et all2007)

E QoJ,
€ fexp(——) — 1] -exp(——%
K K

f(E, Jz) = )7 (2)

where ok is the King velocity dispersion and g is a
characteristic angular velocity. Since we are considering
an isolated system, the ®; is set to 0. This rotating King
model has two dimensionless parameters: Wy and wy.
The King parameter Wy = —®( /0%, where @ is the cen-
tral potential, controls the degree of central concentra-

tion. And the rotation parameter wo = /9/(47Gpo)-Qo,
where po is the central density, controls the degree of
rotation. wg = 0 will reduce the model to a usual non-
rotating spherically symmetric King model.

We limit our current study to only one concentra-
tion parameter Wy = 6 and two rotation parameters
wp = 0.3,0.6; the density profile of King model with this
concentration is similar to that of the Plummer model
used in Paper I, so it is possible to compare with the
previous results and focus on the effects of rotation and
axial symmetry only. The rotation is moderate (cf. e.g.
Einsel & Spurzem (1999)) and resembles that of Milky
Way globular clusters.

For completeness we also employ non-rotating King
model with Wy = 6 and wg = 0.0, which is used as a
fiducial model and also a bridge to the results of Paper I,
confirming our claim that it indeed closely resembles the
results for the Plummer model used in Paper I (e.g. in
the evolution of the TDR). In another test run we used a
larger rotation with wy = 0.9 - it experienced an unstable
stage during which a bar formed but quickly disappeared.
This bar formation could probably be identified with the
radial orbit instability of [Aguilar & Merritt (1990). We
note that our standard models with wy = 0.3, 0.6 remain
fully axisymmetric during the entire simulation; to study
tidal disruption in triaxial systems with bars is beyond
the scope of our current paper.

Fig. M shows the axial ratio (¢/a) of the model clusters
as a function of radius up to r = 2.0 (within which most
of stars are located). We estimate the axial ratio for
both rotating models, using the moment of inertia tensor
measured in concentric shells. One can see ¢/a is close to
1 at the innermost part and decreases outward: wy = 0.3
model decreases slowly to its minimum value 0.9; wy =
0.6 model decreases faster and has a minimum value 0.71.
If we measure the ¢/a for the whole cluster, the results for

the two models are 0.9 (wg = 0.3) and 0.75 (wg = 0.6).
Fig. [ also shows that c¢/a is almost unchanged during
long time evolution, except for the inner part of wy = 0.6
model, which exhibits slight decrease.

c/a
=
T

Figure 1. Axial ratio for rotating models as a function of radius.
For each model we show the axial ratio measured at different evo-
lution stage: T=0 (red); T=500 (green); T=1000 (blue). Lines
with symbols are results for wg = 0.3 model, lines without symbols
are for wg = 0.6 models.

In rotating systems, there is a phenomenon called
gravo-gyro instability, which is caused by the nega-
tive specific moment of inertia (Inagaki & Hachisu[1978;
Hachisd 1979, [1982). This kind of instability happens
in long term evolution of rotating cluster which is much

longer than our integration time (Ernst et all[2007).

The model set is summarized in Table [T]

Table 1
Full set of our model runs.
Model N/K  wo Tt T

R20w00 64 0.0 10~3 1500

R30w00 | 128 0.0 10=3 1600

R21w00 64 0.0 10=* 1500

R31w00 | 128 0.0 10~%* 1300

R20w03 64 0.3 1073 1500

R30w03 | 128 0.3 1073 1500

R21w03 64 0.3 10=* 2600

R31w03 | 128 0.3 10~% 2000

R20w06 64 0.6 10=3 1500

R30w06 | 128 0.6 10~3 1500

R21w06 64 0.6 10~%* 1600

R31w06 | 128 0.6 10~* 2000
Note. — Column 1 : Model codename. Column 2 : Particle
number in the unit of K(=1024). Column 3 : dimensionless rota-

tion parameter. Column 4 : black hole’s tidal radius. Column 5 :
total integration time. r¢ and T are in model unit.

We run the simulation for more than one initial half-
mass relaxation time (¢,p,), which is estimated using the
same formula in Paper I and the values can be found
there as well (Table 2).

All s1mu1at10ns are running with the pGRAPE code

[2011)), which runs with high performance
(up to 350 Gflop/s per GPU) on our GPU clusters in
Beijing (NAOC/CAS). This code is a direct N-body sim-
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ulation package, with a high order Hermite integration
scheme and individual block time steps. A direct N-
body code evaluates in principle all pairwise forces be-
tween the gravitating particles, and its computational
complexity per crossing time scales asymptotically with
N?Z; however, it is not to be confused with a simple brute
force shared time step code, due to the block time steps.
We refer more interested readers to a general discus-
sion about N-body codes and their implementation in
Spurzem et all (2011a/H). The present code is well tested
and already used to obtain important results in our ear-
lier large scale few million body simulation

2012).

3. TIDAL DISRUPTION RATE (TDR)
3.1. Results of our work

In this section, we present the TDR measured in sim-
ulations with our rotating King models and compare it
with the TDR of the non-rotating model of Paper I. In
Fig. @ we show the TDR (both in terms of mass and
particle number) as it evolves with time for two differ-
ent tidal radii; in each panel two different rotation pa-
rameters are plotted together with the data of the non-
rotating system. The time is given in units of initial half
mass relaxation time %,,, which is convenient for com-
parison of simulations with different particle numbers.
To smooth out fluctuations due to particle noise we have
plotted in the figure the TDR averaged over a time in-
terval (here 1/4¢,p,).

<d (M) /dt> [NB]

d(Ngegp,) /dt [NB]

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
t /oty t/ tm

Figure 2. TDR as a function of time in units of initial half mass
relaxation time; averaged over intervals of 1/4t,,. Top panels:
mass accretion rate; bottom panels: particle accretion rate; left
and right panels for two different tidal radii as indicated. Curves
with symbols are stand for 128K models, those without symbols
are stand for 64K models. Line thickness indicate different rotating
parameters.

