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Abstract

Chubukov’s proposal concerning the possibility of a nondimerized quantum

nematic phase in the ground-state phase diagram of the bilinear-biquadratic

spin-1 chain is studied numerically. Our results do not support the existence of

this phase, but they rather indicate a direct transition from the ferromagnetic

into the dimerized phase.
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I. INTRODUCTION

The general isotropic spin-1 model with nearest neighbor interactions on a d-dimensional

lattice is described by the Hamiltonian

H =
∑

<i,j>

hi,j =
∑

<i,j>

[

cos θ (Si · Sj) + sin θ (Si · Sj)
2
]

, (1)

where the parameter θ governs the ratio of the bilinear and biquadratic terms. This model

has been the subject of several studies in the last decade [1–11]. The existence of a variety

of phases has been demonstrated. The complete characterization of these phases and of the

phase transitions between them is, however, not yet entirely solved.

For d ≥ 2 the semiclassical approximation gives a rather good description of the ground

state [1]. The zero temperature phase diagram obtained in this way is sketched in Fig.

1(a). It consists of four different phases. The usual ferromagnetic (π/2 < θ < 5π/4) and

antiferromagnetic (−π/2 < θ < π/4) phases are separated on both sides by rather exotic

phases, where collinear or orthogonal nematic ordering appears. In all phases the original

SU(2) symmetry of the model is spontaneously broken. The order can be characterized by

different long range order parameters. In the nematic phases, e.g., the expectation value of

the spin operators vanishes,

〈Sα
i 〉 = 0 , α = x, y, z , (2)

while some of the quadrupole operators have finite expectation values with

〈(Sx
i )

2〉 = 〈(Sy
i )

2〉 6= 〈(Sz
i )

2〉 . (3)

Quantum effects, that appear most strongly in one dimension (1D), can drastically mod-

ify this phase diagram. Coleman’s theorem [12] (the quantum analog of the Mermin-Wagner

theorem) states that, unless the order parameter is a conserved quantity, quantum fluctua-

tions will restore the continuous symmetry of the Hamiltonian. This means that apart from

the ferromagnetic state, whose domain of stability is the same in the classical and quantum

calculations, in 1D the ground state of the model in Eq. (1) should be disordered for any
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other value of θ. Within this quantum disordered regime, however, there could still be sev-

eral phases. The semiclassical phase diagram in Fig. 1(a) should therefore be replaced by a

rather different quantum phase diagram.

The quantum analog of the classical Néel state is the Haldane phase [13], where dynamic

mass generation leads to a unique disordered ground state with hidden order [14]. There is

a finite gap (Haldane gap) to the excitations. This phase is thought to exist in the region

−π/4 ≤ θ ≤ π/4.

The orthogonal nematic phase in π/4 ≤ θ ≤ π/2 is replaced by a tripled periodic phase.

There are strong numerical indications [7] that this phase is critical due to three soft modes

at k = 0 and ±2π/3, as is the case in the integrable Lai-Sutherland [15] model corresponding

to θ = π/4.

Far less understood is the behavior on the other side of the ferromagnetic regime. In a

recent series of papers Chubukov [5,6] has shown by using perturbational calculation on a

specially chosen “vacuum” state with nematic long range order and by applying the standard

renormalization group method, that in 1D in the vicinity of the ferromagnetic instability

point quantum fluctuations restore the SU(2) symmetry, the ground state remains unique,

and the interaction between the Goldstone bosons leads to dynamic mass generation. The

opening of the gap is exponentially slow as θ departs from θF.

Chubukov [6] has emphasized that this disordered phase is different from the Haldane

phase. In fact, the two phases are separated by a dimerized phase in which translational in-

variance is broken. This dimerized phase is believed to exist for θ < −π/4. The spontaneous

breakdown of the translational invariance leads to a pair of singlet ground states and a finite

excitation gap above it. This behavior has been proven rigorously at θ = −π/2, where the

system is again integrable and hence the spectrum can be determined exactly [3,4]. The

value of the gap at this point is 0.173178, a rather small value, while the correlation length is

large, about 21 lattice units [4]. This explains the early numerical difficulties in identifying

this phase [2].

