
ON CONJECTURES AND PROBLEMS OF RUZSA

CONCERNING DIFFERENCE GRAPHS OF S-UNITS

ANTE ĆUSTIĆ, LAJOS HAJDU, DIJANA KRESO, AND ROBERT TIJDEMAN

Abstract. Given a finite nonempty set of primes S, we build a graph G
with vertex set Q by connecting x, y ∈ Q if the prime divisors of both the

numerator and denominator of x−y are from S. In this paper we resolve

two conjectures posed by Ruzsa concerning the possible sizes of induced

nondegenerate cycles of G, and also a problem of Ruzsa concerning the

existence of subgraphs of G which are not induced subgraphs.

1. Introduction and main results

Let S be a finite nonempty set of primes, ZS be the ring of those rationals

whose denominators (when written in lowest terms) are not divisible by

primes outside S, and Z∗S the multiplicative group of invertible elements (S-

units) in ZS . We build a graph G with vertex set Q by connecting x, y ∈ Q if

x−y ∈ Z∗S . Then G is said to be the S-unit graph. Graphs of this type were

introduced by Győry [4], and have been subsequently intensively studied

and applied to various Diophantine problems, see [5] and [6], and references

therein.

With the aim of understanding the structure of the S-unit graph G,

Ruzsa [9] studied its possible subgraphs. We say that distinct a1, a2, . . . , an ∈
Q, n ≥ 3, form an induced cycle a1 → a2 → · · · → an → a1 of G if aj − ai is

an S-unit if and only if either j ∈ {i+ 1, i− 1} or {i, j} = {1, n}. Given any

cycle a1 → a2 → · · · → an → a1 of G, let ui = ai+1−ai for i = 1, 2, . . . , n−1,

and un = a1 − an. Then clearly u1 + u2 + · · ·+ un = 0. Note that the cycle

a1 → a2 → · · · → an → a1 is an induced cycle of G if and only if

ui + ui+1 + · · ·+ uj /∈ Z∗S for all 1 ≤ i < j ≤ n, (i, j) 6= (1, n− 1), (2, n).

In [9], Ruzsa proved that if 2 ∈ S, then there exist induced cycles of G of

every length, and if 2 /∈ S, then there exist induced cycles of G of every even

length and none of odd length.

Key words and phrases. S-unit equation, S-unit graph, induced graph, nondegenerate
cycle.
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Ruzsa further studied nondegenerate induced cycles. A cycle a1 → a2 →
· · · → an → a1 of G is said to be degenerate if there exists a proper zero

subsum of u1+u2+· · ·+un, i.e. if there exist l, i1, i2, . . . , il ∈ N satisfying 0 <

l < n and 1 ≤ i1 < · · · < il ≤ n such that ui1 +ui2 + · · ·+uil = 0. If no such

proper zero subsum exists, then the cycle is said to be nondegenerate. Ruzsa

proved that if 2 ∈ S, then there are nondegenerate induced cycles of G of

every length, and if 2 /∈ S, but 3 ∈ S, then there are nondegenerate induced

cycles of G of every even length and none of odd length. Furthermore, Ruzsa

posed the following conjecture (which is Conjecture 3.4 in [9]).

Conjecture 1.1. Let S be a finite nonempty set of primes. Then there are

nondegenerate induced cycles of the S-unit graph G of every sufficiently large

even length.

We show that this conjecture does not hold by proving the following

theorem.

Theorem 1.2. If S = {p} for some prime number p, then there are non-

degenerate induced cycles of the S-unit graph G of length n if and only if

n ≡ 2 (mod p− 1).

Ruzsa further posed another conjecture. For a given finite nonempty set

of primes S let

(1.3) m = gcd{p− 1 : p ∈ S}.

Note that if there exist positive S-units u1, u2, . . . , uk such that u1 + u2 +

· · ·+uk = 1, by multiplying the expression by the least common multiple of

the denominators of ui’s and by considering the congruence relation modulo

m, we get that k ≡ 1 (mod m), because pd ≡ 1 (mod m) for every p ∈ S
and every d ∈ N ∪ {0}. Ruzsa conjectured that for every sufficiently large

k such that k ≡ 1 (mod m) there exist positive S-units u1, u2, . . . , uk such

that u1 + u2 + · · ·+ uk = 1 and

ui + ui+1 + · · ·+ uj /∈ Z∗S for all 1 ≤ i < j ≤ k, (i, j) 6= (1, k).