The TDR with a large tidal radius (i.e. r, = 1073)
initially quickly rises in the N = 64K model to its peak
value, and then decreases; for the N = 128 K model the
TDR almost decreases from the beginning. The initial
phase is connected with the formation of a central density
cusp in the surrounding stellar system and with the pro-
cess of transition from initially full to empty loss cone.
The BH gains mass from the accreted stars, thus the
mass ratio between stars and the BH (v := m/M,) de-

creases with time, and as a result the BH’s random mo-
tion damps. We have discussed in Paper I that the sta-
tus of the loss-cone is connected with the BH’s Brownian
motion in the sense that once the amplitude of Brownian
motion is smaller than 107; the system enters the empty
loss-cone regime, during which the cusp and central den-
sity are still growing but TDR begins to fall. In the
N = 128 K model, the mass ratio v is smaller, so the ini-
tial loss cone depletion is very short, practically invisible
in the plots, and the subsequent evolution is determined
by cusp formation and damping of BH motion.

In the models with small tidal radius (r; = 107*), there
is always an initial growth phase of TDR, followed by the
convergent approach to a stationary state. Due to the
small r; their BH growth is slow, thus they need more
time to achieve the mass required to limit their Brownian
motion.

Fig. Rlalso shows the TDR dependence on rotation pa-
rameter wy as a new result compared to Paper I. For large
tidal radius (r, = 1073), faster rotation will result in a
higher TDR, note that these models are in empty loss-
cone regime. Table[2list out the numbers for TDR mea-
surement. One can see wy = 0.3 model has a TDR on av-
erage 13 percent higher than wp = 0.0 model. And TDR
in wg = 0.6 model is on average 35 percent higher than
that in wg = 0.0 model. BH mass of these 3 models mea-
sured at T = 1500 are 0.131, 0.143 and 0.167. The frac-
tional increase of final BH mass with increasing degree
of rotation is consistent with the result of

). The reason for this dependence of wy is that in
these systems the effective loss-cone is larger than clas-
sic one in spherical system. We will investigate such
an enlarged loss-cone in more detail in the next section.
For small tidal radius (r; = 10~%), however, we observe
a different behavior of TDR. From beginning to about
~ 1.5t,p, faster rotation result in a smaller TDR! The
argument presented by Magorrian & Tremaind (1999)
may provide some hints: if BH’s wandering time-scale
is shorter than dynamical time-scale, a decrease in TDR,
will happen. We note in the simulation at this early stage
the BH is quickly wandering due to its small mass and
slow growth. Furthermore, in axisymmetric systems a
star’s pericenter distance changes with time (even ignor-
ing irregular perturbations from other stars). So when
the BH comes back to the place where it was, it may still
miss the star which is supposed to be disrupted shortly
before.

Table 2
TDR results for r = 102 models.

t/trh No N3 N3/N0 Ng NS/N()

0.25 14.96 | 15.41 1.03 16.30 1.09

0.50 | 12.89 | 13.67 1.06 17.30 1.34

0.75 | 10.44 | 12.07 1.16 14.52 1.39

1.00 | 8.73 | 10.32 1.18 12.65 1.45

1.25 7.97 9.73 1.22 11.09 1.39

1.50 6.99 7.93 1.13 10.04 1.44

Note. — Measured TDR for models with same N (128K) and

r¢ (1073) but different rotating parameters, at different evolution
time. Np is TDR in classic King model (wo = 0); N3 and Ng are
results for wp = 0.3 and wp = 0.6 models. We also give the boost
factor Ng/No and N@/No
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Afterwards the system begins to enter the empty loss
cone regime, and all TDR curves converge to each other;
for small tidal radius more tidally disrupted stars origi-
nate from inside the BH influence radius, where the sys-
tem is approximately spherically symmetric. Any devia-
tion from spherical symmetry in our rotating models pre-
vails near and outside the influence radius. Convergence
of TDR reflects the original results obtained in Paper I
for spherical systems.
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T T T T
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Figure 3. =z axis is time in unit of initial half-mass relaxation
time. y axis for panel a) and b) is the averaged mass accretion
rate in given time range (i.e. 1/4 ¢,5,); y axis for panel ¢) and d)
is the number accretion rate. Panel a) and c¢) show the result for
re = 1073, Panel b) and d) show the result for r; = 104,

Fig. Bl compares the TDR of classic King model (W =
6,wp = 0.0) with that in Plummer model. In 7, = 1073
models, except the initial higher accretion rate in King
model, the two models have similar TDR in following
evolution. While in the case of ry = 10~%, King model
have a higher accretion rate during most of the time,
but later on they gradually come to the same level as
the Plummer model. The higher rate in King model
could be explained by the slightly higher density in the
core region at beginning. In the following evolution of
r, = 1072 models, the two models form cusp similar to
each other so they have roughly same accretion rate. In
the case of 7, = 10™%, the initial accretion rate ratio
Nking/Npium is higher than those in r, = 1073, BH
inside King cluster growing faster and also the growth
of cusp, in the following evolution King model always
have a higher density in the cusp which in return gives
a higher accretion rate. Only after the BH gain enough
mass and become a “static” object, the accretion rate
slowly reaches a maximum and begins to drop afterward.

Up to this point, all results were presented in model
units (N-body units). As in Paper I (see Sect. 5 and
Appendix therein) we will discuss now any conclusions
which can be made for the case of real galactic nuclei and
environments from our results. This will be useful for ob-
servational programmes on TDR. To predict the TDR in
real galactic nuclei, we use the method of scaling. The
TDR obtained in our simulations has to be scaled up in
two ways: first from relatively low (N ~ 10°) to more
realistic high particle numbers (N ~ 10%). Second, our

accretion radius r; has been chosen very large compared
to any realistic tidal radius (for smaller N simulations
it has to be done in order to get any meaningful results
on TDR). So, we also have to discuss how to scale down
the TDR. from our simulated values of 7; (1073,107%) to
the small more realistic regime of 7, (10~7). This can be
done by applying scaling relations from known scaling
laws (obtained e.g. from Paper I and other literature)
for N, and an empirically determined one for r;. We
have shown above that the TDR in King (Wp = 6) and
Plummer models is very similar, so we expect the scaling
formula (A10) derived in Paper I for a Plummer model
to be also valid for our King model used here. So, we
apply the same boost factor of TDR with respect to the
axisymmetry of a galactic nucleus for the real galactic
nucleus as we find here in this paper for our simulated
systems. For example, in Paper I we estimated the TDR,
of the Milky Way SMBH to be 1.09 x 10~ 5yr~! after a
scaling procedure with respect to N and r;. By fitting
surface brightness profile to mid-infrared images of the
nuclear cluster in our Milky Way, [Schodel et all (2014)
reported the mean ratio between minor and major axes is
0.71, which is close to our rotating wy = 0.6 model. For
this model we find a boost of TDR by 35% in our simu-
lations, and we apply the same factor here for the case of
axisymmetry, to get a higher TDR of 1.47 x 10~ °yr—!.

