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Abstract

We discuss the limitations of the covariant derivative expansion
prescription advocated to compute the one-loop Standard Model (SM)
effective lagrangian when the heavy fields couple linearly to the SM. In
particular, one-loop contributions resulting from the exchange of both
heavy and light fields must be explicitly taken into account through
matching because the proposed functional approach alone does not
account for them. We review a simple case with a heavy scalar sin-
glet of charge −1 to illustrate the argument. As two other examples
where this matching is needed and this functional method gives a
vanishing result, up to renormalization of the heavy sector parame-
ters, we re-evaluate the one-loop corrections to the T–parameter due
to a heavy scalar triplet with vanishing hypercharge coupling to the
Brout-Englert-Higgs boson and to a heavy vector-like quark singlet
of charged 2/3 mixing with the top quark, respectively. In all cases
we make use of a new code for matching fundamental and effective
theories in models with arbitrary heavy field additions.
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1 Introduction

The discovery of the Brout-Englert-Higgs (BEH) boson [1] at the LHC [2] has
completed the Standard Model (SM), and with it the description of nature
with a precision up to few per mille at the electro-weak scale [3]. Moreover,
the picture which seems to emerge from the stringent limits set by many
of the LHC searches for new physics shows a gap up to the next layer of
physics [4] 1. In this scenario one must use an effective lagrangian approach
to study the low energy effects of possible heavy new resonances beyond the
LHC reach:

Leff = LSM +
∑
n>4

1

Λn−4
Ln , (1)

where LSM is the SM lagrangian, Λ the next scale of new physics and n the
dimension of the local operators O(n)

i entering in Ln =
∑

i α
(n)
i O

(n)
i , with α

(n)
i

the corresponding Wilson coefficients. The classification of all operators O(6)
i

of dimension 6 in L6 parameterizing the SM extensions in a model indepen-
dent way was put forward some time ago [6] 2. The coefficients α

(6)
i , which

are expected to gather the largest low-energy contributions of the heavy par-
ticles, do depend on the particular SM extension considered. As already
noticed, the picture emerging from the LHC searches has boosted the revival
of the phenomenological interest in the theoretical prediction of the coeffi-
cients of the effective lagrangian up to dimension 6 and up to one-loop order,
to cope with the expected experimental precision. With this purpose, the
procedure to evaluate the contributions of new (heavy) physics to this order
has been revised in Ref. [9] (see [10] for related previous works), providing
the one-loop corrections for any SM addition with no linear couplings to the
SM (light) fields. In this work the evaluation of the one-loop contribution of
a generic heavy sector is reduced to an algebraic problem, getting rid of the
difficulties associated to the handling of the loop integrals. This is achieved
by the clever use of functional methods using the so called covariant deriva-
tive expansion (CDE). Its results readily apply to supersymmetric models
with R–parity [11], to models in which the heavy sector does not mix lin-
early with the SM [12] and, in general, to models with a (discrete) symmetry

1 Neglecting, for the time being, the diphoton excess observed at ∼ 750 GeV by the
LHC collaborations [5].

2See also Ref. [7] for a discussion of the only dimension 5 operator built with SM
fields, and which on the other hand also violates lepton number; and Refs. [8] for further
developments on the dimension-6 lagrangian.
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forbidding such linear terms [13, 14]. This work has been also generalized
to extend its range of applicability to the case of non-degenerate heavy field
masses [15]. However, as already emphasized, although it has been claimed
that the method applies in general, it does not fully account for all quantum
corrections when the SM addition involves heavy fields coupling linearly to
the light (SM) fields. Since in this case there are one-loop corrections re-
sulting from the exchange of both heavy and light fields within the loops
which are not included in the algebraic result, which only accounts for the
one-loop diagrams exchanging heavy particles alone 3. These contributions
can be taken care of, however, performing a full matching with the proper
local operators, as argued time ago in Ref. [16]. 4

Let us be more precise about why this further matching is needed to
recover the physical predictions of the original theory. The straightforward
application of the CDE results in a different theory in the presence of a heavy
sector coupling linearly to the SM. Indeed, the computation of the one-loop
effective action Seff for the light (SM) fields l by integrating out a heavy field
h,

e iSeff [l] =

∫
Dh e iS[h,l] , (2)

using the saddle point approximation requires solving the stationary equation
for the action S,

δS[h, l]

δh

∣∣∣∣
h=hc

= 0 , (3)

defining the heavy field classical solution hc. Since, it is around this solution
that the quantum fluctuations H = h − hc only enter quadratically in the
path integral:

e iSeff [l] =

∫
DH e iS[hc+H,l]

=

∫
DHe

i
(
S[hc,l]+

1
2
δ2S[h,l]

δh2

∣∣∣∣
h=hc

H2+O(H3)
)
.