We show that this conjecture, which is Conjecture 3.5 in [9] (with a misprint

m | k in place of k ≡ 1 (mod m)), is true, i.e. the following theorem holds.

Theorem 1.4. Let S be a finite nonempty set of primes and let m be as

in (1.3). Then for every sufficiently large k with k ≡ 1 (mod m) there exist
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positive S-units u1, u2, . . . , uk such that

(1.5) u1 + u2 + · · ·+ uk = 1

and

(1.6) ui + ui+1 + · · ·+ uj /∈ Z∗S , for all 1 ≤ i < j ≤ k, (i, j) 6= (1, k).

Let m be as in (1.3) and let n ∈ N be such that n ≡ 2 (mod m). Take

arbitrary a ∈ Q and let k = n − 1. Hence k ≡ 1 (mod m). Assume that

k is sufficiently large, so that by Theorem 1.4 there exist positive S-units

u1, u2, . . . , uk such that (1.5) and (1.6) hold. Consider the following cycle of

the S-unit graph G:

a→ a+ u1 → a+ u1 + u2 → · · · → a+ u1 + u2 + · · ·+ uk → a.

Note that this is indeed a cycle of G of length n because (1.5) holds. It is

an induced cycle of G because (1.6) holds. Furthermore, it is nondegenerate

because ui’s are all positive, so no proper zero subsum of u1+u2+· · ·+un−1

exists. Therefore, Theorem 1.4 has the following corollary.

Corollary 1.7. Let S be a finite nonempty set of primes and let m be as in

(1.3). Then for every sufficiently large n with n ≡ 2 (mod m) there exists a

nondegenerate induced cycle of the S-unit graph G of length n.

Finally, Ruzsa proposed the following problem (which is Problem 3.6 in [9])

concerning general subgraphs of the S-unit graph G. Recall that a graph

G = (V,E) with vertex set V and edge set E is a subgraph of G if to each

i ∈ V we can assign a rational value qi so that qi 6= qj if i 6= j, and that

if there exists an edge (i, j) ∈ E between i and j in G, then qi − qj is an

S-unit. A subgraph G = (V,E) of G is said to be induced subgraph of G
if to each i ∈ V we can assign a rational value qi so that qi 6= qj if i 6= j,

and that there exists an edge between i and j in G if and only if qi − qj is

an S-unit. Ruzsa asked if there exists a finite subgraph of G which is not

induced subgraph of G, and further noted that he expects a positive answer.

His motivation to formulate this problem was that in his constructions the

main difficulty arose from the requirement on cycles to be induced. We give

an affirmative answer to Ruzsa’s question by proving the following theorem.

Theorem 1.8. Given a finite nonempty set S of primes, there exists a

subgraph of the S-unit graph G, which is not an induced subgraph of G.
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In Section 2 we prove Theorem 1.2, Theorem 1.4 and Theorem 1.8, and

in Section 3 we make some further remarks on Conjecture 1.1.

2. Proofs of the theorems

Throughout this section S denotes a fixed finite nonempty set of primes

and m = gcd{p − 1 : p ∈ S}. We first prove Theorem 1.4. Call k ∈ N
S+-good if there exist positive S-units u1, u2, . . . , uk such that

(2.1) u1 + u2 + · · ·+ uk = 1.

Note that p is S+-good for all p ∈ S; this follows by setting ui = 1/p

in (2.1) for all i = 1, 2, . . . , k. We will use the fact that the number of

solutions in positive S-units u1, u2, . . . , uk of equation (2.1) for a fixed k ∈ N
is finite. That follows from the following deep result of Van der Poorten and

Schlickewei [10] and, independently, Evertse [2].