3.2. Relation to other current papers in the field

With regard to the enhancement of TDR in axisym-
metric systems we have shown that our results are in
agreement with [Fiestas et all (2012); but recently numer-
ical simulations published by Vasiliev & Merrittl (2013)
and [Vasiliev ) seem to contradict our findings. They
claimed that the TDR in axisymmeric nuclei can be a
few times larger than in the spherical case. Also
(2014) analyzed the distribution of stellar orbits in an ax-
isymmetric galaxy and found that total number of stars
that can interact with the central SMBH binary is six
times larger than in the spherical system. In this sub-
section we will discuss why there is such a discrepancy
to our results - we find a much smaller enhancement of
TDR in axisymmetric systems.

The main difference between the cited papers and our
work is the initial model. In all of the above mentioned
papers, a flattened Dehnen model is used (their density
profile, given the parameters they chose, is identical also
to the Hernquist model). Their models possess a fixed
axial ratio (¢/a = 0.75) throughout the entire cluster and
an initial central cusp, while our rotating initial model
has initially a core density distribution in the center, and
we have a radial variation of ¢/a from nearly spherical
(¢/a =~ 1) to about ¢/a ~ 0.7 in the outskirts (see Fig.[I]).
However, in the radius range where most of the disrupted
stars originate from (c.f. Fig. @), the system deviates
significantly from spherical symmetry, thus we can con-
firm that the enhancement of TDR is connected with the
non-spherical geometry. But in the relevant region of our
wp = 0.6 deviation from spherical symmetry is less than
in the other cited papers, which may be an explanation
for the weaker effect in our case.

We also notice that even within the cited other pa-
pers there are some discrepancies in the results even for
models with the same initial density profile. For exam-
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ple, the enhancement of the number of accreted stars
in [Vasiliev & Merrittl (2013) was smaller than 100% (see
Table 2 in their paper), while ) found a
factor of six. On the other hand some of the models in
Vasiliev & Merritt (2013) only show mild enhancement
which is in the same level as ours. Another example
comes from the debate about the “final parsec problem”
in SMBH binary evolution. Based on their simulation
results, [Khan et all (2013) claimed that the “final parsec
problem” is not a problem in axisymmetric host galaxies,
while [Vasiliev et all (2014) reached an opposite conclu-
sion according to their simulation. We notice that both
of these work employs similar flattened galaxies model,
however, they used a different method to generate the
initial model.
Vasiliev & Merritt  (2013), [Vasiliev (2014) and
Vasiliev et all (2014) utilized the orbital superposition
method of (Schwarzschild[1979) to construct their model.
On the other hand, [Khan et all (2013) and [Li et all
(2014) used another method called “adiabatic squeeze
technique” developed by -
(2001). We notice that in the process of adiabatic
squeeze, which contains a step which applies a slow and
smooth velocity change on the stars in the z direction.
This step may artificially reduce the energy and angular
momentum of the stars in the model cluster. Although
the radius and velocity vectors of the stars are rescaled
after the squeeze, it is not clear how the rescaling affects
the phase space distribution. Thus it might be possible
that the process produces more stars of low energy
and low angular momentum. Another evidence of a
similar effect can be derived from [Vasiliev (2014); while
they still use the orbital superposition method they
changed the generation of their initial model so that it
creates more low energy and low angular momentum
stars. In their test run (Fig. 2 in their paper) we see
a much larger enhancement of the number of accreted
stars compared to [Vasiliev & Merrittl (2013). So to add
more low energy and angular momentum stars seems
to be promising in abridging the different enhancement
factors between [Vasiliev & Merritt (2013) and [Li et all
(2014). We suggest that a detailed comparison between
models constructed with these two methods (and their
phase space distribution) should be performed in order

to explain the dlscre ancy
According to [Liet all (2014) the central two parsecs
of their model galaxy exhibit a slight triaxiality, which

could also introduce some additional centrophilic orbits,
thus increase the number of stars that can interact with
the central SMBH binary.

Before finishing this sectlon We want to make a final
remark on the result of [Liet all (2014). Their model
integrates individual orbits in a fixed model potential
with one SMBH in the center, in a static way. So the
number of stars that can interact with the central SMBH
binary according to their results should be considered
as an upper limit. Once two-body relaxation is turned
on, some of the stars that are supposed to be inside the
loss cone might be scattered out. And the presence of a
SMBH binary in an evolving system may also affect the
result of how many stars can interact with them.

4. LOSS CONE IN AXISYMMETRIC POTENTIAL

First, we summarize the loss cone theory for stellar or-
bits in a spherically symmetric gravitational potential,
in order to discuss different behavior in an axisymmetric
potential later. If a stellar orbit has a pericenter dis-
tance less than the tidal radius it is considered to be in
the loss cone. In spherical symmetry the boundary of
the loss cone can be expressed in terms of a critical loss
cone angular momentum J). &~ 2GMery (if r > ry;
cf. e.g. |Amaro-Seoane et all (2004)). The loss cone is
then defined as the region in phase space where the an-
gular momentum J of a star fulfils J < Jj.. All stars
inside the loss cone will reach the tidal radius within
a dynamical (orbit) time scale. As a consequence the
loss cone would become empty in that relatively short
time. Once a star is inside the loss cone and reaches
the tidal radius, we assume that it will be destroyed by
the BH’s tidal force instantaneously and add its total
mass to the black hole at the same moment. Most au-
thors studying stellar dynamics and TDR of star clusters
around a BH used similar approximations. Rees (1988)
already argued that the stellar debris after tidal disrup-
tion will make several orbits until it is finally accreted
by the BH; nevertheless the orbital time near the BH is
very short compared to the original orbital time of the
star before its disruption. Recent detailed simulations
on tidal disruptions (Guillochon & Ramirez-Ruiz 2013;

2013, 2015) show that in some case not
all material of the star may be accreted and that general
assumptions about the tidal fallback rate are not correct;
for example in a longer lived accretion disk may form,
which would delay the black hole growth. In a spherical
system, without interactions between the stars, angular
momentum J would be strictly conserved. So, without
any repopulation of the loss cone, the accretion process
would stop after a few dynamical times. But stars do in-
teract with each other while moving inside the star clus-
ter by two body relaxation through mutual encounters;
in this process they can exchange angular momentum
and energy and so the loss cone will be repopulated in
the two body relaxation time scale, which is generally
long compared to the dynamical time (Cohn & Kulsrud
[1978; [Amaro-Seoane et all [2004). The repopulation of
the loss cone is modelled in these papers as a diffusive
process using the Fokker-Planck approximation.