3There can be one-loop contributions proportional to the linear couplings due to the
running of heavy particles alone, which are fully accounted for in the CDE method, see
below.

4Such a matching could be in principle calculated using functional methods, as pro-
posed, for example, in Refs. [17] and references there in. A generalization of the CDE
prescription with this purpose is currently under investigation.
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However, in the presence of linear couplings of the heavy field to the SM
fields, L[h, l] ⊃ h†J [l] + h.c., the equation of motion for hc

(D2 +M2 + U [l]) hc = J [l] +O[h2
c ] , (4)

where D2 = DµD
µ with Dµ the covariant derivative, M is the h mass and

U is the pertinent function of the light fields l, is solved by iteration (first
equation below) also making use of an asymptotic expansion for the non-local
operator O−1 = −(D2 +M2 + U [l])−1 (second equation) 5

hc ≈
1

D2 +M2 + U [l]
J [l] =

1

M2

∞∑
n=0

(
−D

2 + U [l]

M2

)n
J [l] . (5)

But, this expansion is only applied for a series solution with a finite number
of terms N , in which case the linear term is not eliminated but suppressed
to the power M−2N . In practice, one redefines

h = H +
1

M2

N−1∑
n=0

(
−D

2 + U [l]

M2

)n
J [l] ≈ H + hc , (6)

which is a local, and then allowed, field redefinition. In such a case the linear
coupling is only redefined (suppressed) to order M−2N ,

L[h, l] ⊃ −H†
(
D2 + U [l]

M2

)N
J [l] + h.c. , (7)

and cannot be ignored 6. One may argue that in the limit N → ∞ this
coupling goes to zero, but then the expansion of O−1 is asymptotic and
the resulting theory and physical predictions of both limits (integrating to
arbitrary momenta for N finite and taking N → ∞ afterwards, or N → ∞
and integrating to arbitrary momenta) are different. In summary, one can
use Eq. (6) keeping track of the linear term suppressed to the corresponding
order, or use the quadratic contributions obtained by the CDE with the
subsequent matching as indicated in Ref. [16]. We must insist again at this
point when using the former approach that although the linear coupling is

5O−1 has a finite radius of convergence and the series expansion is only valid for small
values of the momenta and of the light fields.

6In general, there can be further contributions to Eq. (7) due to higher order terms in
h in the lagrangian but they result in higher order contributions in M−1 at one loop.
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removed up to order M−2N , it contributes to order M−2 at one loop, as we
will explicitly show in the example below.

In the following section we work out an explicit example, reviewing a
simple SM extension studied in full detail in Ref. [18], the addition to the
SM of one extra heavy charged scalar singlet h of mass M (= Λ). We
want to elaborate on the fact that the purely functional methods used in
the CDE to compute the one-loop effective lagrangian (see Ref. [9]) require
further matching, as pointed out in Refs. [16, 18]. The one-loop effective
action computed with the proposed functional method is entirely governed
by the terms in the full lagrangian which are quadratic in the heavy fields.
Furthermore, light fields are kept constant through the calculation. Such
contributions correspond, diagrammatically, to one-loop diagrams in which
only heavy particles circulate in the loop. In contrast, the diagrammatic
calculation of the one-loop effective lagrangian by matching the fundamental
and effective theories includes those contributions plus those in which both
heavy and light particles circulate in the loop (these diagrams depend on
the linear couplings of the heavy fields to the SM). Hence, these latter con-
tributions do have to be taken into account but the CDE with its present
formulation does not incorporate them. (See footnote 4.)

As another example of physical interest where further matching is re-
quired after using the CDE recipe, we discuss in Section 3 the proper one-
loop matching for the T–parameter in two other SM extensions with a heavy
sector coupling linearly to the SM. In one case the extended model has an
extra heavy scalar triplet coupling linearly to the BEH boson, and in the
other one the SM is extended with one extra heavy vector-like quark singlet
of charge 2/3 mixing with the top quark. In both cases the CDE alone gives
a vanishing one-loop contribution (or gives a contribution that can be reab-
sorbed in the renormalization of the mass of the heavy fields), in contrast
with the straightforward diagrammatic computation. For this calculation we
make use of MatchMaker [19], a new automated tool for evaluating tree-level
and one-loop matching conditions for arbitrary UV completions into effective
lagrangians. The result for the examples worked out below agrees with that
obtained in Ref. [20] for the SM unbroken phase in the scalar triplet case,
and with the result in Refs. [21, 22] for the vector-like quark singlet addition.
Section 4 is devoted to a summary. Technical details on the comparison with
previous results in the literature are relegated to an appendix.
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2 Extending the SM with a heavy charged