Proposition 2.2. Let S be a finite nonempty set of primes, k ∈ N. Then

the number of solutions of the equation

u1 + u2 + · · ·+ uk = 1

in S-units u1, u2, . . . , uk such that

ui1 + ui2 + · · ·+ uil 6= 0

for all l, i1, i2, . . . , il ∈ N satisfying 0 < l < k and 1 ≤ i1 < · · · < il ≤ k, is

bounded.

To prove Theorem 1.4 we further need the following proposition.

Proposition 2.3. Let S be a finite nonempty set of primes and let m be as

in (1.3). For every sufficiently large k such that k ≡ 1 (mod m) there exist

positive S-units u1, u2, . . . , uk such that

u1 + u2 + · · ·+ uk = 1.

Proof. We want to prove that any sufficiently large k ∈ N such that k ≡ 1

(mod m) is S+-good. Recall that p is S+-good for all p ∈ S. If #S ≥ 2 and

p, q ∈ S, note that

1

q
+ · · ·+ 1

q︸ ︷︷ ︸
q−1

+
1

pq
+ · · ·+ 1

pq︸ ︷︷ ︸
p

= 1,
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hence k = q− 1 + p = (p− 1) + (q− 1) + 1 is S+-good as well. Further, note

that for any p ∈ S we can replace any S-unit u > 0 by a sum of p positive

S-units by using

u =
u

p
+ · · ·+ u

p︸ ︷︷ ︸
p

.

Writing S = {p1, p2, . . . , pd}, it follows that any k of type

(2.4) a1(p1 − 1) + a2(p2 − 1) + · · ·+ ad(pd − 1) + 1,

with ai ∈ N ∪ {0}, i = 1, 2, . . . , d, is S+-good as well, because we may

lengthen the sum by pi − 1 as many times as we like for all i = 1, 2, . . . , n.

Since m = gcd{p1 − 1, p2 − 1, . . . , pd − 1}, there exist integers bi ∈ Z, i =

1, 2, . . . , d such that

(2.5) m = b1(p1 − 1) + b2(p2 − 1) + · · ·+ bd(pd − 1).

Let M := (p1 − 1)/m and let k0 be as follows

(2.6) k0 = M |b1|(p1 − 1) + · · ·+M |bd|(pd − 1) + 1.

Then from (2.4) it follows that k0 is S+-good. Further note that for every

j ∈ {1, . . . ,M − 1}, k0 + jm is of type (2.4), and is hence S+-good; this

follows from adding (2.5) to (2.6) j times. Finally we show that every k ≥ k0

such that k ≡ 1 (mod m) is of type (2.4), and is hence S+-good.

Indeed, write k−k0 = q(p1−1)+r1 where q, r1 ∈ N∪{0} and r1 < p1−1.

Then r1 = rm for some r ∈ {0, 1, . . . ,M − 1}. We have that k0 + rm is

S+-good, as shown in the previous step, and hence k = k0 + rm+ q(p1 − 1)

is S+-good as well, because it is of type (2.4). �

Next we prove Theorem 1.4 by using Proposition 2.3 and by following the

approach of Ruzsa from the proof of Theorem 3.3 in [9].

Proof of Theorem 1.4. From Proposition 2.3 it follows that every sufficiently

large k ∈ N such that k ≡ 1 (mod m) is S+-good. So let k ≡ 1 (mod m) be

sufficiently large and let u1, u2, . . . , uk be positive S-units such that

(2.7) u1 + u2 + · · ·+ uk = 1.

Recall that there are only finitely many solutions (u1, u2, . . . , uk) in posi-

tive S-units of equation (2.7) for fixed k, see Proposition 2.2. From these

solutions select the lexicographically last and denote it by (u′1, u
′
2, . . . , u

′
k).
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Assume that there exists I ⊆ {1, 2, . . . , k} with #I ≥ 2 such that

(2.8) v :=
∑
i∈I

u′i is an S-unit.

We will show that then necessarily I = {j, j + 1, . . . , k} for some j with

1 ≤ j ≤ k − 1. Note that from (2.8) it follows that #I ≡ 1 (mod m). Let

j′ be the minimal element of I. Assume to the contrary that there exists

l /∈ I such that j′ < l ≤ k. Then we can find a solution of (2.7) which is

lexicographically later than (u′1, u
′
2, . . . , u

′
k) by the following transformations.