In an axisymmetric potential, the situation is more
complex since J is not a conserved quantity. It changes
continuously due to the non-central force resulting from
the geometry of the potential. In this case, stars with
J > Ji. may have a chance to drift into the loss-cone and
get disrupted. In other words, the loss cone is enlarged
in the J dimension in axisymmetric potential. However,
the z component of angular momentum J, is still con-
served, so a solid boundary of the loss-cone is J, < Ji..

Magorrian & Tremaind (1999) investigated this topic us-
ing a symplectic map introduced by [Touma. & Tremaind
(1997). In this work, we analyze the enlarged loss cone
in phase space in terms of energy F, modulus of angular
momentum J and the z component of angular momen-
tum .J, for stellar orbits near the BH. We use a different
approach as [Magorrian & Tremaind (1999) here, which
is based on a numerical particle scattering experiment.
In what follows, we first describe the method we used in
this experiment, then present our results.

First step, we need to know the smooth gravi-
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tational potential as a function of position without
the fluctuations due to the discrete particle structure.
We use a so-called self-consistent field code (SCF,
Hernquist & Ostriker (1992)) to generate the analyti-
cal function for the gravitational potential. The expan-
sion coefficients Cl, Dim, Eim, Fim used in computing
forces (Eq.(3.21)-(3.23) in [Hernquist. & Ostriker (1992))
are computed based on snapshot data generated during
the direct N-body simulation. By default, the code uses
radial basis functions labeled from n = 0 to Ny = 14,
and spherical harmonic function truncated at l,,,4, = 10.

Our particle distribution is self consistently achieved
as a consequence of the co-evolution of stars and BH.
Using the SCF code means that all two-body interac-
tions are smoothed out in the experiment. Because
we assume that most of the two-body interactions hap-
pens during the apocenter passage, which is also used
in [Touma & Tremaind (1997). After getting the coeffi-
cients, we can calculate the acceleration, jerk and do or-
bit integration using a Hermite 4*" integrator with vari-
able time steps, developed by ourselves. This code works
very well and the energy and angular momentum errors
of the test particle stays in the level of 107 over long
time integration. In an axisymmetric system all coeffi-
cient with m # 0 should be 0. But in practice one will
get some small numbers very close to 0 due to particle
noise. We just ignore these terms, otherwise JJ, would
no longer be conserved. We also ignore coeflicients with
odd [, because the rotating system should be symmet-
ric about the equatorial plane and do not have pear-like
shape.

Next step is to generate initial positions and velocities
for test particles. The basic idea of this experiment is
to do parameter space scanning. We uniformly sample
E,J and J,, all test particles are initially put at their
apocenter. Firstly, we choose a particular energy and
calculate Jj. through equation Jj. = ri/2(®(ry) — E).
Then we choose a pair of (J,J,), J can be a few times
larger than J;. but J, keeps smaller than J;.. Given the
combination of (E,J,J,) and the potential distribution
we can find the apocenter position given by (r, ). Here r
is distance to center and 6 is the angle between position
vector and z-axis. We note that there are actually four
parameters (E,J,J.,0) to define the initial conditions
for a particular orbit. So we further sampled 100 data
points in @ dimension. In order to plot the result in a 2D
plane, we introduce a filling factor P for every (E, J, J.)
combination to describe this § dependence, which is the
fraction of stars in the loss cone for a given combination
of (E, J, J,) (number of data points in loss cone divided
by total sample size, e.g. 100), meaning that among all
stars with same (E, J, J,) only a fraction of P are inside
the loss cone.

By our definition a star in the loss cone will be dis-
rupted by the BH within one dynamical time, so for ev-
ery test particle we only integrate their orbits for one
orbital cycle. If a particle comes back to its apocenter,
we consider it as out of the loss cone and move to the
next integration with new initial orbital data.

Fig. M shows results from the experiment in a slowly
rotating model (wp = 0.3), it represents the loss cone
shape in phase space. Since J is not conserved we use
its initial value at apocenter for the figure; at the time

Figure 4. Filling factor P of the loss coneas a function of J and J,
for different energies; the = axis is the modulus of the total angular
momentum J, while the y axis is its z component J.. Panel a)
correspond to £ = —1.3,b) E=—-1.5,¢) E=-1.7,d) E=—1.0.
Colors represent the filling factor P in percentage. All data are
given in standard N-body units.

of disruption J must be less than Jj.. From panel a)
to d), the energy of the test particles are in descend-
ing sequence, so their position of apocenters are getting
closer and closer to central BH. One can see that the
whole plane comprises 3 regions: 1) inner region where
P equals 1, meaning particles with these (E,J, J,) can
hit the BH within one dynamical time scale; 2) transi-
tion region where P is non-zero but less than 1, particles
with these (F, J, J,) have a chance to hit the BH depend-
ing on their apocenter position (6 value); 3) outer region
where P = 0, none of particle in this region can hit the
BH. In panel a) one can see only a few points are red and
a lot of points are located in transition region. From a)
to d), the fraction of P = 1 points in the (J,.J,)-plane
increases and the transition region is compressed by the
inner and outer region in horizontal direction (J dimen-
sion). This is because test particles with high energy
(loosely bound or unbound with respect to the BH) can
go beyond the BH’s influence radius to the intermediate
and outer regions of the cluster, where the axisymmetric
stellar potential dominates. The angular momentum of
these test particles will have large variations. So a wide
transition region exists in high energy cases. But in the
low energy case (stars strongly bound to the BH), e.g.
panel d), test particles are moving inside the BH’s in-
fluence sphere where the potential is dominated by the
BH and thus approaches spherical symmetry. All loss
cone stars following the classical loss cone approxima-
tion, should have both J and J, to be smaller than J;..
In all panels of Fig. Ml on the contrary, we see how stars
with J > J;. could be still in the new, extended loss
cone of an axisymmetric system with a certain non-zero
probability.

For faster rotating models (wy = 0.6) the results are
similar. Three regions are presented on the (J, J,) plane,
however, the extent of each region is different from the
counterpart of same energy in slow rotating model. Fig.
gives an example, in both left (wy = 0.3) and right
(wp = 0.6) panel the test particle have same energy,
however, the resulting appearances are quite different.
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Figure 5. Comparison between 2 models with same test particle
energy —1.5. x axis is module of angular momentum in N-body
unit. ¥y axis is z component of angular momentum. Left panel
correspond to w = 0.3; right panel w = 0.6. Colors indicate the
filling factor P in percentage.

