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Mott transition and dimerization in the one-dimensional SU(n) Hubbard model
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The one-dimensional SU(n) Hubbard model is investigated numerically for n = 2, 3, 4, and 5 at
half filling and 1/n filling using the density-matrix renormalization-group (DMRG) method. The
energy gaps and various quantum information entropies are calculated. In the half-filled case, finite
spin and charge gaps are found for arbitrary positive U if n > 2. Furthermore, it is shown that
the transition to the gapped phase at Uc = 0 is of Kosterlitz-Thouless type and is accompanied
by a bond dimerization both for even and odd n. In the 1/n-filled case, the transition has similar
features as the metal-insulator transition in the half-filled SU(2) Hubbard model. The charge gap
opens exponentially slowly for U > Uc = 0, the spin sector remains gapless, and the ground state is
non-dimerized.

PACS numbers: 71.10.Fd

I. INTRODUCTION

Recently, the SU(n)-symmetric generalization of the
standard SU(2) Hubbard model1 has been intensively
studied theoretically,2,3,4,5,6,7,8 since this model may
mimic strongly correlated electron systems where the or-
bital degrees of freedom of d and f electrons play impor-
tant role.

Although the standard SU(2) Hubbard model is ex-
actly solvable in one dimension9 by Bethe’s ansatz and
is well known to exhibit—at half filling—a Mott tran-
sition at Uc = 0, no such rigorous statement could be
formulated for higher n values. It is expected, however,
that at generic fillings the one-dimensional SU(n) Hub-
bard model behaves like an n-component Luttinger liq-
uid while gaps may be generated at special fillings of the
band, namely at half filling or 1/n filling.

The one-dimensional half-filled SU(n) Hubbard model
has been studied2 in the large n limit and it has been
shown that the charge and spin modes—that are decou-
pled for n = 2—become coupled and gap is generated in
all of them. Moreover, it has been found that the sys-
tem is spontaneously dimerized if n is even. The role
of umklapp processes in the half-filled model has been
studied7 by the analytic multiplicative renormalization-
group method in fermionic representation, too. It has
been shown that in fact the umklapp processes couple the
spin and charge modes if n > 2 and the spectrum is fully
gapped for arbitrary values of the Coulomb repulsion.
The question of dimerization has not been addressed in
that work.

The 1/n-filled case has been investigated3 analytically
using the bosonized version of the model and numeri-
cally with quantum Monte Carlo simulation. It has been
shown that at this special filling, i.e., when the number
of particles is equal to the number of sites, the spin and
charge degrees of freedom are decoupled and gap opens
in the charge mode only. The spin modes remain gapless.
Furthermore, it was inferred from the numerical calcula-
tions that for n > 2, unlike in the n = 2 case, the charge
gap opens at a finite positive Uc. For smaller positive

U values the system shows metallic behavior. Since the
contributions of the leading umklapp processes for com-
mensurate fillings—except for half filling—are not loga-
rithmically divergent, the special case of 1/n filling for
n > 2 could not be analyzed in the framework of the
usual analytic renormalization-group procedure.
In this paper, we present a careful numerical anal-

ysis of the one-dimensional SU(n)-symmetric Hubbard
model for n = 2, 3, 4, and 5 using the density-matrix
renormalization-group (DMRG) method.10 Besides the
question where the Mott transition takes place in the
1/n-filled model we will consider the problem of dimer-
ization in the half-filled case, since Marston and Affleck2

predicted dimerization for even n only. This is done by
calculating the one-site and two-site entropies11,12,13,14

whose behavior may be a better indicator of where and
how a quantum phase transition occurs than the study
of opening of gaps, which is notoriously difficult for a
Kosterlitz-Thouless transition.
The setup of the paper is as follows. The Hamiltonian

is presented and the role of umklapp processes at com-
mensurate fillings is discussed in Sec. II. A few questions
concerning the numerical procedure used in the paper are
presented in Sec. III. In Sec. IV, the accuracy is tested on
the SU(2) Hubbard model. The results obtained for half-
filled and 1/n-filled systems for n > 2 are given in Sec. V
and VI, respectively. The conclusions are summarized in
Sec. VII.