Replace u′j′ by v and delete all u′i, i ∈ I, i 6= j′; then replace ul by #I S-

units whose sum is ul, which can be obtained by multiplying (2.8) by the

S-unit ulv
−1. This is a solution of equation (2.7) which is lexicographically

later since we increased u′j′ , and left u′1, u
′
2, . . . , u

′
j′−1 unchanged. However,

this is a contradiction.

Hence, there exist positive S-units u′1, u
′
2, . . . , u

′
k satisfying u′1 +u′2 + · · ·+

u′k = 1 and such that if

(2.9)
∑
i∈I

u′i ∈ Z∗S , for some #I ≥ 2,

then I = {j, j + 1, . . . , k} for some 1 ≤ j ≤ k − 1. We may choose positive

S-units u∗1, u
∗
2, . . . , u

∗
k that satisfy u∗1 + u∗2 + · · ·+ u∗k = 1 and

u∗i + u∗i+1 + · · ·+ u∗j /∈ Z∗S , 1 ≤ i < j ≤ k, (i, j) 6= (1, k),

by setting u∗i = u′i−1 for i = 2, . . . , k and u∗1 = u′k. Indeed, if u∗i + u∗i+1 +

· · · + u∗j , with 1 ≤ i < j ≤ k, is an S-unit, then it follows from (2.9) that

both u′k−1 and u′k appear in the sum, i.e. both u∗k and u∗1 appear in the sum,

hence i = 1 and j = k. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let S = {p} for some prime number p. We first prove

that if n ≡ 2 (mod p− 1), then there exist nondegenerate induced cycles of

G of length n. Let k = n− 1. Then k ≡ 1 (mod p− 1) and by Theorem 1.4

there exist positive S-units u1, u2, . . . , uk such that u1 + u2 + · · · + uk = 1

and that

(2.10) ui + ui+1 + · · ·+ uj /∈ Z∗S , for all 1 ≤ i < j ≤ k, (i, j) 6= (1, k).

Namely, since S = {p} it follows that m = p − 1, where m is defined

as in (1.3). In fact, we can give such S-units explicitly. Indeed, if d =
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(k − 1)/(p− 1), then

(2.11)
1

pd
+

1

p
+ · · ·+ 1

p︸ ︷︷ ︸
p−1

+
1

p2
+ · · ·+ 1

p2︸ ︷︷ ︸
p−1

+ · · ·+ 1

pd
+ · · ·+ 1

pd︸ ︷︷ ︸
p−1

= 1.

One easily checks that the condition (2.10) is also satisfied. Note that for

arbitrary a ∈ Q, the cycle a → a1 + u1 → a + u1 + u2 → · · · → a + u1 +

· · · + uk → a is a nondegenerate induced cycle of length n. It is indeed an

induced cycle because condition (2.10) holds. It is nondegenerate because

all the ui’s are positive.

Next we prove that the condition n ≡ 2 (mod p−1) is necessary. Assume

that there exists a nondegenerate induced cycle

(2.12) a1 → a2 → · · · → an → a1

of G of length n. Let ui = ai+1 − ai, i = 1, 2, . . . , n − 1 and un = a1 − an.

Then

(2.13) u1 + u2 + · · ·+ un = 0.

Without loss of generality we may assume that ui ∈ Z for all i = 1, 2, . . . , n,

as we can multiply them by the least common multiple of the denominators

of ui’s. In doing so the corresponding cycle remains to be nondegenerate

induced cycle of G. Then ui ∈ {pki ,−pki} for some ki ∈ N ∪ {0}. By

assumption no proper zero subsum of (2.13) exists. In what follows we

show that among all u′is only one is negative or only one is positive.