In the left panel we see the the outer border extended to
J = 0.024, while in the right one the outer border goes
to J = 0.04 and is not as clear as that in the left panel.
Also in the right panel the red region is almost disap-
peared. These results show how rotation modifies the
loss cone shape in phase space. In both of these plots,
the maximum radius stars can achieve are roughly the
same. However, faster rotation means we have a more
flattened cluster shape, which enhances the torque act-
ing on stars, thus the variation in J becomes larger. So,
the higher the degree of rotation in the stellar system,
the larger is the extension of the loss cone in J direction.

On first glance at Fig. @ (also Fig. ) one might think
that the loss cone is generally enlarged by a significant
factor. However, as we pointed out above, there is a
filling factor P for every point on the (J,J.) plane. To
find the net enlargement of the loss cone in axisymmetric
potentials we introduce an effective area S of the loss
cone in these plots by integrating the filling factor P over
the (J,J,) plane. For example, the effective area of the
classical loss cone is just given by the size of the triangle
J,J, < Ji. in our plots, since in the classical case P is
unity everywhere in this triangle region.

Now we compare the loss-cone size comparing the
integrals S with each other. We define the quotient
e = Seff/Sie, where Si. = J2/2 is the classical loss
cone integral. «y. is plotted in Fig. [(] as a function of
binding energy |E|. In the plot we show both slow and
fast rotating models at two different evolution times. For
the slow rotating model the ratio «;. is even smaller than
unity for binding energies larger than 1.4 - 1.5, meaning
that at large |E| the loss cone is smaller compared to
the classical one. This is caused by the reduction of the
probability P at the boundary and inside the classical
loss cone region J < Jj.. P is decreasing from inside to-
ward outside. While for intermediate |E| case, although
P is still decreasing function of J, the large number of
valid points overwhelms, so the net effect is increasing
the effective area. However, if one goes further toward
small |E| the ratio will drop again, like the case of fast ro-
tating model. This is just because P is sufficiently small
in this case and win the game. For fast rotating model,
another interesting feature is the ratio drops below 1 at
|E| = 1.8. From this figure we see that the enlargement
of loss cone, quantified by the ratio ;. as a function of
binding energy. Interestingly, the change of the effective
loss cone size in every energy slice is less than 5-10%.
These mild changes seem unable to raise TDR with the
amount observed in the simulation, to address this it will
be useful if we can estimate the TDR based on the effec-

tive loss cone measurement and compare with simulation.
However, the knowledge of how stars are distributed in
energy and angular momentum is required. With the
limited particle numbers of the model cluster, it is diffi-
cult to get an accurate and reliable distribution function.
Also in current work, we sample the energy space with
large intervals (AF = 0.1), which may cause large errors
in the estimated TDR. So we did not make the estima-
tion. There are still plenty of works could be done with
this topic.
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Figure 6. Ratio between effective area Scyy of loss-cone in ax-
isymmetric system and S, in spherical system.

5. ORBITAL PROPERTIES OF DISRUPTED STARS

In this section, we investigate the origin of disrupted
stars. Under the assumption that stars in loss cone can
survive for only one orbital period, the origin of these
stars can be examined by looking at their energy and
angular momentum, as well as their origin (apocenter)
in spatial coordinates (radius and angle 6). In spherical
systems one can use effective potential to compute the
apocenter of orbit, but in the axisymmetric case we do
not have such convenient solutions except to run the sim-
ulation twice. In the first run we find out the ID for those
stars that will be disrupted by BH. Then, in the second
run we make records for these stars more frequently than
other stars, in order to catch their last apocenter posi-
tion.

We found in the beginning that the total TDR, espe-
cially for small r; does only marginally depend on the
rotation of the system; consistent with this we found in
the previous chapter that the loss cone structure does
change significantly, but the total integral over the loss
cone space for axisymmetric systems yields only rela-
tively small changes. Still it is interesting to study how
the orbital properties of stars, which are tidally dis-
rupted, change with the rotation of the system. In order
to address this, we now turn back to our full N body
simulations and study the distribution of |E| (Fig. [
and J (Fig. B)) of the disrupted stars at their apocenter
passage in three time intervals. From Fig. [7] one can see
that most of the tidally disrupted stars have a binding
energy between 1 and 2, coincident with the small bumps
in Fig. [0l where ;. > 1. Another evidence comes from
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Figure 7. Panel a) and b) show normalized distribution of binding
energy |E| of tidally disrupted stars, for different rotating models
and for three different time intervals (indicated by color) in the full
N-body simulation with r; = 10~3. The distribution is normalized
to the total number of disrupted stars in each time interval. Panel
¢) and d) show cumulative fraction profile corresponding to a) and
b), respectively.
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Figure 8. Same as Fig. [l but here for the distribution of total
angular momentum of the disrupted stars.

the distribution of J as shown in Fig. [} where one can
see the peaks are lying outside of the Jj. which is roughly
0.015. The peaks are moving toward larger .J, which is
caused by the increase of BH mass (recall the expression
for Ji.). A significant fraction of stars comes from places
outside of the classical loss cone in (J, J.) plane.

In spherical systems it is usually sufficient to describe
the apocenter of an orbit by its radial distance from the
center (the BH); the orientation of the orbit does not play
any role for the orbital time and the nature of the en-
counter with the central BH. However, in axisymmetric
systems, orbits with different angle 6 (the angle between
position vector of the star at apocenter and the z-axis)
will differ from each other significantly. Therefore we
have to describe the distribution of apocenters of tidally
disrupted stars in terms of both the r (Fig. @) and 6
(Fig. I0) dimension. From Fig. [@ one can see the peaks
are quite far from the BH, in a region comparable to the
BH influence radius, which is similar to the apocenter

0.12 T T
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Figure 9. Distribution of last apocenter distance of disrupted
stars in 3 different time interval. Each curve are normalized to the
total number of disrupted stars in given time interval.
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Figure 10. Normalized distribution of zenith angle 6 of last apoc-
enter of disrupted stars. Left panel is axisymmetric model, right
panel is spherical model.