scalar singlet

Let us assume the existence of a heavy scalar singlet h of hypercharge −1 and
of mass M , much larger that the electro-weak scale, as in Ref. [18]. Following
it, we review in this section the discussion on the need of further matching
of the effective field theory (EFT) obtained by the CDE integration of the
heavy field with the fundamental theory to one loop, if both must describe
the same physics at this order. However, it is not necessary in our case to go
through the complete calculation of the one-loop effective lagrangian, which
is already worked out in detail in Ref. [18], but it is enough to show that the
CDE does not account for a definite physical contribution at this order and
hence, that it must be added through matching.

The model we are interested in is described by the lagrangian 7

L = LSM + Lh = LSM + h†Oh+ h†J + J†h , (8)

with O ≡ −D2 −M2 − β|φ|2, and J ≡ ¯̀̃
afab`b. φ is the SM scalar doublet

and `a the SM lepton doublet of flavor a. Besides, since ˜̀ = iτ2`
c, fab is

antisymmetric in the flavor indices.
In order to substantiate our point with this example we will identify first

a physical amplitude for which the predictions in the fundamental theory
and in the EFT obtained applying the CDE prescription are different. This
means that the EFT mimicking the fundamental theory must be completed
with the required local operators as shown in Ref. [18]. We will then show by
analogy that this is needed because the implicit field redefinition used in this
case when decomposing the heavy field as its classical counterpart plus its
fluctuation corresponds to a non-allowed transformation, for the classical field
definition involves a non-local operator which brings it to a different theory.
This is made apparent observing that successive heavy field redefinitions in
the fundamental theory with local transformations suppressing the linear
coupling of the heavy field to SM fields up to order M−2N give the same
physical results till the limit N → ∞ is taken. Then, no linear heavy field
coupling to light fields is present at all and the heavy field redefinition involves
an infinite sum of terms expanding the non-local operator in Eq. (5), then
requiring further matching.

7We have not explicitly written an allowed quartic term in the heavy field, α|h|4, which
plays no relevant rôle in our discussion.
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2.1 Matching the EFT to the fundamental theory

As worked out in Ref. [18], the one-loop quantum corrections involving the
β parameter in Eq. (8) generate the one-loop (1l) effective lagrangian (at
the renormalization scale µ = M and omitting flavor indices)

L(1l)
β =

1

16π2

{
M2β(1 + ∆)|φ|2 +

β2

2
∆|φ|4

+
1

M2

[
−β

3

6
|φ|6 +

β2

2
(∂µ|φ|2)2 +

g′ 2β

12
|φ|2BµνB

µν
]

+
β

M2

[
|φ|2(¯̀f †f��D`) + h.c.

]}
, (9)

where dimensional regularization with d = 4 − 2ε is used and ∆ = 1/ε −
γE + ln 4π. g′ and Bµν stand for the hypercharge coupling and field strength,
respectively. The first line in Eq. (9) renormalizes the SM lagrangian while
the last two are part of the dimension 6 effective lagrangian. What matters
to us, however, is that all the terms but the last one correspond to diagrams
with only h running in the loop, whereas the last operator corresponds to
a diagram with both heavy (h) and light (`) particles running in the loop.
Hence, this latter contribution, which is also proportional to the linear h
coupling in the full lagrangian in Eq. (8) (proportional to f), is missing in
the functional formalism. Therefore, it has to be computed through matching
with the fundamental theory. In the effective theory there is no such one-loop
contribution to the dimension–6 operator |φ|2 ¯̀

��D`. We will then focus on this
term.

The matching can be performed by computing the relevant contribution
to the φφ† → `¯̀ amplitude, that we denote iM = ūa(p2)γµub(p1)iMµ

ab. The
result in the fundamental theory reads

iMµ
ab = − i(d− 4)(d− 2)

16π2d

β(f †f)ab
M4

(pµ1 + pµ2)A(M2) + . . . , (10)

where the relevant Feynman diagram is shown in Fig. 1, the dots denote
terms proportional to higher powers of the external momenta. We define the
tadpole integral

i

16π2
A(M2) ≡µ2ε

∫
ddk

(2π)d
1

k2 −M2 + iδ

=
i

16π2
M2[∆ + 1− ln

(
M2

µ2

)
+O(ε)] , (11)
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Figure 1: Feynman diagram contributing to iMµ
ab in the full theory, see Eq.