Without loss of generality assume that u1 is the smallest in absolute value

among all the ui’s. We may further assume u1 = 1, since otherwise we may

divide (2.13) by u1. Note that then ui 6= −1 for all i ≥ 2, since otherwise

u1+ui = 0, which would lead to degeneracy of the cycle (2.12). Let b1 be the

total number of occurrences of 1’s in the sum. Since u1+· · ·+un ≡ 0 (mod p)

it follows that b1 ≡ 0 (mod p). Hence, we can group the ui’s with value 1

into blocks of size p. By nondegeneracy, either ui 6= −p for all i = 1, 2, . . . , n,

or there is exactly one negative ui (and it equals −p) in which case we are

done. Now, let bp be the total number of occurrences of p’s in the sum plus

the number of p-blocks of 1’s. Then, since u1 + · · · + un ≡ 0 (mod p2) it

follows that bp ≡ 0 (mod p). Then by nondegeneracy, either ui 6= −p2 for all

i = 1, 2, . . . , n or there is exactly one negative ui (and it equals −p2) in which

case we are done. Continuing this inductive reasoning we get that only one

ui is negative among all ui’s, say un, hence pk1 + pk2 + · · · + pkn−1 = pkn .
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Since pki ≡ 1 (mod p − 1) for all i = 1, 2, . . . , n, it follows that n − 1 ≡ 1

(mod p− 1), hence n ≡ 2 (mod p− 1). �

Remark 2.14. Note that in the proof of Theorem 1.2 it is shown that if

#S = 1, and there exists a nondegenerate (not necessarily induced) cycle of

G of length n, then n ≡ 2 (mod p− 1).

Before proving Theorem 1.8 we state an auxiliary result from the theory

of Diophantine equations. Consider the S-unit equation

(2.15) ax+ by = 1 in x, y ∈ Z∗S ,

where a and b are nonzero rationals. The following result is due to Ev-

ertse [3].

Proposition 2.16. The number of solutions of (2.15) is at most

(2.17) 3 · 72|S|+3.

The finiteness of the number of solutions of the equation (2.15) can easily

be derived from a paper of Mahler, [8], an effective version of it from a paper

of Coates, [1].

Next we introduce two more notions concerning subgraphs of G. Let graph

G = (V,E) be a subgraph of G. Then to each i ∈ V we can assign a rational

value qi, so that qi 6= qj if i 6= j, and so that if there exists an edge (i, j) ∈ E,

then qi − qj is an S-unit. Then the graph with vertex set {qi : i ∈ V } ⊆ Q
and edge set defined by connecting qi and qj if (i, j) ∈ E, is a representation

of G in G. If G is an induced subgraph of G, then by definition there exists a

representation of G in G with vertex set {qi : i ∈ V } ⊆ Q and edges between

vertices qi and qj if and only if qi − qj is an S-unit. We say that such a

representation of G is an induced representation of G in G.

Remark 2.18. Note that the set of all representations of subgraph G of

G consists of equivalence classes, where inside each equivalence class any

representation of G can be obtained from any other by adding some fixed

rational to the values of the vertices and then multiplying these new values

by some fixed S-unit. From an equivalence class we can therefore choose a

unique representative by fixing the value of one vertex to be 0 and the value

of some other vertex, which is connected to this vertex by an edge, to be 1.
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Proof of Theorem 1.8. Let S be a fixed finite nonempty set of primes and G
the S-unit graph. By Proposition 2.16 the equation

(2.19) 1 + x = y + z

in S-units x, y, z has only finitely many nondegenerate solutions (a solution

(x, y, z) is degenerate if it is of type (x, 1, x) or (x, x, 1) or (−1, y,−y), and

nondegenerate otherwise). We distinguish two cases:

(1) Equation (2.19) has no nondegenerate solutions,

(2) Equation (2.19) has nondegenerate solutions.

First we resolve Case (1). Choose S-units a, b such that c0 + c1a+ c2b ∈ Z∗S
with c0, c1, c2 ∈ {−1, 0, 1}, implies

(c0, c1, c2) ∈ {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}.