II. THE HAMILTONIAN AND THE ROLE OF
UMKLAPP PROCESSES

The Hamiltonian of the SU(n) Hubbard model is writ-
ten in the form

H = −t
N
∑

i=1

n
∑

σ=1

(c†i,σci+1,σ + c†i+1,σci,σ)

+
U

2

N
∑

i=1

n
∑

σ,σ′=1

σ 6=σ′

ni,σni,σ′ ,
(1)
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where N is the number of sites in the chain, c†i,σ (ci,σ)

creates (annihilates) an electron at site i with spin σ, the
spin index is allowed to take n different values, ni,σ is
the particle-number operator, t is the hopping integral
between nearest neighbor sites, and U is the strength of
the on-site Coulomb repulsion. In what follows t will be
taken as the unit of energy. The dimensionless U and
the dimensionless gaps used in the paper are obtained by
dividing their physical values by t.
The term σ = σ′ could have been kept in the last

summation, as it is usually done in the literature, in order
to display clearly the SU(n) symmetry. We prefer this
form where the Coulomb repulsion acts between particles
of different spin index only. Since it is forbidden to have
two particles of the same spin on the same site, the two
expressions differ in a shift in the energy only.
At generic fillings, this model is equivalent to an

n-component Luttinger liquid. It has one symmetric
(charge) and n− 1 antisymmetric (spin) gapless bosonic
modes. At special fillings, where umklapp processes may
become relevant, we will be interested especially in the
half-filled and 1/n-filled cases, gap may be opened in the
spectrum of charge or spin excitations. In this section we
will address the question how the charge and spin degrees
of freedom are coupled by umklapp processes.
Let us consider p/q-filled systems where p and q are

relative prime integers. Due to particle-hole symme-
try it suffices to consider the case p < q/2. At such
a filling the Fermi momentum is kF = πp/q (the lat-
tice constant has been taken to be unity). Although the
bare Hamiltonian contains two-particle scatterings only,
l-particle scattering processes may appear as higher-order
perturbations.15 If l particles are scattered from one of
the Fermi points to the opposite one, the total change in
the momentum is

∆k = ±2kFl = ±2πlp/q . (2)

Such umklapp processes are allowed by momentum con-
servation if ∆k is an integer multiple of 2π, i.e., l has to
be a multiple of q. The leading, lowest-order umklapp
processes correspond to l = q. Since the interaction is
assumed to be local in real space, in the dominant um-
klapp processes all scattered particles have to have dif-
ferent spin indices, i.e., we will assume that l ≤ n.
Since the most significant contribution to low-lying ex-

citations comes from fermion states close to the Fermi
points, a linearized spectrum is assumed. The relevance
or irrelevance of umklapp processes and the coupling be-
tween different modes can then be conveniently analyzed
by transforming the Hamiltonian into bosonic form.16 Us-
ing the phase field φσ for particles with spin σ, which
is the sum of the phases of the right- and left-moving
fermions, the l-particle umklapp processes can be repre-
sented by an effective term in the Hamiltonian which is
proportional to

∫

dx
∑

{σi}′

cos
[

2 (φσ1
(x) + . . .+ φσl

(x))
]

, (3)

where {σi}′ indicates that all spin indices are assumed to
be different.
In order to investigate the role of these processes let

us introduce—in the usual way—the symmetric and an-
tisymmetric combinations of the bosonic fields for which
the term charge and spin modes, respectively, will be
used:

φc(x) =
1√
n

n
∑

σ=1

φσ(x), (4)

φms(x) =
1

√

m(m+ 1)

(

m
∑

σ=1

φσ(x)−mφm+1(x)

)

,

with m = 1, . . . , n− 1.
When the band is p/n filled where p is relative prime to

n, the leading umklapp term corresponds to scattering of
n particles from one of the Fermi points to the opposite
one. In this case, the effective term in the Hamiltonian
is proportional to

∫

dx cos
[

2
√
nφc(x)

]

. (5)

As can be seen, this term involves the charge sector only.
On the other hand, for a p/q-filled band with q < n, sev-
eral terms may appear in (3) as leading (l = q) umklapp
processes. When written in terms of the bosonic fields,
both charge and spin modes appear in them. For exam-
ple in the SU(3) model, where in addition to the charge
mode there are two spin modes, in the half-filled case,
the contribution of the two-particle umklapp processes is
proportional to

∫

dx

(

cos

[

√

2

3

(

2
√
2φc(x) + 2φ2s(x)

)

]

(6)

+ cos

[

√

2

3

(

2
√
2φc(x) +

√
3φ1s(x) − φ2s(x)

)

]

+ cos

[

√

2

3

(

2
√
2φc(x)−

√
3φ1s(x) − φ2s(x)

)

])

.

These terms are relevant and the corresponding soliton
excitations couple the charge and spin modes. Therefore,
gap is generated not only in the charge sector but in the
spin sector as well, if q < n, in agreement with Refs. 2
and 7.

