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DETERMINATION OF MAGNETIC STRUCTURES 
USING THE LANDAU THEORY OF SECOND ORDER PHASE TRANSITIONS 

J. SOLYOM (*) 
Institute Max von Laue-Paul Langevin, Grenoble, France 

R6sumB. - Un aperqu de la thkorie de Landau sur les transitions de phases du second ordre est prksent6. Son appli- 
cation a la dktermination de structures magnktiques possibles d'un cristal y trouve une attention spbciale. Les restrictions 
sur le changement de symktrie sont analyskes par la thkorie des groupes. I1 est montrk que pour des structures simples la 
symktrie peut 6tre d6termin6e sans thkorie des groupes. Les transitions entre deux bats magnktiques sont aussi discutkes. 

Abstract. - A review of Landau's theory of second order phase transitions is given with special emphasis on its 
application to determine the possible magnetic structures that can arise when a paramagnetic crystal undergoes a magnetic 
phase transition. Using group theoretical methods the restrictions for the change of the magnetic symmetry are outlined. 
It is shown that for not too complicated magnetic structures the symmetry can be determined without group theoretical 
calculations. Second order phase transitions between two magnetic phases are also discussed. 

I. Introduction. - The investigation of the magne- 
tic symmetry of a crystal represents a special topic 
in the field of magnetic phenomena. Experimentally in 
fitting the data of a neutron diaxaction pattern usually 
a variety of structures is taken as (( trial structures D, 
among which the fit has to choose the real one. In 
most of the works the choice of the (( trial structures 
is accidental and is not based on theoretical expecta- 
tions. Theoretically an unequivocal determination of 
the magnetic symmetry is feasible only in the know- 
ledge of all the exchange and anisotropic forces, which 
usually are not available. 

There is, however, a possibility, at  least for second 
order phase transitions, using only symmetry conside- 
rations, to determine the structures'that can arise 
when a paramagnetic crystal with given symmetry 
undergoes a magnetic phase transition. , Only these 
structures have to be considered as trial structures >> 
and this limits their number. This method is based 
on an extension of Landau's thermodynamic theory 
of second order phase transitions [l]. This theory, as 
it is known, gives not only the temperature behaviour 
of the thermodynamic quantities, but also predicts the 
symmetry of the new phase. Actually Landau's original 
paper [2] contains all the ideas how the change in 
the symmetry, has to be determined. The first appli- 
cations to non-magnetic (ordered alloys) and magnetic 
systems have been given by Lifshitz [3] and Dzya- 
loshinskii [4], respectively. The first great success of 
the theory in this respect was the explanation of the 
existence of weak ferromagnetism [4]. Since then there 
have been several attempts to perform a systematic 
investigation of the possible magnetic phase transi- 
tions. The most important contribution has been made 
by Kovalev [5 ] ,  who has found a new criterion in 
selecting the irreducible representations capable of 
describing magnetic structures. 

In Sec. I1 we will give a general formulation of the 
problem for paramagnetic-magneti~ phase transitions. 
The question we address ourselves to is what kind of 
magnetic structures can occur in a crystal having a 
given non-magnetic space group. We will list. without 
mathematical proof the criteria that restrict the possi- 
ble symmetry changes and show how the minimization 

(*) On leave of absence from Central Research Institute for 
Physics, Budapest, Hungary. 

of the thermodynamic potential can yield the allowed 
magnetic structures. In this treatment we will rely on 
group theory. It will be shown in Sec. 111, that for not 
too complicated structures the calculation can be done 
without the apparatus of group theory. In,Sec. TV 
we will shortly discuss phase transitions between two 
magnetic phases, this calculation being a simple gene- 
ralization of that for paramagnetic-magnetic transi- 
tions. Finally in Sec. V the main steps in the determi- 
nation of the magnetic symmetry will be summarized. 

11. Formulation of the problem for paramagnetic- 
magnetic phase transitions. - The main point in the. 
Landau theory is that in second order phase transi- 
tions there always exists an order parameter, which in 
one of the phases is identically zero, while in the other 
one it has finite value. For magnetic phase transitions 
the order parameter is the staggered magnetization. 
The variation of the order parameter is continuous at 
the transition temperature T, yielding, however, a dis- 
continuous change in the symmetry of the system. 
The order parameter being small in the neighbourhood 
of T, the thermodynamic potential @ can be expanded- 
in its powers. If M(r) denotes the magnetic moment 
density, the above statement means that 

@(P, T, Wr)) = @,(P, T) + @,(P, T, ?(r))l+ 

+ %(P, r, M@)) + , (1) 

where ~ ~ ( p ,  T, M(r)) is an ith order functional of 
M(r). Our task is to specify these functions using only 
general group theoretical arguments. 