This is possible since, by Proposition 2.16, for given c0, c1, c2 ∈ Q with

c0c1c2 6= 0, the equation c1x + c2y = c0 has only finitely many solutions in

S-units x, y. Consider graph G with the vertex set

V = {v0, v1, va, vb, v1+a, v1+b, va+b, v1+a+b} ,

and edge set defined in the following way: connect vi, vj ∈ V by an edge if

their subscripts i and j differ by 1, a or b. Note that the choice of a and b

implies that no other difference of subscripts of vertices in V is an S-unit.

It follows that G is an induced subgraph of G. Indeed, we may assign the

value of vertex vi ∈ V to be i, and then there is an edge between vi and

vj if and only if i − j is an S-unit. Now omit the edge between v1+a and

v1+a+b. The resulting graph G− is clearly a subgraph of G. In what follows,

we show that G− is not an induced subgraph of G.

Suppose the contrary and consider an induced representation of G− such

that the values of v0 and v1 are 0 and 1, respectively. By Remark 2.18 such

a representation exists. Consider the cycle v0 → v1 → v1+a → va → v0 in

G−. Note that, as we are in Case (1), from the fact that v0, v1 and va have

distinct values, it follows that the value of va has to be some S-unit ua and

the value of v1+a has to be 1 + ua. Analogously it follows that the values of

vb and v1+b have to be S-units ub and 1 +ub, respectively. Next we consider

cycle vb → v1+b → v1+a+b → va+b → vb in G−. It follows that va+b has value

ua + ub and v1+a+b has value 1 + ua + ub. Since the difference of the values

of vertices v1+a and v1+a+b is ub, i.e. an S-unit, and there is no connecting
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edge between these two vertices, we have a contradiction. Hence graph G−

is not an induced subgraph of G.

Next we consider Case (2). Let (xi, yi, zi), i = 1, . . . , k, be all nondegen-

erate solutions in S-units of (2.19). Let

R0 = {0, 1, xi, yi, zi, 1 + xi | i = 1, 2, . . . , k}.

Consider graph G0 with vertex set V0 = {vi | i ∈ R0} and edge set defined

in the following way: connect vi, vj ∈ V0 by an edge if and only if their

subscripts i and j differ by an S-unit. Choose S-unit a such that a /∈ R0

and that a+ v−w ∈ Z∗S for v, w ∈ R0 implies v = w. This is possible since,

by Proposition 2.16, for a given c 6= 0 the equation x+y = c has only finitely

many solutions in S-units x, y (take c = v − w for each possible choice of

v, w ∈ R0). Let Ra = {a+ i | i ∈ R0}. Note that the choice of a implies that

R0 ∩ Ra = ∅. Consider graph Ga with vertex set Va := {va+i | i ∈ R0} and

graph G with the vertex set V := V0 ∪ Va, both with edges between vertices

if and only if their subscripts differ by an S-unit. Now we omit from G the

edge between vz1 and va+z1 and denote the resulting subgraph of G by G−.

Note that G is an induced subgraph of G. Further note that G0 and Ga are

isomorphic graphs with an isomorphism f(vi) = vi+a, and are subgraphs of

G−. We will show that G− is not an induced subgraph of G.

Suppose the contrary and consider values for the vertices in V such that

the resulting representation of G− in G is induced. Without loss of generality

we may assume that in this representation of G− the value of v0 is 0 and

the value of v1 is 1, see Remark 2.18. In what follows, we show that the set

of values of vertices in V0 in the considered representation of G− must be

R0. Indeed, let ni denote the number of solutions of

(2.20) 1 + xi = y + z

in S-units y, z for i = 1, 2, ..., k. Without loss of generality we may assume

n1 ≥ n2 ≥ · · · ≥ nk. Suppose n1 = n2 = · · · = nl > nl+1 for some

l ∈ {1, 2, . . . , k}. Since for i ∈ {1, 2, . . . , l} there exists an edge between v1

and v1+xi , it follows that the value of v1+xi is 1 + c for some S-unit c. Since

by (2.20) there are n1 paths of length 2 between v0 and v1+xi , it follows that

1 + c = y + z must have at least n1 solutions. Note that hence c = xi for

some i ∈ {1, 2, . . . , l}. Hence the value of v1+xi is in the set {1 + x1, 1 +

x2, . . . , 1 + xl}, so the set of values of vertices in {v1+x1 , v1+x2 , . . . , v1+xl}
is {1 + x1, 1 + x2, . . . , 1 + xl}. Therefrom it follows that the set of values
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of vertices {vxi , vyi , vzi | i = 1, 2, . . . , l} is {xi, yi, zi | i = 1, 2, . . . , l}. By