III. NUMERICAL PROCEDURE

A. Numerical accuracy

The numerical calculations presented in this paper
have been performed on finite chains with open or pe-
riodic boundary condition (OBC or PBC, respectively)
using the DMRG technique,10 and the dynamic block-
state selection (DBSS) approach.17,18 All data shown in
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the figures were obtained with OBC unless stated oth-
erwise. We have set the threshold value of the quantum
information loss χ to 10−5 and the minimum number of
block states Mmin to 256. All eigenstates have been tar-
geted independently using four DMRG sweeps until the
entropy sum rule has been satisfied. The accuracy of the
Davidson diagonalization routine has been set to 10−7

and the largest dimension of the superblock Hamiltonian
was around three millions.
In the DBSS procedure the DMRG parameters are

set dynamically. The maximum number of block states
(Mmax) that our program could handle was 2500, 1500,
800, and 256 for n = 2, 3, 4, and 5, respectively. This de-
termines the maximal chain length that could be treated
reliably with the accuracy prescribed in terms of χ. For
small U (U < 1), where the coherence length is large, the
block entropy grows very rapidly with increasing block
size and the upper cutoff on the number of block states
is reached at N ≃ 90 for the SU(3) model and at N ≃ 30
for the SU(4) model. For these U values and for such
chain lengths the truncation error was of the order of
10−6 for a few DMRG iteration steps and the absolute
error of our calculation is in the range of 10−4. Calcu-
lations on longer systems would give less reliable results
and this imposes a serious limitation on the accuracy of
the results obtained by finite-size extrapolation.

B. Detecting and locating phase transitions

The most common procedure to locate quantum phase
transitions numerically is to calculate energy gaps. If the
SU(n) symmetry is not broken in the ground state and
the band is p/q filled, in a system with N lattice sites, the
number of particles with spin index σ is Nσ = Np/q. The
ground-state energy is denoted by E0(N). The spin and
charge gaps corresponding to the increase of energy when
changing the spin of a particle or changing the number
of particles were calculated according to the formulae

∆s(N) = E+1,−1(N)− E0(N) ,

∆c(N) = E+1(N) + E−1(N)− 2E0(N) ,
(7)

where E+1(N) is the lowest energy eigenvalue of the
Hamiltonian when Nσ is increased by one for a given
spin, E−1(N) is the lowest energy when Nσ is decreased
by one for a given spin, and E+1,−1(N) is the lowest en-
ergy when the number of particles with spin σ is increased
by one while the number of particles with a different σ′

is decreased by one.
Since—as will be seen—it is difficult to study numer-

ically the closing of energy gaps for small U values, an
alternative approach to study quantum phase transitions
has been suggested by several groups.11,12,13,14 It uses
the anomalies appearing in the generalized l-site entropy
functions. These functions are easily accessible in DMRG
and require to target the ground-state wavefunction only.
Moreover, they are expected to have better finite-size
scaling properties than the energy gaps.

The von Neumann entropy of a single site can be deter-
mined from si = −Trρi ln ρi, where the reduced density
matrix ρi of site i is obtained from the wavefunction of
the total system by tracing out all configurations of all
other sites. In a similar manner generalized l-site en-
tropies can be calculated which are often better indica-
tors of quantum phase transitions than the one-site en-
tropy. In our DMRG approach, the one- (si) and two-site
(si,i+1) entropies at the center of the chain, for i = N/2
or i = N/2 + 1 and the block entropy of the left half of
the system (corresponding to l = N/2) are calculated at
the end of each DMRG sweeps.
It turned out that for the SU(n) Hubbard model the

same single-site entropy is obtained when it is calculated
on neighboring sites in the center of the chain. The sites
are equivalent. The two-site entropy si,i+1 is, however,
different when it is considered at i = N/2 or i = N/2+1.
An indication of the existence of bond dimer order, the
breaking of translational symmetry can be obtained—as
an alternative to the usual dimer order parameter—from
the difference of two-site entropies,

Ds(N) = sN/2,N/2+1 − sN/2+1,N/2+2 . (8)

As it has been shown in Ref. 19 and will be discussed be-
low, usually the dimer entropy difference converges faster
than the energy gap, and it may be more convenient to
analyze this quantity. In the next sections, we will use
Ds to study the phase diagram as a function of U .
As has been pointed out recently by two of the

authors,20 further information about possible nonuni-
form phases can be obtained from the study of the length
dependence of the von Neumann entropy of a block of l
sites in a finite chain, s(l), l = 0, · · · , N , and its Fourier
spectrum,

s̃(q) =
1

N

N
∑

l=0

e−iqls(l) . (9)

A finite peak at a nonzero wave vector indicates a corre-
sponding modulation of the state. E. G., in a dimerized
(trimerized) state the q = π (q = 2π/3) Fourier compo-
nent is nonvanishing. Furthermore, in a gapless model
the central charge can be derived21,22,23,24 from the ini-
tial slope of the length dependence of s(l). This can help
to distinguish better gapped and gapless regimes.