distribution in spherical systems (Paper I). The differ-
ence turns out to be in the # dimension, as shown in
Fig. We compare the 6 distribution between spher-
ical and axisymmetric systems. Imagine we project all
the apocenter points onto a sphere with radii equals 1.
The measured number counts in each 6 bin AN (6) are
computed by 27 - X(0) - sin(§)Af, where () is the sur-
face density of projected points on the unit sphere. If
apocenters are uniformly distributed with 6, 3(0) is con-
stant, then AN (0)  sin(0)Af. Here we choose an equal
bin size, so the measured number count should follow a
sin(f) curve. The right panel of Fig. plots @ distri-
bution for spherical model, which is taken from our last
work (Paper I). In left panel we see the last apocenter dis-
tribution have deficit at polar region comparing to sin(f)
curve, and excess at places beyond and below the equato-
rial plane, showing a double peak feature. The deficit at
the polar region may have something to do with the flat-
tening of the cluster, however, this is not the only reason.
The double peak feature around the equatorial plane ob-
viously does not relate to a geometrical origin, otherwise
the peak should be placed at the equatorial plane. In
Fig. [l we compare the 0 distribution between slow and
fast rotating models. One can see that in fast rotating
model, the double peaks are more significant, accompa-
nied by a further deficit in the angle range 0.2 —0.47 and
0.6 — 0.8.

In order to understand the double peak feature, we
turn to the orbit structure of these disrupted stars. In
non-spherical symmetric stellar system with a SMBH
in its center, the space populated by stars can be di-
vided into three parts depending on the distance to
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Figure 11. Normalized distribution of zenith angle 6 of last apoc-
enter of disrupted stars. Compare between slow (w030) and fast
(w060) rotating models.

the BH, namely the regular, chaotic and mixing region

Poon & Merritt[2001). Inside the BH’s influence radius
rh, the potential felt by the star is dominated by the BH
plus a small perturbation from the non-spherical stellar
potential. In this region, the motion of stars is essen-
tially regular, as in a spherical potential. Outside of rp,
stars passing the center will suffer a large angle deflection
by the BH, which in conjunction with the non-spherical
potential near and outside r,, could make their orbits
stochastic.

We are interested in stellar orbits in an axisymmet-
ric stellar potential, which can get close to the central
BH. These are typically two classes of orbits, short-axis
tube (SAT) and saucer (see (2014) for exam-
ple); they can be distinguished by their third integral
of motion I3. Although I3 may help us quickly distin-
guish orbit families, finding the functional form of I3 is
difficult (see [Lupton & Gunn (1987) and discussion in
Sridhar & Touma (1999)) and is beyond the scope of this
paper. We choose alternative ways to do orbit classifica-
tion, such as Surface of Section (SoS) plot and Fourier
analysis of .J, (see Appendix).

Figure 12. Examples of orbital structure for SAT (left) and
saucer (right) orbit. Stars achieve maximum J when their instant
orbital plane coincide with B plane, while minimum when coincide
with A plane.

Fig. gives examples of SAT and saucer orbits in
configuration space. The plot is made in cylindrical co-
ordinates so that one can catch the main point easily.
For SAT orbit, one can see its apocenter can go both
above and below the equatorial plane. While apocenter
of saucer orbit can only exist on one side of mid-plane,

due to restrictions by the 3rd integral. We also check the
value of J at each apocenter passage. We find that SAT
orbit achieve its minimum J at the equatorial plane; a
saucer orbit cannot reach the equatorial plane, but its
minimum J is achieved at the place which is next to the
equatorial plane as marked in the plot by A plane. Re-
call in the last section we said no matter what J one star
has at the apocenter, at the time of disruption it must
be smaller than J;.. So the last apocenter place should
be around the A plane. This seems to be promising to
explain the double peak in # distribution, however, need
to be confirmed. In order to see this we try to do orbit
classification for the disrupted stars, which is computa-
tionally expensive. So we just randomly select a sub-
sample of disrupted stars and divide them into 3 orbit
families: SAT, saucer and others (here “others” means
they do not belong to the former two families, and may
be chaotic orbits). Among the 2943 sample stars, 1719
are classified as “others”, 757 as saucer and 467 as SAT.
Then we re-plot the r and 6 distribution for different
orbit families in Fig. I3
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Figure 13. Normalized distribution of apocenter distance r and
zenith angle 6 of last apocenter of disrupted stars for different orbit
families. The distribution is normalized to the number of stars in
each orbit family.

The results show that the apocenter distribution of dif-
ferent orbit families not only differs in 6 but also in r.
One can see the innermost region is dominated by SAT
orbits, and concentrated to the equatorial plane. Inter-
mediate radius is mostly occupied by saucer orbits, and
the distribution in 6 shows double peaks as expected.
Further out is the region dominated by orbits marked
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as others. These orbits can go outside of the influence
radius and are basically chaotic orbits. From Fig.
one can also find out the fractions of each orbit family
contributing to the budget of disrupted stars: the largest
fraction comes from chaotic orbits; SAT orbits contribute
least to the budget because they are deeply buried in
the cluster center where the total star number is small;
the intermediate contribution is from saucer orbits which
create the two peaks in the 6 distribution.

6. CONCLUSIONS AND DISCUSSIONS

Tidal Disruption (TD) of stars by supermassive central
black holes (SMBH) from dense rotating star clusters is
modelled by high-accuracy direct N-body simulation. As
in a previous paper on spherical star clusters we study the
time evolution of the stellar tidal disruption rate and the
origin of tidally disrupted stars, now according to several
classes of orbits which only occur in rotating axisymmet-
ric systems (short axis tube and saucer). In empty loss
cone regime, comparing spherically symmetric and ax-
isymmetric systems we find a higher TD rate in large
ry models in axisymmetric case, but for small r; case -
somewhat surprisingly - there is virtually no difference in
the TD rate, maybe a small increase due to axisymmetry.

We define an extended loss cone by the condition that
stars in the axisymmetric potential reach the BH within
one orbit. A detailed analysis shows that the structure
of the loss cone significantly differs from the spherical
case; if Jj. is the critical angular momentum to be in the
loss cone in a spherical system, and J,J, are the total
and z-component of the angular momentum of a stellar
orbit, there are many stars with J > Jj. in the loss cone;
since, however, there are also some stars with J > Ji.,
which are now not in the loss cone. In the total balance
the number of loss cone stars is only very moderately
increased.