considering the set of values of vertices v1+xi , where i’s are such that the

number of solutions of (2.20) equals to nl+1, we find that the set of values of

these vertices is uniquely determined as well. By proceeding in this way we

find by induction that the set of values of vertices of G0 in the considered

induced representation of G− must be R0.

Hence the values of vertices in Va in the considered representation of G−

are in Q\R0. Since there exists an edge between v0 and va in G−, there exists

S-unit b such that in this representation of G− the values of v0 and va differ

by b, i.e. the value of va is b. Note that the representation of G0 with vertex

set R0 contains all nondegenerate cycles of length 4 of G which contain an

edge between 0 and 1. It follows that the cycle v0 → v1 → v1+a → va → v0

in G− is degenerate, since the value of va is not in R0. Hence the values of

va and v1+a differ also by 1. Now, recall that f : V0 → Va with f(vi) = vi+a

is an isomorphism of graphs G0 and Ga, so by the same argument as above

(that the set of values of vertices of G0 in the considered representation of

G− is R0), it follows that the set of values of vertices of Ga is R0 + b =

{i + b | i ∈ R0}. This implies that in G− the number of edges between V0

and Va is at least N := #V0 = #Va. This is a contradiction, since by the

choice of a, the number of edges in G between V0 and Va is exactly N , and

hence the number of such edges in G− is one less. �

3. Further remarks

Throughout this section as well, S denotes a fixed finite nonempty set of

primes, G denotes the S-unit graph, and m = gcd{p− 1 : p ∈ S}.
We have proved that the Conjecture 1.1 does not hold when #S = 1,

however we believe that the following holds.

Conjecture 3.1. Let S be a given finite set of primes with #S ≥ 2. There

are nondegenerate induced cycles of the S-unit graph G of every sufficiently

large even length.

If 2 ∈ S or 3 ∈ S the conjecture is true by Ruzsa’s results. Moreover, in

these cases there are nondegenerate induced cycles of G of every even length.

Proving Conjecture 3.1 is equivalent to showing that for S with #S ≥ 2

and every sufficiently large even n ∈ N there exist S-units u1, u2, . . . , un

with zero sum, such that for all l, i1, i2, . . . , ik ∈ N with 0 < l < n and
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1 ≤ i1 < · · · < il ≤ n we have

ui1 + ui2 + · · ·+ uil 6= 0,

i.e. the condition on nondegeneracy is satisfied, and that for all 1 ≤ i < j ≤
n, (i, j) 6= (1, n− 1), (2, n) we have

ui + ui+1 + · · ·+ uj /∈ Z∗S ,

i.e. the condition on induced cycles is satisfied. It is reasonable to attempt

to prove this by splitting the proof into two steps, as it was done in the

proof of Theorem 1.4. To that end we prove the following proposition which

corresponds to Proposition 2.3. To prove the proposition we will use the

following well-known fact. For irrational r we have that

(3.2) {{nr} : n ∈ N} is dense in [0, 1),

where {nr} denotes the fractional part of nr. There is a more general result

than what is stated above, known as Kronecker’s theorem. It can be found

in [7, Chap. 23].

Proposition 3.3. Given a finite set of primes S such that #S ≥ 2, for

every sufficiently large even n ∈ N there exist S-units u1, u2, . . . , un such

that

(3.4) u1 + u2 + · · ·+ un = 0

and such that for all l, i1, i2, . . . , ik ∈ N with 0 < l < n and 1 ≤ i1 < · · · <
il ≤ n we have

(3.5) ui1 + ui2 + · · ·+ uil 6= 0.