Let Go be the crystallographic space group of the 
crystal in the paramagnetic phase and let R denote 
the operation of time reversal as well as the group 
containing the unit element E and R. The magnetic 
space group of the paramagnetic phase is the direct 
product of the groups Go and R (Go @ R). Supposing 
that all the irreducible representations T(k.m) and basis 
functions $pm' of this group are known, M(r) can be 
expressed as a linear combination of these basis func- 
tions in the following form 

where k denotes a vector of the star of the representa- 
tion, m refers to the m'" irreducible representation 
belonging to the given star, while i refers to the it" 
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basis function of the representation and e, is the unit 
axial vector in the direction a (a = X, y, z). 

Inserting eq. (2) into Qi of eq. (1) we get 

The thermodynamic potential @(p, T, M(r)) is expressed 
as a power series of the parameters c(:;"'. 

From now on it will be supposed that under a coor- 
dinate transformation not the basis functions $$k'm)(r) 
but the coefficients C!:") transform among each other. 
In the absence of external fields the thermodynamic 
potential of the system has to be invariant under any 
rotation of the coordinate frame. This means that in 
eq. (3) only invariant combinations of the coefficients 
C(k,m) 
, may occur. The next step is therefore to deter- 

mine all the invariants set up from these coefficients. 
The main difference between non-magnetic and 

magnetic phase transitions is that in the former case 
the order parameter, in powers of which the expansion 
of the thermodynamic potential goes, is a scalar, while 
in the latter case it has axial vector character. Accor- 
dingly the transformation properties of the coefficients 
c$") are given by the direct product of an irreducible 
representation of G, 63 R and the axial vector repre- 
sentation. This direct product can be decomposed into 
the irreducible representations of G, Q R and the 
magnetization density can be expressed as linear 
combination of the new basis functions Xlk'n')(r) with 
new coefficients. Thus eq. (2) can be written as follows 

M ( ~ )  = 1 Cfi (k3~n)  Xi (k,m)( P), 
k,m,i 

(4) 

where the primed coefficients C'?'"' are linear combi- 
nations of the unprimed ones. In what follows the 
primes will be dropped. 

As it has been mentioned earlier, for magnetic phase 
transitions the time reversal R, too, has to be taken 
into account. Under the influence of R all the coeffi- 
cients change sign. It corresponds to changing 
the sign of each internal current as well as that of the 
magnetization. Due to this fact there is no invariant 
of odd order. In  the non-magnetic case the non- 
existence of the third order invariants, which is neces- 
sary in order that the transition be of second order, 
appears as an additional criterion in selecting the 
representation which can describe second order phase 
transitions. 

Constructing the even order invariants it is known 
that for every irreducible representation there is only 
one second order invariant and there is no mixed one 
containing coefficients belonging to different irredu- 
cible representations. Thus @,(p, T, ~ ( r ) )  of eq. (3) 
can be written as 

where f(,) ( ~ ~ ( ~ 9 ~ ) )  is the second order invariant of the 
representation labelled by k and m. Above the tran- 
sition point all the functions (p, T) have to be 

positive and the thermodynamic potential is minimum 
for cik9") = 0. Below T, one Ack,") (p, T) becomes 
negative continuously and the usual supposition is that 
it changes linearly with the temperature. This means 
that for a special k, and m, 

A ( ~ o ~ ~ o ) ( ~ ,  T )  = a ( k ~ , m ~ ) .  (T - Tc) 
with a (ko,mo) , 0 . (6)  

The minimization gives that the coefficients belonging 
to the representation T(ko,m~) are finite below T,, but 
all the others remain zero. These coefficients can be 
neglected, i. e. it is possible to treat the different 
irreducible representations separately. It must be 
emphasized that this is true only after the decompo- 
sition of the direct product of the representation of 
the space group G, 63 R and the axial vector represen- 
tation. If we work with the coefficients c!,:"), it is 
possible to construct mixed invariants fromcoefficients 
with different m and cr. 

What we have to do now in order to determine 
all the possible magnetic structures for a crystal with 
given symmetry in the paramagnetic phase, is to take 
each irreducible representation of the paramagnetic 
space group, construct the second and fourth order 
invariants - the sixth order invariants play a role only 
in some special cases - put them into eq. (1) and 
minimize it with respect to the coefficients cik'"). 
Inserting these values of the coefficients into eq. (2) 
we get the moment density in the magnetic phase. 