In the experiment of measuring the shape of loss cone,
we assume the test star can survive only one dynami-
cal time in collisional system, after one orbit it will be
“kicked” to another place in phase space due to interac-
tions with other stars. However, in collisionless limit, if
we allow the test star to survive more orbit cycles, test
star with much higher J will also have chance to get rid of
its angular momentum and be disrupted by BH. Then it
is possible that an even larger loss cone region in phase
space than what we presented here may exist, and re-
sult in a higher TDR. In order to check this, simulations
with much more particles are needed and we would like
to leave this task for future work.

The orbit type of disrupted stars strongly depends on
energy as we discuss in detail in the previous sections.
TD of stars most strongly bound to the BH are domi-
nated by short-axis tube (SAT) orbits. In intermediate
regions saucer orbits dominate, which create a character-
istic double peak structure in the last apocenter position
of their orbit relative to the equatorial plane. And fur-
ther out chaotic orbits.

It is known for almost half a century that tidal
disruption of stars should occur near SMBH, but
only much more recently the X-ray emission of tidal
disruption events has been detected (Komossa 2002,
[Komossa & Merrittl 2008). A simple argument on the
fallback time for tidal debris by [Reed (1988) has led
to the prediction of a characteristic power law of the

light curve with time, which can be used to distinguish
TD events from other transients. It is interesting that
a SMBH binary can cause characteristic disruptions in
such an otherwise standard TD light curve
2014). Hayasaki and collaborators claim that eccentric
TD events lead to somewhat longer lived central accre-
tion disks i 2013, 2015). Tt will be very
interesting to see whether and how the evolution of tidal
debris and the fallback rate are affected by different or-
bits of the disrupted stars as discussed here.

It has been claimed that rotation may help to quickly
refill loss cones around binary supermassive black holes,
which helps significantly to accelerate shrinking and
final coalescence of SMBH binaries in cosmologically
short time scales (Berczik et all[2006; [Preto et al! 2011;
Khan et all[2013; [Khan [2014). In our paper we study by
direct N-body simulation the tidal accretion of stars and
their orbital parameters in rotating axisymmetric sys-
tems. We confirm the result of [Vasiliev & Merrittl (2013)
that there is an increase in the rate of refilling of the loss
cone, but it is moderate. However, the situation deserves
more detailed study, because a SMBH binary creates a
much stronger deviation from spherical symmetry than
the one used in our models with single SMBH. And sec-
ond the detailed structure of the rotation in a central
nuclear star cluster could affect the enhancement of the
loss cone.
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APPENDIX
ORBIT CLASSIFICATION

Surface of Section

From Fig. [4l we can see the whole accessible region on (R, vgr) plane is divided into two parts (note that points with
opposite v actually belongs to same orbit, so this plot is symmetric with horizontal axis). Each part represents a
family of orbit. Curves that intersect with R-axis are footprints of short axis tube (SAT) orbits, others are of saucer
orbits.

Vg [NB]

_10-|||||||||I|||||||||I|||||||||I|||||||||I|||||||||

0 0.02 0.04 0.06 0.08 0.1
R [NB]

Figure 14. Surface of section plot. z axis is distance R to origin on equatorial plane. y axis is vg = dR/dt when star go across the
equatorial plane.

Fourier Analysis of J,, evolution

In axisymmetric potential, force is not centripetal hence exerted a torque on the star which will change the z and
y components of its angular momentum. Fig [ show the time evolution of J, for both SAT and saucer orbits. The
pattern of J, and J, are the same but shifted with a phase of m/2, so in the following discussion we only focus on J,.
Furthermore, the evolution of .J, shows some quasi-periodicity. From eye inspection, one can guess the mathematical
expressions for the curves.

As shown in Fig. [[3 the curve for SAT orbits seems to be represented by sin(fit)(1 + cos(fat)) (f; < f2), which
can be further converted to sin(fyt) + sin(fyt) 4 sin(fet) (ignore coefficients before the trigonometric functions), with
fo =f1,fp = fo — 1 and f. = f5 + f1. If we perform a Fourier analysis on this curve, we expect to find 3 principal
frequencies: f,, fi,, f. in ascending sequence. And these 3 frequencies satisfy the equation f, = (f. — f;,)/2.

For saucer orbits, the curve seems to be represented by sin(fit)cos(fat) (f; < f3), following the same procedure we
expected to find 2 principal frequencies: f,, fi,, with f, = f3 — f; and f, = f5 + f;.

A demonstration is shown in Fig. [[G] one can clearly see the 3 principal frequencies for SAT orbits and the 2 for
saucer orbits. Some of the small peaks appeared at higher frequencies which is the order harmonics and some are
produced from other components.

We use both methods to cross check the validity of orbit classification for the tidally disrupted stars.
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Figure 15. Time evolution of J, for SAT orbit (left) and saucer orbit (right).
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Figure 16. Fourier frequency distribution of .J,. Horizontal axis is frequency in unit of [T]~1. Vertical axis is amplitude of corresponding
component. Left panel represents SAT orbit, right panel represents saucer orbit.

REFERENCES

Aguilar, L. A. & Merritt, D. 1990, ApJ, 354, 33

Amaro-Seoane, P., Freitag, M., & Spurzem, R. 2004, MNRAS, 352, 655

Antonini, F., Capuzzo-Dolcetta, R., Mastrobuono-Battisti, A., & Merritt, D. 2012, ApJ, 750, 111

Berczik, P., Merritt, D., Spurzem, R., & Bischof, H.-P. 2006, ApJ, 642, L.21

Berczik, P., Nitadori, K., Zhong, S., Spurzem, R., Hamada, T., Wang, X., Berentzen, 1., Veles, A., & Ge, W. 2011, in International
conference on High Performance Computing, Kyiv, Ukraine, October 8-10, 2011., p. 8-18, 8-18

Bois, M., Emsellem, E., Bournaud, F., Alatalo, K., Blitz, L., Bureau, M., Cappellari, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T.,
Duc, P.-A., Khochfar, S., Krajnovié, D., Kuntschner, H., Lablanche, P.-Y., McDermid, R. M., Morganti, R., Naab, T., Oosterloo, T.,
Sarzi, M., Scott, N., Serra, P., Weijmans, A.-M., & Young, L. M. 2013, in Astronomical Society of the Pacific Conference Series, Vol.
477, Galaxy Mergers in an Evolving Universe, ed. W.-H. Sun, C. K. Xu, N. Z. Scoville, & D. B. Sanders, 97

Boker, T., Laine, S., van der Marel, R. P., Sarzi, M., Rix, H-W., Ho, L. C., & Shields, J. C. 2002, AJ, 123, 1389