Proof. If 2 ∈ S, the statement (in fact even Conjecture 3.1) follows from the

aforementioned result of Ruzsa. Assume henceforth that 2 /∈ S. Let p, q ∈ S
be such that p > q, and let m be as in (1.3). From Theorem 1.4 it follows

that there exists `0 ∈ N such that for every ` ∈ N with ` ≥ `0 there exist

positive S-units v1, v2 . . . , v`m+1 with

(3.6) v1 + v2 + · · ·+ v`m+1 = 1.

In what follows we show that for every r ∈ N with 1 ≤ r ≤ m/2 there exist

exponents αr, βr ∈ N such that

(3.7) rqβr > pαr > (r − 1)qβr .
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If r = 1, required α1, β1 clearly exist. Assume henceforth r > 1, and observe

that (3.7) is equivalent to

(3.8)
log r

log q
> αr

log p

log q
− βr >

log(r − 1)

log q
.

Further note that log p/ log q is irrational, and that clearly

1 >
log r

log q
>

log(r − 1)

log q
≥ 0.

Then by (3.2) there exists αr ∈ N such that

log r

log q
>

{
αr

log p

log q

}
>

log(r − 1)

log q
.

Let βr be the integer part of αr log p/ log q. Note that the assumption p > q

implies βr ∈ N. Hence the assertion (3.8), and consequently (3.7), follows.

Now write

(3.9) qβr + · · ·+ qβr = pαr + 1 + · · ·+ 1,

where the number of qβr ’s on the left hand side is r, and the number of 1’s

on the right hand side is rqβr − pαr . Note that by rqβr − pαr > 0 from (3.7)

we get that there is at least one appearance of 1 on the right hand side.

Further note that in total we have

(3.10) sr := r + 1 + (rqβr − pαr)

summands in (3.9). Let n be an even positive integer such that

(3.11) n ≥ `0m+ max
1≤r≤m/2

sr.

Recall that p ≡ q ≡ 1 (mod m) and note that from (3.10) it follows that

sr ≡ 2r (mod m). So n ≡ sr (mod m) for some r ∈ {1, . . . ,m/2}. Hence

n = sr + `m for some ` ∈ N, where r ∈ {1, . . . ,m/2} and ` ≥ `0 by (3.11).

By (3.6) and (3.9) there exist positive S-units v1, . . . , v`m+1 such that

(3.12) pαr + 1 + · · ·+ 1 + v1 + · · ·+ v`m+1 − qβr − · · · − qβr = 0,

where the number of 1’s is rqβr − pαr − 1, the number of qβr ’s is r, and the

vi’s have sum 1. Note that all the summands in (3.12) are S-units, and that

their number is

1 + (rqβr − pαr − 1) + (`m+ 1) + r = n.
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Suppose that in (3.12) we have a proper zero subsum. If pαr occurs in this

subsum, then by pαr > (r − 1)qβr from (3.7) we get that all the qβr ’s are

involved in this zero subsum. This is clearly possible only if the subsum

involves all the summands in (3.12), which is a contradiction. On the other

hand, if pαr does not occur in the subsum, then by qβr > rqβr − pαr from

(3.7) we get a contradiction again. Thus (3.12) has no proper zero subsum,

which concludes the proof. �

Note that by Remark 2.14 it follows that the condition #S ≥ 2 in Propo-

sition 3.3 is necessary. Now, let S be a finite set of primes with #S ≥ 2, and

let n0 be a sufficiently large even integer so that there exists a nondegenerate

cycle of G of length n0. Such n0 exists by Proposition 3.3. To prove Con-

jecture 3.1 one must show that there exists some n′0 ∈ N with n′0 ≥ n0, such

that for every even integer n with n ≥ n′0 among all nondegenerate solutions

in S-units of u1 + · · · + un = 0 there exists a solution (u∗1, u
∗
2, . . . , u

∗
n) such

that

u∗i + u∗i+1 + · · ·+ u∗j /∈ Z∗S for all 1 ≤ i < j ≤ n, (i, j) 6= (1, n− 1), (2, n).

This remains an open problem.
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[5] K. Győry, On certain arithmetic graphs and their applications to Diophantine prob-

lems, Func. Approx. Comment. Math 39 (2008), 289–314.
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