This procedure is always feasible as all the irredu- 
cible representations of each space group are known 
[6]. Even if the basis functions Y!~'") (r) are not 
known, the knowledge of their transformation pro- 
perties under a coordinate transformation is enough 
to determine the symmetry elements that leave M(r) 
invariant, i. e. to obtain the magnetic symmetry group. 
Once this group is known, it is easy to find the orien- 
tation of the moment of the individual atoms relativ 
to each other and to the crystallographic axes. 

There are, however, two principal restrictions that 
have to be taken into account in this procedure. The 
first arises from the requirement that the magnetic 
structure be periodic. Lifshitz [3] has shown that in 
terms of group theory this can be formulated as 
follows : only those representations can describe 
periodic structures, whose antisymmetrized square 
does not contain common irreducible representation 
with the vector representation of the group G,. As it 
can be shown - see reference [7] -this leads to the 
conclusion that only representations belonging to 
vectors k with rather high symmetry (vectors at the 
centre or at the edge of the Brillouin zone) can give 
periodic structures. From this it follows that if the 
magnetic unit cell does not coincide with the chemical 
one, the new lattice vector might be twice, three times 
or at most four times bigger than in the non-magnetic 
phase. If we recall, however, the fact that there are 
helicoidal magnetic structures, where the period of the 
spiral is much larger than the lattice spacing and is 
non-commensurable with it, we have to drop this 
condition. The condition for the appearance of spiral 
structures has been investigated by Dzyaloshinskii [8] 
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and here we refer only to this work without going 
into the details. 

The other restriction for the irreducible represen- 
tations has been given by Kovalev 151, who has shown 
that certain representations cannot give finite magnetic 
moment at the atomic positions. His result can be 
summarized as follows : 
Let G(A) be the point group centered at an atom A, 
i. e. its elements h' transform the crystal into itself. 
A representation Tck*") can describe magnetic moment 
at this atomic site only, if 

C X'k,m'(h') # 0 . 
A 

(7) 
G(4) 

The character ~(~**)(h ')  can be expressed with the help 
of the character of the weighted small representation 
ji(k,m)(h) using the formula given by Kovalev [5] 

X(k9m)(h) = C 2(k9m)[(hsl)- hhi] X 

where k, is a vector of the star for which the weighted 
small representation is known [6], k, is another vector 
of the star, with h",k, = k,, where g; = {a; ( h; ) is 
an element of the group G,, P is the position of the 
atom A and h is the same rotation in the original coor- 
dinate framework as h' around the atom A. The 
summation in eq. (8) is extended to the vectors k, of 
the star for which hk, is equivalent to k,. 

III. Determination of simple magnetic structures. - 
The actual problem in the determination of magnetic 
structures is-not to construct all the possible structures, 
but to find that one that agrees with the experimental 
data obtained from NMR, Mijssbauer or neutron 
diffraction measurements. The first information that 
these measurements can yield is the size of the magnetic 
unit cell compared to the chemical one. From this the 
vector k characterizing the translational behaviour 
can be determined. It is enough to investigate the 
representations belonging to this vector. 

For simple magnetic structures, where from the expe- 
riment it is known that there is only a few magnetic 
atom per magnetic unit cell, the orientation of the 
moments can be calculated without knowing the 
irreducible representations. This method works, howe- 
ver, only for non-metals where the magnetic moment 
can be localized to the atoms. 

Taking a simple structure with two magnetic atoms, 
let S; and S; (a = X, y, z) be the magnetic moment 
components of the first and second atoms respectively. 
In the neighbourhood of the transition point the 
thermodynamic potential @ can be expanded directly 
in powers of these moment components, i. e. 

+ @a(p, T, Sal, S;) + ... (9) 
and 

@,(P, T, S?, S 3  = C Ai(p, T) f?'(S;, S;) , 
i 

where f'?) (SkS2 and f (S:,S%) are second and 
fourth order invariants set up from the moment 

components. Here we have already used the fact that 
there is no invariant of odd order. 

The construction of the invariants can be done in a 
systematic way, knowing only the symmetry elements 
of the paramagnetic phase. In fourth order e. g. we 
take a quartic combination of the six moment compo- 
nents (S? S; S: S:) where a, P, y ,  6 = X, y, z and 
i, j ,  k, l = 1 or 2. Applying on it all the symmetry 
elements T(g) and adding up these contribution, the sum 

will give either zero or an invariant. Repeating now 
this procedure with a combination that does not 
appear in eq. (ll),  all the fourth order invariants 
can be obtained. 