Boker, T., Sarzi, M., McLaughlin, D. E., van der Marel, R. P., Rix, H-W., Ho, L. C., & Shields, J. C. 2004, AJ, 127, 105

Cohn, H. & Kulsrud, R. M. 1978, ApJ, 226, 1087

Einsel, C. & Spurzem, R. 1999, MNRAS, 302, 81

Ernst, A., Glaschke, P., Fiestas, J., Just, A., & Spurzem, R. 2007, MNRAS, 377, 465

Evans, C. R. & Kochanek, C. S. 1989, ApJ, 346, L.13

Feldmeier, A., Neumayer, N., Seth, A., Schodel, R., Liitzgendorf, N., de Zeeuw, P. T., Kissler-Patig, M., Nishiyama, S., & Walcher, C. J.
2014, A&A, 570, A2

Fiestas, J., Porth, O., Berczik, P., & Spurzem, R. 2012, MNRAS, 419, 57

Fiestas, J. & Spurzem, R. 2010, MNRAS, 405, 194

Frank, J. & Rees, M. J. 1976, MNRAS, 176, 633

Greenhill, L. J., Henkel, C., Becker, R., Wilson, T. L., & Wouterloot, J. G. A. 1995, A&A, 304, 21

Gualandris, A. & Merritt, D. 2012, ApJ, 744, 74

Guillochon, J. & Ramirez-Ruiz, E. 2013, ApJ, 767, 25

Hachisu, 1. 1979, PASJ, 31, 523

—. 1982, PASJ, 34, 313

Hayasaki, K., Stone, N., & Loeb, A. 2013, MNRAS, 434, 909

Hayasaki, K., Stone, N. C., & Loeb, A. 2015, ArXiv e-prints

Heggie, D. C. & Mathieu, R. D. 1986, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 267, The Use of Supercomputers in Stellar
Dynamics, ed. P. Hut & S. L. W. McMillan, 233

Hernquist, L. & Ostriker, J. P. 1992, ApJ, 386, 375



14 Zhong, Berczik, Spurzem

Holley-Bockelmann, K., Mihos, J. C., Sigurdsson, S., & Hernquist, L. 2001, ApJ, 549, 862

Inagaki, S. & Hachisu, I. 1978, PASJ, 30, 39

Khan, F. M. 2014, in COSPAR Meeting, Vol. 40, 40th COSPAR, Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, Abstract
E1.20-5-14., 1462

Khan, F. M., Berentzen, 1., Berczik, P., Just, A., Mayer, L., Nitadori, K., & Callegari, S. 2012, ApJ, 756, 30

Khan, F. M., Holley-Bockelmann, K., Berczik, P., & Just, A. 2013, ApJ, 773, 100

Khan, F. M., Just, A., & Merritt, D. 2011, ApJ, 732, 89

Kim, E., Einsel, C., Lee, H. M., Spurzem, R., & Lee, M. G. 2002, MNRAS, 334, 310

Komossa, S. 2002, in Reviews in Modern Astronomy, Vol. 15, Reviews in Modern Astronomy, ed. R. E. Schielicke, 27

Komossa, S. & Merritt, D. 2008, ApJ, 683, L.21

Li, B., Holley-Bockelmann, K., & Khan, F. 2014, ArXiv e-prints

Lightman, A. P. & Shapiro, S. L. 1977, ApJ, 211, 244

Liu, F. K., Li, S., & Komossa, S. 2014, ApJ, 786, 103

Lotz, J. M., Telford, R., Ferguson, H. C.; Miller, B. W., Stiavelli, M., & Mack, J. 2001, ApJ, 552, 572

Lupton, R. H. & Gunn, J. E. 1987, AJ, 93, 1106

Magorrian, J. & Tremaine, S. 1999, MNRAS, 309, 447

Malkov, E. A., Vi’Koviskij, E. Y., Nuzhnova, T. N., & Shpurtsem, R. 1993, in Problems of Physics of Stars and Extragalactic Astronomy,
ed. A. V. Kurchakov, 139-152

Merritt, D. & Poon, M. Y. 2004, ApJ, 606, 788

Milosavljevi¢, M. 2004, ApJ, 605, .13

Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M. 1995, Nature, 373, 127

Neufeld, D. A. & Maloney, P. R. 1995, ApJ, 447, L17

Poon, M. Y. & Merritt, D. 2001, ApJ, 549, 192

Preto, M., Berentzen, 1., Berczik, P., & Spurzem, R. 2011, ApJ, 732, L.26

Rees, M. J. 1988, Nature, 333, 523

Schodel, R., Feldmeier, A., Kunneriath, D., Stolovy, S., Neumayer, N., Amaro-Seoane, P., & Nishiyama, S. 2014, A&A, 566, A47

Schwarzschild, M. 1979, ApJ, 232, 236

Seth, A. C., Blum, R. D., Bastian, N., Caldwell, N., & Debattista, V. P. 2008, ApJ, 687, 997

Seth, A. C., Dalcanton, J. J., Hodge, P. W., & Debattista, V. P. 2006, AJ, 132, 2539

Spurzem, R., Berczik, P., Berentzen, 1., Ge, W., Wang, X., Schive, H.-Y., Nitadori, K., & Hamada, T. 2011a, in Large Scale Computing
Techniques for Complex Systems and Simulations, ed. W. Dubitzky, K. Kurowski, & B. Schott, Wiley Publishers, 35-58

Spurzem, R., Berczik, P., Hamada, T., Nitadori, K., Marcus, G., Kugel, A., Manner, R., Berentzen, 1., Fiestas, J., Banerjee, R., &
Klessen, R. 2011b, Computer Science - Research and Development (CSRD), 26, 145

Sridhar, S. & Touma, J. 1999, MNRAS, 303, 483

Touma, J. & Tremaine, S. 1997, MNRAS, 292, 905

Tremaine, S. D., Ostriker, J. P.; & Spitzer, Jr., L. 1975, ApJ, 196, 407

Vasiliev, E. 2014, Classical and Quantum Gravity, 31, 244002

Vasiliev, E., Antonini, F., & Merritt, D. 2014, ApJ, 785, 163

Vasiliev, E. & Merritt, D. 2013, ApJ, 774, 87

Wang, J. & Merritt, D. 2004, ApJ, 600, 149

Zhong, S., Berczik, P., & Spurzem, R. 2014, AplJ, 792, 137