(10).

where the ∆ term is removed by counterterms in the MS scheme. The d− 4
factor in Eq. (10) guarantees a finite result that reads

Mµ
ab =

β(f †f)ab
16π2M2

(pµ1 + pµ2) + . . . . (12)

There is not such a contribution in the EFT obtained using functional meth-
ods and the beyond of the SM tree-level (0l) effective lagrangian

L(0l)
BSM = −J†O−1J =

J†J

M2
+O(M−4) . (13)

So both theories are not the same, unless we correct the latter with this
additional matching.

Let us now discuss by analogy what happens when we redefine the heavy
field in the fundamental theory by successive shifts, Eq. (6), corresponding
to keeping only a finite number of terms N in the expansion of O−1 in Eq.
(5). The transformation has unit Jacobian but involves a non-local operator
in the limit N →∞.

2.2 Heavy field redefinition at leading order

Let us assume N = 1 in Eq. (6). Then, the heavy field h, named H after
redefining it, equals to first order

h = H +
J

M2
(14)
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Figure 2: Feynman diagrams contributing to iMµ
1 (left), iMµ

2 (center) and
iMµ

3 (right) in Eq. (18) (and Eq. (23) but with the blue dots replaced with
red squares).

and hence, the heavy lagrangian in Eq. (8) reads

LLO
H = H†OH +

J†J

M2
+

1

M2

(
H†ÔJ + h.c.

)
+
J†ÔJ
M4

, (15)

with
Ô ≡ O +M2 = −D2 − β|φ|2 . (16)

As required, the linear coupling is now suppressed up to order M−2. However,
this linear coupling, despite its higher-order suppression, still provides the
same physical amplitudes, of order M−2, because we have only performed
an allowed (local) field redefinition. Indeed, focusing again on the amplitude
φφ† → `¯̀, the relevant (new) Feynman rules read now

= i
p2
H

M2
f †ab , = −i

β

M2
f †ab , (17)

where the blue dot stands for an order M−2 coupling and pH is the H mo-
mentum. The three diagrams that contribute to this amplitude are shown in

9



Fig. 2 (we omit flavor indices) with the following result

iMLOµ
1 =

i

16π2

4(d− 2)

d

β(f †f)

M4
pµ1A(M2) + . . . ,

iMLOµ
2 =

i

16π2

4(d− 2)

d

β(f †f)

M4
pµ2A(M2) + . . . ,

iMLOµ
3 = − i

16π2
(d− 2)

β(f †f)

M4
(pµ1 + pµ2)A(M2) + . . . . (18)

Although each of the three amplitudes is separately divergent, the sum is
finite and equals, as expected, Eq. (10):

Mµ =MLOµ
1 +MLOµ

2 +MLOµ
3 . (19)

2.3 Heavy field redefinition at next to leading order

Let us repeat the exercise to next order in M−2. The heavy field redefinition
reads now

h = H +
J

M2
+
Ô
M4

J , (20)

which leaves the lagrangian

LNLO
H = H†OH +

J†J

M2
− 1

M4

(
H†Ô2J + h.c.

)
+
J†ÔJ
M4

+
J†Ô2J

M6
+
J†Ô3J

M8
. (21)

The linear coupling is now suppressed up to order M−4. The relevant (new)
Feynman rules read at this order

= −i
p4
H

M4
f †ab ,

= i
β

M4
[p2
H + (p`1 − p`2)2]f †ab , (22)

where the red square denotes a coupling of order M−4 and the fermion mo-
menta, p`1,`2 follow the particle flow. The same three diagrams contribute to
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the φφ† → `¯̀ amplitude but with different couplings and weights (Fig. 2 but
with the blue dots replaced with red squares):

iMNLOµ
1 =

8i

16π2

(d− 1)pµ1 − p
µ
2

d

β(f †f)

M4
A(M2) + . . . ,

iMNLOµ
2 =

8i

16π2

(d− 1)pµ2 − p
µ
1

d

β(f †f)

M4
A(M2) + . . . ,

iMNLOµ
3 = − i(d+ 4)(d− 2)

16π2d

β(f †f)

M4
(pµ1 + pµ2)A(M2) + . . . . (23)

We find again that the three contributions are separately divergent but their
sum is finite and exactly agrees with Eq. (10),

Mµ =MNLOµ
1 +MNLOµ

2 +MNLOµ
3 . (24)

As both calculations in the last two subsections show, we recover the physical
one-loop amplitude φφ† → `¯̀ to whatever order M−2N we suppress the linear
coupling of the heavy field to the SM as long as the heavy field redefinition
is allowed (local), i.e. N < ∞. But if the N → ∞ limit is formally taken
at the lagrangian level, there is no linear coupling of the heavy field left at
all, and we have to deal with a non-local operator (transformation) and a
different theory with different physical predictions.