As a further support for the existence of the new disordered phase Chubukov [6] has
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pointed out that at θF ≡ −3π/4, where the ferromagnetic state becomes unstable, the

magnon spectrum has no soft mode at k = π. Neither is there any interesting feature at

k = π in the spectrum of bound states of two, three, etc., magnons. There does not seem to

exist any mode that could drive a direct transition from the ferromagnet into a dimerized

state. In fact, his study of the effect of quantum fluctuations on the dimerized state, using

appropriate bosonization, led him to conclude that the stability region of the dimerized

phase is θc ≤ θ ≤ −π/4, where θc ≈ −.7π, thus the disordered phase could exist in the

range −3π/4 ≤ θ ≤ θc.

In what follows this hypothesized phase will be referred to as the nondimerized quantum

nematic or Chubukov’s phase. The phase diagram expected to be valid in the 1D case is

summarized in Fig. 1(b).

The main goal of the present paper is to find numerical evidence for the possible existence

of Chubukov’s phase. For this purpose we studied finite spin chains for various values of

θ. Beside the usual Lánczos diagonalization method, which allowed us to study chains

up to L = 16 sites with periodic boundary condition, we used White’s density matrix

renormalization group method (DMRG) [16] with open boundary condition up to L = 48.

The data were analyzed by finite-size scaling techniques.

Since Chubukov’s proposed phase is supposed to have a nondegenerate singlet ground

state and unbroken translational symmetry, the transition to this phase from the dimerized

phase can be located either by studying the ground state degeneracy, the appearance of soft

modes at the transition point, or the behaviour of the dimerization order parameter. Our

results for these quantities will be presented subsequently in the next three sections. Section

V. contains some concluding remarks.

II. STUDY OF THE GROUND-STATE DEGENERACY

One possibility to see the difference between the dimerized and the nondimerized quan-

tum nematic phases would be to study the degeneracy of the infinite volume ground state.
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For a finite system with even number of sites L the ground state is unique for any

θ > θF; it is an ST = 0 spin singlet state. If periodic boundary condition is used, this

state has momentum k = 0. In the dimerized phase there has to be another singlet state

with momentum k = π with an energy, which, for long enough chains, is exponentially close

to the ground-state energy. This should not be the case, however, for the nondimerized

quantum nematic phase, where the ground state is expected to be nondegenerate, even in

the thermodynamic limit. Thus a gap has to be opened between the lowest singlet k = 0

and k = π states. Therefore, we first studied the finite-size scaling behaviour of this gap.

The gaps were calculated by the Lánczos diagonalization method for chains with L =

8, 10, . . . 16 sites. It is worth pointing out why we could not use the DMRG method to study

this degeneracy problem, although it would have allowed us to consider much longer chains.

Exactly at the point θF the model has an extra SU(3) symmetry and the Hamiltonian can

be written as a (negative) sum of permutation operators. Any totally symmetric state is

a ground state. The ground-state sector is highly degenerate and belongs to the D(L, 0)

symmetric representation of SU(3). This implies that for any finite even chain length L the

ground-state sector consists of the ST = L, L− 2, . . . , 2, 0 spin multiplets, each once. Away

from θF this degeneracy is lifted, the spin singlet becomes the ground state for θ > −3π/4.

However, in the interesting range of θ the other states remain still rather close in energy.

For chains with L = 48 sites many of them lie still lower than the relevant lowest k = π

level. They could be separated by looking at their momentum, since we are interested in

a k = π level, while the others have momentum k = 0. Unfortunately the DMRG method

does not allow to work in a definite momentum sector, and too many levels would have to

be considered. Therefore, using this method, the interesting gap cannot be computed with

a reasonable precision.