C. Finite-size scaling

The large-N limit of the energy gaps and entropies can
be obtained if appropriate scaling functions are used. In
a critical, gapless model, in leading order, the gap ∆(N)
is expected to scale to zero as 1/N . In a non-critical
model the scaling depends on the boundary condition.
The leading correction is exponential, if PBC is used:

∆(N) = ∆ + c
1

N1/2
exp(−N/ξ), (10)
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while for OBC the corrections are algebraic, and ∆(N)
is expected to vary as

∆(N) = ∆+ a/N2 +O(N−4). (11)

Therefore, the following fitting ansatz was used to eval-
uate the results obtained with OBC,

∆(N) = ∆ + a/N + b/N2, (12)

with ∆, a, and b as free parameters.
Local quantities, however, are expected to have a bet-

ter scaling property even for OBC. For non-critical mod-
els the end effects decay exponentially with a finite cor-
relation length, and the leading correction to the local
quantities sN/2(N), sN/2,N/2+1(N), and Ds(N) is ex-
pected to have the form

A(N) = A+ dN−β exp(−N/2ξ), (13)

where A is any of the local quantities listed above.
This form is qualitatively similar to (10), except that
N/2—the distance of the middle of the chain from the
boundary—appears in the exponential and the exponent
of the algebraic prefactor is a priori unknown.

IV. THE SU(2) MODEL AS A REFERENCE
SYSTEM

Since numerical accuracy and proper finite-size scal-
ing are crucial in the present work, we have tested our
approach first on the half-filled SU(2) Hubbard model,
where exact results are available.
The energy of all eigenstates that have been deter-

mined using DMRG with PBC agreed up to 5 digits
with the numerical solution of the Bethe-ansatz equa-
tions. The U dependence of the spin and charge gaps
and the finite-size extrapolation are shown in Figs. 1 and
2, respectively.
Although the spin gap has a maximum as a function

of U , this is a finite-size effect. Using (10) for the extrap-
olation to the thermodynamic limit, the spin gap scales
to ∆s = 6(1) × 10−4 for small and large U while it is
of the order of 10−3 in the intermediate region. Here
and in what follows the digits in parentheses are the one-
standard-deviation uncertainty in the last digits of the
given value. The root-mean-square error (the norm of
residuals) of the fit denoted by κ was 10−6.
The charge gap decreases monotonically with decreas-

ing U , and the extrapolated values obtained using (10)
are finite, opening exponentially slowly,

∆(U) = a exp[−c(U − Uc)
−σ], (14)

which is characteristic to a Kosterlitz-Thouless transi-
tion. The non-universal constants a and c and the expo-
nent σ were estimated together with Uc by a least square
fit. The best fit with error κ = 5×10−4 could be achieved
with a = 100.513, c = 8.931, σ = 0.517, and Uc = 0.024.
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FIG. 1: U dependence and finite-size scaling of the spin gap
for the half-filled SU(2) Hubbard model. The dashed lines are
guide to the eye, the solid lines show the result of our fit.
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FIG. 2: U dependence and finite-size scaling of the charge gap
for the half-filled SU(2) Hubbard model. The dashed lines are
guide to the eye, the solid lines show the result of our fit.

If σ is fixed to σ = 0.5 the parameters a and c change
only slightly, and the best fit with error κ = 8 × 10−4

gives Uc = 0.075. This can be taken as an indicator of
the accuracy since the exact result is Uc = 0.
The one-site and two-site entropies measured in the

middle of the chain as well as the dimerization in the
two-site entropy obtained for chains with up to N = 128
sites as a function of U are plotted in Fig. 3. It is worth
mentioning that the block entropy measured for the sym-
metric superblock configuration shows similar behavior
as the two-site entropy.
The one-site, two-site and block entropies take their

maximal value at U = 0, corresponding to the equiparti-
tion of local states,13,25 and no anomaly can be seen for
U > 0 in agreement with the known analytic result.13
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FIG. 3: One-site and two-site entropy and dimerization of the
two-site entropy in the middle of the chain as a function of
U for the half-filled SU(2) Hubbard model. The two sets of
curves for the two-site entropy correspond to i = N/2 and
i = N/2 + 1. The dashed lines are guide to the eye and the
solid line is our parabolic fit.