3 SM extensions with heavy scalars and fermions

The issue raised in the previous section also applies to any SM extension with
heavy fields coupling linearly to the light fields. In the following we provide
the tree-level and one-loop matching conditions relevant for the calculation
of the T–parameter [23] in two of these SM extensions. In both cases the
one-loop contribution to the T–parameter entirely arises from terms linear
in the heavy fields. Hence, these contributions are missing in the one-loop
effective lagrangian obtained by functional methods only. 8

Using the language of the SM effective lagrangian, the T–parameter, de-
fined as the correction to the SM contribution and absorbing the electro-
magnetic coupling constant αEM = e2/4π [24], can be written from the

8There is a contribution in our first example proportional to the linear couplings that
arise from loops involving only heavy particles and therefore, it is correctly accounted for
in the CDE [9]. This term can be reabsorbed by a renormalization of the heavy particle
mass as we discuss below.
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Wilson coefficient α1 of the dimension-6 effective operator (we omit the su-
perscript indicating the operator dimension in the following)

O1 =
∣∣φ†Dµφ

∣∣2 as ∆T̂ = −α1v
2, (25)

with v = 174 GeV the SM vacuum expectation value.
We use MatchMaker [19], an automated tool that performs tree-level and

one-loop matching for arbitrary extensions of the SM, for the actual match-
ing. This is performed off-shell, which means that all independent (including
redundant) operators with four Higgs bosons and two covariant derivatives
have to be considered. In particular, we use the basis

O2 = φ†φ ∂2(φ†φ) , R = φ†φ φ†D2φ , (26)

where the hermitian conjugate of R has to be also included in the effective
lagrangian, with αR† = α∗R . The matching is performed by computing the
one-light-particle-irreducible (1LPI) contributions to the Green’s function

〈H1H
∗
1H2H

∗
2 〉 , with φ =

(
H1

H2

)
, (27)

in the full and effective theories. In the effective theory this amplitude reads

M =− α1

[
p2 · (p3 − p4)− p3 · (p3 + p4)

]
+ 2α2(p3 + p4)2 + α∗R

[
p2

2 + p2
4

]
+ αR

[
(p2 + p3)2 + (p3 + p4)2 + 2p2 · p4

]
, (28)

where all momenta are considered incoming and we have already used mo-
mentum conservation to eliminate p1. The corresponding calculation in the
relevant extension of the SM will fix the matching conditions, up to possible
wave function renormalization of the SM fields (see below).

3.1 SM extension with a heavy scalar triplet

In this subsection we consider the first example discussed in Ref. [9]. The
same model was previously considered in [20], where the Wilson coefficients
were computed by means of matching conditions. The SM addition consists
of an extra real scalar in the (1, 3, 0) representation of the SM gauge sym-
metry group SU(3)C × SU(2)L × U(1)Y . Denoting by Φa its three SU(2)L
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components, with a = 1, 2, 3, the heavy field lagrangian reads

LΦ =
1

2
DµΦaDµΦa − 1

2
M2ΦaΦa − λΦ

4
(ΦaΦa)2

+ κφ†σaφΦa − ηφ†φΦaΦa , (29)

where φ is the SM scalar doublet with quartic coupling −λ(φ†φ)2 and σa are
the Pauli matrices.

The 1LPI contributions to the Green’s function 〈H1H
∗
1H2H

∗
2 〉 reproduce

the momentum structure of the effective theory calculation in Eq. (28) with
the tree-level Wilson coefficients

α
(0l)
1 = −4α

(0l)
2 = 2α

(0l)
R = −2

κ2

M4
, (30)

and the one-loop ones

α
(1l)
1 =

κ2

16π2M4

(
− κ2

M2
+ 16η − 6λ− 20λΦ −

5

4
g2

2

)
,

α
(1l)
2 =

1

16π2M2

[
− η2

2
− 13

4

κ4

M4

− κ2

M2

(
7

2
η +

15

16
g2

1 +
25

16
g2

2 − 6λ− 5λΦ

)]
,

α
(1l)
R =

κ2

16π2M4

(
21

2
η +

5

8
g2

1 +
5

4
g2

2 −
25

2
λ− 10λΦ +

21

4

κ2

M2

)
. (31)