The scaled gaps for various chain lengths, ie. the gaps multiplied by the number of bonds

in the chain are plotted in Fig. 2. Close to the point θF = −3π/4 the scaled gap increases

monotonically with increasing chain length, while further away it decreases. In a critical

model the scaled gap should asymptotically be independent of the chain length. Therefore,
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according to the standard procedure the transition point θc could be located by looking

at the crossing points between curves belonging to chain lengths L and L + 2. They are

marked by arrows and also shown in the inset of Fig. 2. As the chain length increases, the

crossing points scale towards the ferromagnetic transition point. In fact, as the inset shows,

the points fit well to a straight line on the L−2 scale, giving θc = −3π/4 = θF. This would

mean that the gap vanishes everywhere above θF and Chubukov’s phase does not exist.

Due to the limitations of the numerical calculations we cannot exclude the possibility

that the crossing points converge to a θc > θF. However, the θ range where the quantum

nematic phase exists, must then be very narrow with θc <∼ −.74π.

III. SEARCH FOR SOFT MODES

According to Chubukov’s proposal the transition at θc between the nondimerized quan-

tum nematic and the dimerized phases belongs to the Ising universality class. The lifting of

the twofold degeneracy should be accompanied by the appearance of a soft mode and the

vanishing of the gap. Therefore we have studied the behavior of the gap between the ground

state and the lowest excited state. In the whole interesting region of θ this lowest excited

state was found to have total spin ST = 2.

For the calculation of this gap the abovementioned objection does not hold, and we could

apply the DMRG method. Following the usual procedure, the open boundary condition was

used, since it gives much better results than the periodic one. Now the ground state is

expected to be unique even in the dimerized phase, if the number of sites L is even. This

is easily understood by comparing the two dimerized valence-bond configurations, depicted

in Fig. 3, which are believed to be good variational states in the dimerized region. Since

the bond-strength oscillates in a dimerized state, clearly the configuration which has low-

energy bonds at the ends has lower energy than the other one with high-energy bonds at

the ends. (For odd L the two simple dimerized configurations would have the same energy,

therefore they resonate and the real ground state is a state which has low-energy bonds at
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both ends and a moving ”domain wall” somewhere in-between [16]. In this case the ground

state cannot be considered as a real vacuum, since it contains already one quasi-particle.

This fact would make it extremely difficult to draw conclusions from results on chains with

odd L, therefore we have not studied such chains.)

The longest chain we could reasonably study had L = 48 sites. The computed value of

the gap is believed to be precise to at least five digits, when the maximum number of block

states kept during the renormalization was m = 160.

Figure 4 shows the scaled value of the gap from the ground state to the lowest ST = 2

state in the −.75π < θ < −.68π interval. This gap vanishes exactly even in finite systems at

θF = −3π/4 due to the extra SU(3) symmetry, and is extremely small near this point. Above

θF, however, the scaled gap increases, indicating the opening of the mass gap in the whole

studied interval. In order to analyze quantitatively the opening of this singlet-quintuplet

gap, we studied the finite lattice approximants of the Callan-Symanzik β-function [18,8]

βL1,L2
(θ) =

ln[L2∆(θ, L2)/L1∆(θ, L1)]

ln(L2/L1)
1

2

∂
∂θ

ln[∆(θ, L1)∆(θ, L2)]
. (4)

βL1,L2
(θ) depends rather weakly on L1 and L2 (see the inset of Fig. 4). This allowed us to

determine the opening of the gap at the edge of the ferromagnetic regime rather convincingly.

The β-function increases above θF = −3π/4 with a power law

β(θ) = −
1

cσ
(θ − θF )

1+σ , θ > θF , (5)

giving a straight line on the log-log plot, like in a Kosterlitz-Thouless transition. The best fit

was obtained with c = 3.9±0.4, σ = .51±0.03. This means that the gap opens exponentially

as

∆(θ) = const · exp[−c(θ − θF )
−σ] , θ > θF . (6)

This is in agreement with Chubukov’s result, which suggested an exponentially slow opening

of the gap [5]. Note that although this form resembles that of the Kosterlitz-Thouless

transition, we think that the phase transition here is not really a KT transition but a first
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order one because the transition from the ferromagnetic to this state is due to the crossing

of the ST = L and ST = 0 levels, which are the ground states on the two sides, respectively.