Inserting these expressions into Eq. (9, 10) and 
minimizing @ with respect to the magnetic moment 
components supposing that at T, one of the coefficients 
A i  changes sign and all the others are positive, the 
minimization gives at once the moment components 
at both atoms. 

As a simple example let us investigate the magnetic 
structure of a few stoichiometric manganese alloys as 
MnPd, MnPt, MnAu, MnNi and MnRh. All these 
compounds crystallize in CuAuI structure and are 
antiferromagnetic [g] with a magnetic unit cell twice 
as big as the crystallographic one (see Fig. 1). 

FIG. 1. - Allowed magnetic structures for CuAuI-type crystals 
with magnetic unit cell dimensions of a = a0 &and c = CO. 

The translational properties of the new phase can be 
inferred unequivocally from the appearance of satellites 
in the diffraction pattern. The structure is described by 
the vector a = (z/a,, zla,, 0) where a, is the lattice 
constant in the paramagnetic phase. From this it fol- 
lows that S,  = - S,, where S, is the magnetic moment 
of the Mn atom at the corner-of the new cell and 
S, is that of the atom in the centre of the basal plane. 
The problem is still the relative orientation of the 
moment with respect to the crystallographic axes. 

Let us forget for the moment about the non- 
manganese atoms. Table I contains the transformation 
properties of the moment components under the 
elements of the point group. E is the unit element, 



I is the inversion, C, is the rotation around the axis 
(001) through the angle 7~12, U,, U,, U, and U, are 
rotations through 7~ around the axes (loo), (OIO), (1 10) 

2 and (110), respectively, S, = C, I, oh = C4 I and 
oi = ui I .  

TABLE I 

Transformation properties 
of the magnetic moment components 

in CuAuI-type lattice 

Using Table I it is easy to see that the second and 
fourth order invariants are as follows : 

As there is no mixed second order invariant from 
S; and S: or S:, the z component can be treated 
separately from the X and y components, i. e. the 
moment appearing in a second order phase transition 
is either along the z direction or perpendicular to it, 
but angles in between are not allowed. In the case 
when S :  # Oland S; = S: = 0 we get the structure 
given in figure21 a. In the other case when the moment 
lies in the (X, y) plane, the minimization of the free 
energy gives definit direction for the sublattice magne- 
tization, namely there are two types of solutions : 

These two possibilities are represented in figure 1 b 
and:c. This shows that the moments has to be oriented 
in high symmetry directions and more complicated 
structures like those proposed by Kasper and Kouvel 
[l01 for MnNi cannot arise in a second order phase 
transition. 

Knowing now the magnetic symmetry of the crystal 
it is possible to investigate whether the non-manganese 
atoms may have magnetic moment or not. Supposing 
the existence of moment on these atoms they may 
appear together with the aligned magnetic moment of 
Mn provided the symmetry determined earlier does not 
change. The possible orientations of these moments 
are also given in figure 1. This symmetry argument 
does not say, however, anything about the relative 
value of the moments. The only thing we may claim 
is that the moment induced by the manganese atoms 
at the site of the non-manganese ones is small, as the 
effective field at these positions is small. The contri- 
bution from the first Mn neighbours is zero and only 
the second neighbours give non-vanishing contribution. 

As a second example let us investigate the magnetic 
structure of Mn,Pt [Ill. The magnetic unit cell is 
doubled in one direction as compared to the chemical 

cell of Cu,Au-type crystals (see Fig. 2). The transla- 
tional properties are described by the vector 

k = (O,O, , 
where a is the lattice constant. The manganese sheets 
lying at a distance a are coupled antiferromagnetically, 
i.e. S, = - S,, S, = - S, and S, = - S,. 

FIG. 2. - Magnetic unit cell of M n g t  just below the NCel 
point. The Mn and Pt atoms are represented by full and empty 

circles respectively. 

Looking for the possible magnetic structures of this 
system it is easy to see that the rotations and reflexions 
which transform the atom 3 on the basal plane into 
one of the positions 1, 2, 4 or 5 cannot be symmetry 
elements of the magnetic space group. If e. g. 3 is 
transformed into 1, an atom equivalent to 3 would be 
transformed into 4. As S, = - S,, this transforma- 
tion can be symmetry element only if S, = S, = 0 
and S, = 0. 