As mentioned above, the wave function renormalization of the SM fields
must be also taken into account. In our case, the heavy triplet also con-
tributes to the SM scalar doublet kinetic term at the loop level:

LSM =

(
1 +

3

2

κ2

16π2M2

)
|∂µφ|2 + . . . , (32)

This term can be reabsorbed by a φ redefinition

φ→
(

1− 3

4

κ2

16π2M2

)
φ (33)

which, due to the non-vanishing tree-level contribution to the correspond-
ing effective operators, gives an extra contribution to the one-loop Wilson
coefficients. Focusing on O1, we get

α
(1l)
1 → α

(1l)
1 +

6κ4

16π2M6
. (34)
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Thus, our final result for α
(1l)
1 reads

α
(1l)
1 =

κ2

16π2M4

(
5
κ2

M2
+ 16η − 6λ− 20λΦ −

5

4
g2

2

)
. (35)

As it is apparent, it is proportional to the linear coupling κ. In fact, except
for the term proportional to λΦ, which arises solely from heavy particles
running in the loop and therefore appears in the CDE, all the remaining ones
are absent in the functional method calculation alone [9]. This is the result
we were looking for. In order to find literal agreement with the calculation in
[20] by Khandker, Li and Skiba (KLS), we have to remember that our quartic
coupling for the BEH scalar doublet λ = λKLS/4 and that they use the one-
loop renormalized mass for the heavy triplet (as opposed to the tree-level one
which we are using). Their relation, which can be found by computing the
1PI contribution to the Φa two-point function, is

M2
KLS = M2

(
1 +

2g2
2 − 5λΦ

16π2

)
, (36)

which in turn gives the extra contribution from α
(0l)
1 to its one-loop counter-

part:

α
(1l)
1 → α

(1l)
1 +

(20λΦ − 8g2
2)κ2

16π2M4
KLS

. (37)

Adding all these contributions (and using the BEH quartic coupling normal-
ization in [20]), we obtain

α
(1l)
1 KLS =

κ2

16π2M4
KLS

(
5

κ2

M2
KLS

+ 16η − 3

4
λKLS −

37

4
g2

2

)
, (38)

which coincides with the result obtained in Ref. [20].

3.2 SM extension with a heavy vector-like quark sin-
glet

Our last example is the extension of the SM with a vector-like quark T
in the (3, 1, 2/3) representation of the SM gauge group. In this case the T–
parameter is only generated at one-loop order, which was originally computed
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in [21] (see also [22, 25] for extensions to vector-like quarks in arbitrary
representations). The lagrangian involving the heavy field reads

LT = T (i��D −M)T −
[
λT qLφ̃TR + h.c.

]
, (39)

with T = TL + TR, and L and R stand for left- and right-handed fermions,
respectively.

The 1LPI calculation of the Green’s function
〈H1H

∗
1H2H

∗
2 〉 in the full model has no tree-level contribution but the one-loop

values for the Wilson coefficients

α
(1l)
1 =

NC |λT |2

16π2M2

(
1

2
λ2
t −

1

2
|λT |2

)
,

α
(1l)
2 =

NC |λT |2

16π2M2

(
3

2
λ2
t −

1

3
|λT |2

)
,

α
(1l)
R =

NC |λT |2

16π2M2

(
−1

2
λ2
t +

1

2
|λT |2

)
, (40)

where NC = 3 for a quark and λt is the corresponding top Yukawa coupling
(we neglect all other SM Yukawa couplings).

In this case, since the tree-level contribution vanishes, wave function
renormalization gives no further contributions at one loop. Previous cal-
culations of the T–parameter in this model have been performed at the elec-
troweak scale. In order to compare with our calculation, we have to run
the Wilson coefficients down to the top quark mass and integrate out the
top quark with the anomalous couplings induced by the heavy fermion. We
present the details of this computation in Appendix A, showing the agree-
ment with previous results.