For θ > θF, for the chain lengths we could use, there did not appear any sign of further

level crossings. We did not find any level that would soften at a θc 6= θF, ie. we did not find

any trace of an additional phase transition. It should be noted, however, that the DMRG

method gives precise energies only for those states that are targeted from the very beginning

of the iteration. The procedure can easily miss a level, thus leading to false conclusion, if its

energy comes down into the interesting energy range for long system sizes only, and hence

it is not targeted at the beginning of the algorithm.

IV. STUDY OF THE DIMERIZATION ORDER PARAMETER

An alternative way to study phase transitions is by analyzing order parameters and

correlation functions. They require the knowledge of the ground-state wave function only.

Even though both the dimerized phase and the nondimerized quantum nematic phase

are disordered, an order parameter can be defined in the dimerized phase by using the fact

that the translational invariance is spontaneously broken. The dimerization order parameter

is usually defined as

D ≡ |〈Si−1 · Si − Si · Si+1〉| . (7)

In Ref. [11] Xian pointed out that for the pure biquadratic model a more proper definition

would be the bond-strength oscillation in the ground state. Following this suggestion we

define the dimerization order parameter as

D = |〈hi−1,i − hi,i+1〉| , (8)

where hi,j is the local Hamiltonian of Eq. (1), and the expectation value is taken in the

ground state of an infinite chain whose ends are subject to open boundary condition.

In case of finite chains, let us denote the energy difference of neighboring bonds in the

middle of the open chain with length L by
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D(L) = |〈hL/2,L/2+1 − hL/2+1,L/2+2〉| . (9)

The (infinite volume) dimerization order parameter is then

D = lim
L→∞

D(L). (10)

D(L) is shown in Fig. 5 in the range θF ≤ θ ≤ 0. It is finite also for θ ≥ −π/4, where no

dimerization is expected. It vanishes at the VBS point θ = arctan 1/3 [17] only, where the

ground state has a simple form and D(L) ≡ 0 for all L.

The finiteness ofD(L) can be understood by observing that the bond strength is generally

not uniform in an open chain near the ends but alternate between strong and weak bonds,

even if in the thermodynamic limit the system is not dimerized [16]. As we move towards

the middle of the chain this oscillation gradually decreases. In a noncritical model this decay

is exponential. In leading order D(L) is expected to vary as

D(L) = D + c exp(−L/ξ) , (11)

where c is a constant and ξ is a kind of a correlation length. When the model has a

nondimerized thermodynamic limit, D = 0.

In case of critical behavior, however, D(L) scales to zero as a power law, ie.

D(L) = cL−α , (12)

where α is a relevant surface exponent. Using this property, a systematic scaling analysis of

our data for D(L) allows to determine D for various values of θ.

As a first test we computed D(L) at θ = −.5π, where the exact result for D is available.

Fitting the values of D, c and ξ of Eq. (11) to the last three points, L = 40, 44 and 48, we got

D = 1.1288 which is quite close to Xian’s [11] exact valueDexact = 1.1243, when it is properly

rescaled according to our definition of D. Our value for the correlation length is ξ = 19.93,

which compares well with the exact value for bulk correlation length ξexact = 21.0728 [4].

Figures 6 and 7 show a log-log plot of D(L) vs L for various values of θ near θ = −π/4

and θF, respectively. The transition between the dimerized phase and the Haldane phase is
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easily spotted: for θ < −π/4 the curves have an upward curvature indicating a finite value

for D, while for θ > −π/4 the curvature is in the opposite direction implying D = 0. At the

critical point, where the asymptotic scaling is expected to be of the form of Eq. (12), the

points should lie on a straight line. From this analysis we obtain θ = (−.25 ± .01)π for the

transition point, as expected.

In contrast to this behavior, all the curves have a slight upward curvature for θF < θ <

−.68π, although this curvature is almost zero in the close vicinity of θF. This implies a very

small but finite dimerization in this region as well. Our results are, however, more uncertain

in this region than near θ = −π/4. Since D(L) is small, the relative accuracy of the method

is not very satisfactory, even when m = 160 basis states are kept during the renormalization.