The remaining symmetry elements are the same as 
in the tetragonal CuAuI type lattice, i. e. E, C,, U,, 
U,, U,, U,, I and their products. The transformation 
properties of the magnetic moment components under 
these symmetry elements are given in Table 11. 

It can be seen that the z component of the moment 

Transformation properties 
of the magnetic moment components 

in Cu, Au-type lattice 
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is not mixed with the X and y components and there- 
fore in the second order invariants they appear sepa- 
rately. This means that the moment appearing in a 
second order phase transition is directed either along 
the z axis or in the (X, y) plane but not in intermediate 
positions. Let us investigate now the relative orien- 
tation of the moments on the three different atoms 
for the case when the moments are along the z axis. 

The second and fourth order invariants are as 
follows : 

(sfI2 + (s3Z12 

Inserting these invariants into eq. (9-10) and minimiz- 
ing the thermodynamic potential, we get three types 
of solutions : 

The corresponding structures are sketched in figure 3. 
In the third case the magnetic symmetry of the crystal 
allows the existence of induced magnetic moments on 
the Pt sites. 

FIG. 3. -Possible magnetic structures in Cu3Au-type lattice 
with magnetic unit cell doubled in the z direction and with 

magnetic moment lying along this axis. 

IV. Magnetic-magnetic transitions. - Until now we 
have investigated the symmetry of magnetic structures 
arising from the paramagnetic phase. In some cases 
this structure does not change with decreasing tempe- 
rature and the structure determined above is the 
ground state structure as well. In many cases, however, 
new phase transitions take place below the first tran- 
sition point. These are often first order transitions. 
This theory is incapable to say anything about the 
new structure in such a situation. If, however, this 
transition from a magnetic phase to another one is of 
second order, the procedure applied above can be 
used for this transition, too [12], [13]. 

Let us introduce a quantity 

where M(r, T) is the actual magnetic moment density 
at temperature T and Tc, is the second transition 

temperature. This quantity can serve as small para- 
meter in the expansion of the thermodynamic potential. 
The irreducible representations with the help of which 
M&, T) is written in the form of eq. (4) are that of 
the magnetic symmetry group of the crystal above 
Tc2. As now the magnetic structure above this tran- 
sition point is not invariant under time reversal, third 
order invariants may also appear. The transition, 
however, as we have mentioned earlier, is of second 
order only if there is no third order invariant. This 
requirement has to be checked for representations 
which describe transitions between magnetic phases. 

Thus quite complicated magnetic structures can 
arise in several steps, decreasing in each step the 
number of symmetry elements. 

V. Concluding remarks. - In this paper we have 
outlined the method how the Landau theory of second 
order phase transitions can be applied to determine 
the symmetry of the magnetic structures arising in a 
second order phase transition. Knowing the space 
group of the paramagnetic phase all the possible 
magnetic structures can be constructed. Using the 
experimental data of NMR, Mossbauer or neutron 
diffraction measurements the structure realized in a 
given system can be found. For this purpose it is not 
necessary to calculate all the possible structures, only 
those which are consistent with the translational pro- 
perties inferred easily from the experiments. To 
summarize now the procedure the following calculation 
has to be done. 

1) The magnetic moment density has to be written 
formally with the help of the irreducible representations 
of the space group of the paramagnetic phase with 
undefined coefficients c'::' (see eq. (2)). 

2) Construct the second and fourth order invariants 
from these coefficients and write them into the expres- 
sion of the thermodynamic potential Q, (eq. (3) and 
(1)). 

3) Minimize Q, with respect to these coefficients. 
4) Inserting the obtained values for c'::' into 

eq. (2), determine the symmetry of the magnetic 
structure. 

In the case there is only a few magnetic atom in the 
magnetic unit cell, the procedure can be simplified as 
follows : 

1) Assign a magnetic moment with arbitrary orien- 
tation and absolute value to each different magnetic 
atom. 

2) Construct the second and fourth order invariants 
from the magnetic moment components and put them 
into the expression of the thermodynamic potential 
(eq. 9-10). 

3) Minimize @ with respect to the moment compo- 
nents. These components determine directly the 
magnetic phase. 

In both cases the second and third steps, namely 
the construction of the invariants and the minimization 
of the thermodynamic potential are very important in 
the determination of the symmetry. We mention only, 
without going into details that they can be replaced 
by group theoritical calculations only, as it has been 
shown by Birman [14]. 
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