4 Conclusions

The LHC picture of nature seems to confirm a significant gap between the
SM (light fields) and the new layer of physics (heavy fields). This makes the
use of EFT compulsory in order to describe (bound) possible small devia-
tions from the SM predictions in the high energy tail of the experimental
distributions. Although an EFT with SM symmetries and light fields and
arbitrary dimension–6 operators built with them must be in general enough
to describe such a scenario (neglecting in this context neutrino masses and
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the new physics associated to them), it is mandatory to recognize the rela-
tions among the different Wilson coefficients of these operators to identify
the particular new physics realized in nature. With this purpose, different
calculations of the one-loop contributions to the Wilson coefficients of the
dimension–6 operators for different SM extensions have been made avail-
able using the CDE [9]. SM additions with linear couplings to light fields
are treated in the same way as those without them, but in the former case
the general results miss extra contributions which must be added by further
matching with the specific fundamental theory [16]. Hence, although there
are many phenomenologically relevant SM extensions without such linear
terms, as supersymmetric theories with unbroken R-parity or models with
universal extra dimensions, and in general theories with a discrete symme-
try requiring interactions with only an even number of heavy fields, also
many phenomenologically relevant theories include heavy fields with linear
couplings to the SM, and they demand further treatment.

This problem and its solution were pointed out some time ago [16], and
definite examples have been also worked out in detail [18]. The CDE does
not include those linear couplings in loops, in contrast with the fundamental
theory. What means that the corresponding contributions must be added
through matching. (See footnote 4.) In this paper we elaborate on this issue.
Noticing first in a simple case with a heavy charged scalar singlet that the
problem arises when we perform the non-local heavy field redefinition implicit
in this functional treatment of theories with linear couplings of heavy fields to
the SM. The fundamental theory (lagrangian) transformed by a local heavy
field redefinition expressible as a series with a finite number of terms (local
operators) N in general gives the same physical predictions, till the infinite
limit N → ∞ is taken and the series becomes the asymptotic expansion of
a non-local operator with a finite radius of convergence. Then, the physical
predictions, as well as the resulting theory, are in general different, up to the
proper matching.

We have also discussed the beyond the SM contributions to the T–parameter
in two other SM extensions with linear couplings of the heavy sector to the
light fields, providing the missing pieces in the CDE. They result from the
addition of a heavy scalar triplet with vanishing hypercharge and of a heavy
vector-like quark of charge 2/3, respectively. As a matter of fact, the CDE
gives in both cases a contribution that is either vanishing or can be reab-
sorbed in the physical definition of the heavy field mass. We obtain perfect
agreement with previous calculations in both cases, with Ref. [20] in the
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scalar triplet case and with Ref. [21] in the vector-like quark one. At any
rate, all SM extensions with linear couplings between the heavy and light
sectors can require such an extra matching, which can be in general of phe-
nomenological interest (sizable), too.

For our explicit calculations we have made use of the new code MatchMaker
[19], aimed at automated calculation of tree-level and one-loop matching con-
ditions in arbitrary extensions of the SM. Details of the code and its use will
be presented elsewhere [19].
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A T–parameter at the electroweak scale

In this appendix we show that our result for α1 in the SM extension with
an extra vector-like quark singlet of hypercharge 2/3, Eq. (40), agrees with
previous calculations of the T–parameter in this model [21]. Previous com-
putations evaluate the T–parameter at the electroweak scale directly in the
physical basis (after electroweak symmetry breaking). The exact result, in
the limit of large M and only keeping up to v2/M2 terms reads [22]

∆T̂ =
NC

32π2

v2

M2

[
|λT |4 + 2λ2

t |λT |2
(

log
M2

m2
t

− 1

)]
, (41)

where mt is the top mass.
In order to reproduce this result in our effective theory approach, using

Eq. (25), we need to compute the corresponding Wilson coefficient at the
electroweak scale. This involves two steps, first running from the matching
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scale M down to the top quark mass and second integrating out the top
quark with the anomalous couplings that are induced by the heavy quark.
These two steps are described in more detail in the next two subsections.

A.1 Running to µ = mt

Given the values of the Wilson coefficients at certain scale, they can be
computed at any other energy (provided no new thresholds are crossed) by
means of the renormalization group equations (RGE). Since this running is
already a loop effect and there are no large logarithms involved, in order to
recover the one-loop result in the full theory we just need to include in the
running the effective operators that are generated at tree level. In the model
at hand we have [26]

L(0l)
6 = α

(1)
φqO

(1)
φq + α

(3)
φqO

(3)
φq + αuφOuφ + h.c. , (42)

where the operators, following now standard notation, are defined

O(1)
φq = i φ†Dµφ q̄γ

µq ,

O(3)
φq = i φ†σaDµφ q̄γ

µσaq ,

Ouφ = φ†φ q̄φ̃t , (43)

with coefficients

α
(1)
φq = −α(3)

φq =
|λT |2

4M2
, αuφ = 2λtα

(1)
φq . (44)