There is also a possibility that we are not yet in the asymptotic regime. Nevertheless, these

results seem to indicate that most likely D remains finite down to θF. Like the gap, its value

becomes exponentially small near the transition point.

Finally in Fig. 8 we present the two-point correlation function 〈Sz
0S

z
l 〉 for three different

values of θ. Well inside the dimerized region the correlation function alternates in sign

strongly. It is positive for even l, and negative for odd l. For smaller values of θ, however,

this behavior changes drastically. At θ = −.68π already all correlations are found to be

negative and this property remains valid down to θF. There appears to be no sign of

period doubling, just as it was proposed for the nondimerized quantum nematic phase.

Although we do not fully understand the reason of this change, we think that the presence

of dimerization should not necessarily mean an alternation in the sign of the correlation

function, and thus the observed behavior cannot be viewed as a direct evidence for the

appearance of a nondimerized regime.

V. CONCLUSIONS

In the present paper we studied the ground-state phase diagram of the bilinear-

biquadratic spin-1 chain near the ferromagnetic instability, where Chubukov proposed the
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existence of a nondimerized quantum nematic phase. We considered four independent quan-

tities. First we looked at the degeneracy of the ground state, ie. whether the ground state

is unique or doubly degenerate. Then we determined the opening of the gap. Finally we

studied the behavior of the dimerization order parameter and the ground-state correlation

function. We did not find any real evidence in any of these quantities for the existence of

the hypothesized nondimerized quantum nematic phase.

Our results are in better agreement with the assumption that the dimerization appears

exactly at the point where ferromagnetism becomes unstable, ie. at θF = −3π/4. The

gap opening is well described by a Kosterlitz-Thouless-like form, although the transition is

expected to be of first order.

The main difficulty we had to face in our numerical work was the extreme smallness

of the gaps and order parameters in the region where the nondimerized quantum nematic

phase was proposed to exist. Due to the restrictions in the numerical calculations and the

uncertainties in the extrapolation procedure, our conclusion cannot be definitive. We cannot

exclude the possibility that the phase proposed by Chubukov does appear in a very narrow

region, say −.75π ≤ θ <
∼ −.74π. To resolve this question satisfactorily calculations on even

longer chains would be needed.
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FIGURES

FIG. 1. Ground-state phase diagram of the bilinear-biquadratic spin-1 model. (a) Semiclassical

phases without quantum fluctuations (d ≥ 2). (b) Quantum phases (d = 1).

FIG. 2. Scaled gap, L(Eπ −EGS), between the lowest k = π level, and the ground state having

momentum k = 0, as a function of θ for chains with L = 8, 10, . . . , 16 sites. Arrows indicate to

the crossing point of curves belonging to chain lengths L and L + 2. Inset shows the L−2 scaling

behavior of the crossing points.

FIG. 3. Typical dimerized valence bond configurations with (a) strong and (b) weak bonds at

the ends.

FIG. 4. Scaled gap (L − 1)(E1 − EGS) vs θ, to the lowest excited state for chains with

L = 16, 24, · · · , 48 sites. Inset shows the Callan-Symanzik β-function computed from pairs of

chains with length (L1, L2) on a log-log scale.

FIG. 5. Dimerization order parameter D(L) vs θ for chains with L = 16, 24, · · · , 48 sites. The

cross shows Xian’s exact value for D at θ = −π/2.

FIG. 6. Log-log plot of the dimerization order parameter D(L) vs the chain length L for

different values of θ near θ = −π/4. Dotted lines are guides to the eye. They are straight lines

fitted to the last two points.

FIG. 7. Log-log plot of the dimerization order parameter D(L) vs the chain length L for

different values of θ near θF = −3π/4. Dotted lines are guides to the eye. They are straight lines

fitted to the last two points.

FIG. 8. Ground-state correlation function 〈Sz
0S

z
l 〉 measured in a chain with L = 48 sites as a

function of the separation l for different values of θ.
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