The RGE for α1 can be found in [27], where it is named αφD, (see also [28]
for further calculations relevant for the RGE of the SM EFT) and reads

16π2 d α1

d log µ
= 8NCλ

2
tα

(1)
φq + . . . , (45)

where we have only included the contribution proportional to operators gen-
erated at tree level and proportional to the top Yukawa coupling. In the
leading-log approximation we obtain

α1(mt) = α1(M)−
NCλ

2
tα

(1)
φq (M)

2π2
log

(
M

mt

)
=

NC

32π2M2

[
λ2
t |λT |2 − |λT |4 − 2λ2

t |λT |2 log

(
M2

m2
t

)]
. (46)
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Using Eq. (25), we already recognize the terms proportional to |λT |4 and
λ2
t |λT |2 log(M2/m2

t ) in Eq. (41). The term proportional to λ2
t |λT |2 is not

quite right yet but that is just because we are still missing the second step:
integrating out the top quark.

A.2 Matching at µ = mt

In this last step we have to integrate out the top quark. At this point we
have to go to the broken phase of the SM. However, we can still neglect the
bottom mass in our calculation if we want to reproduce Eq. (41). Thus,
in the new effective theory with the top quark integrated out, the relevant
fields are massless and the one-loop calculation in the effective theory side
gives vanishing results. Thus we only need to perform the computation in
the full theory, i.e. in the SM. However, due to the terms in L(0l)

6 the top
couplings are modified by terms of order v2/M2 and these have to be taken
into account. In particular, the W3tLtL and W1tLbL couplings are modified
[26] (note that in this reference v = 246 GeV is used and therefore, there is
a relative factor

√
2 between the corresponding expressions there and here):

gW3tLtL = gSM
W3tLtL

[1− 2v2(α
(1)
φq − α

(3)
φq )]

= gSM
W3tLtL

(
1− |λT |

2v2

M2

)
,

gW1tLbL = gSM
W1tLbL

[1 + 2v2α
(3)
φq ]

= gSM
W1tLbL

(
1− |λT |

2v2

2M2

)
. (47)

Then, the top contribution to T̂ in the presence of these anomalous couplings
writes (see Ref. [25], noting that T̂ = T αEM)

T̂(m+
t ) =

NC

32π2v2

{∣∣∣∣gW1tLbL

gSM
W1tLbL

∣∣∣∣2θ+(mt,mb)

− 1

2

[∣∣∣∣gW3tLtL

gSM
W3tLtL

∣∣∣∣2θ+(mt,mt) + θ+(mb,mb)

]}
, (48)
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where m±t ≡ limx→0mt ± x and

θ+(y1, y2) ≡ y2
1 + y2

2 −
2y2

1y
2
2

y2
1 − y2

2

log
y2

1

y2
2

− 2

(
y2

1 log
y2

1

µ2
+ y2

2 log
y2

2

µ2

)
+
y2

1 + y2
2

2
∆ .

We temporarily keep the bottom mass to regulate IR divergencies. Using
the explicit values for the anomalous couplings in Eq. (47) and taking the
bottom mass to zero we get

T̂(m+
t ) =

NC

32π2v2

{(
1− |λT |

2v2

M2

)
θ+(mt, 0)

− 1

2

(
1− 2|λT |2v2

M2

)
θ+(mt,mt)

}
=

NC

32π2
λ2
t

(
1− |λT |

2v2

M2

)
= T̂SM + ∆T̂(m+

t ) , (49)

where we have explicitly split the result into the SM contribution, T̂SM, and
a correction, ∆T̂(m+

t ), which is proportional to |λT |2. We have used that

θ+(m, 0) = m2[1− 2 log(m2/µ2) + ∆/2],

and
θ+(m,m) = m2[−4 log(m2/µ2) + ∆],

and set µ = mt to eliminate the logarithms. We have only kept terms up to
O(v2/M2) and used the MS renormalization scheme to remove the divergent
term left, proportional to ∆ and |λT |2, with the corresponding counterterm.

Since the contribution below mt vanishes if we neglect the bottom mass,
we have ended the calculation. Putting all pieces together:

∆T̂(m−t ) = −v2αφD(mt) + ∆T̂(m+
t )

=
NC

32π2

v2

M2

[
|λT |4 + 2λ2

t |λT |2
(

log
M2

m2
t

− 1

2

)]
− NC

32π2

v2

M2
λ2
t |λT |2

=
NC

32π2

v2

M2

[
|λT |4 + 2λ2

t |λT |2
(

log
M2

m2
t

− 1

)]
, (50)

which is exactly Eq. (41).
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