The one-site entropy could be fitted well with a parabola

sN/2 = s0 −AU2 , (15)

yielding s0 = 1.3863, A = 0.009293, with error κ =
5 × 10−9. This parabolic fit is also shown in Fig. 3.
The constant s0 and the coefficient A are in very good
agreement with the exact result, s0 = ln 4 and A =
[7ζ(3)/2π3]2/2 = 0.0092057.
Although the two-site-entropy is markedly different on

neighboring bonds in finite systems, the dimerization of
the two-site entropy defined by (8) scales to Ds = 5(1)×
10−4 for all U , which should be considered as zero, in
agreement with the known result that the SU(2) Hubbard
model is not dimerized.
From these calculations we conclude that a value less

than about 5×10−4 either for the gap or the dimerization
of the two-site entropy should be taken as zero.

V. HALF-FILLED SU(n) MODELS

The renormalization-group calculations2,7 have shown
that at half filling the charge mode is always gapped.
When n > 2, this mode is coupled to the spin sector and
this generates gaps in the spin modes, as well. Moreover,
Marston and Affleck2 have pointed out that for even n

the ground state is a charge-density wave state where the
charge density is centered on the bonds, i.e., the system
is spontaneously dimerized.

Since the arguments leading to this result cannot be
straightforwardly extended to odd n we have done calcu-
lations both for even and odd n to compare the behavior
of the SU(4) Hubbard model to that of the SU(3) and
SU(5) models.

A. Models with even n

As has been shown, in the SU(2) model already, where
relatively long chains could be studied, the energy gaps
could not be determined for small U values with bet-
ter accuracy than 5 × 10−4. Since the upper cutoff on
the number of DMRG block states is reached for rela-
tively small system sizes, N = 32 already in the SU(4)
model, determination of the N → ∞ limit of the energy
spectrum with the same accuracy is not possible with
our computational facilities. We have calculated the en-
ergy gaps for a few large U values, where longer chains
up to N = 64 could be treated. Although the extrap-
olated gaps are somewhat larger than those reported in
Ref. 4, e.g., for U = 4 we have found ∆c = 0.69(4) and
∆s = 0.26(2), the results demonstrate clearly that in fact
both gaps are finite.

Since our primary aim for the half-filled case was to
study dimerization, we have analyzed the ground state
entropy functions. The one-, and two-site entropies and
the dimerization of the two-site entropy are shown in
Fig. 4 for different chain lengths. While the one-site en-
tropy shows no sign of dimerization, bond dimerization is
apparent in the two-site entropy. Unfortunately the lim-
itation for small U values discussed above applies also in
the case when the extrapolated values of Ds are calcu-
lated. Although there is no doubt that Ds is finite for
not too small U , and in the large-N limit, the dimer-
ization of the two-site entropy seems to grow exponen-
tially slowly as a function of U , resembling a Kosterlitz-
Thouless transition, no reliable finite-size scaling analysis
could be done to determine Uc where Ds and the energy
gaps become finite. The reason is that if a smaller χ
is required in the calculation for the longest chain with
N = 64 sites, smaller Ds is obtained, thus our results
shown for N = 64 overestimate Ds.

We try to infer Uc from the behavior of the one-site
entropy. As seen, it is a continuous function of U with a
maximum at U = 0 and without any anomaly for U > 0
For small U values it can be fitted well (with error κ =
1×10−7) by a parabola with s0 = 2.7723 (the exact value
is s0 = ln 16) and A = 0.0404.

This analytic behavior and the results obtained for the
dimerization are in complete agreement with the predic-
tion by Marston and Affleck.2
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FIG. 4: Entropy functions plotted as in Fig. 3, but for the
half-filled SU(4) Hubbard model.

B. Models with odd n

We will now compare the results described above with
the behavior of the SU(n) model for odd n. The U depen-
dence of the spin gap obtained by DMRG for the SU(3)
half-filled Hubbard model and the finite-size extrapola-
tion are shown in Fig. 5. The corresponding plots for the
charge gaps are shown in Fig. 6.
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FIG. 5: The spin gap plotted as in Fig. 1, but for the half-
filled SU(3) Hubbard model.
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FIG. 6: The charge gap plotted as in Fig. 2, but for the
half-filled SU(3) Hubbard model.

The extrapolated values obtained using (12) are sum-
marized in Table I. They were fitted with a four-
parameter curve (14). The least-square fit (also shown
in Fig. 5) for the spin gap with error κ = 8× 10−7 gives
a = 1.089, c = 4.9256, σ = 0.607, and Uc = 0.054. When
σ is fixed to σ = 0.5 we obtain Uc = 0.098 with error
κ = 2× 10−6.
For the charge gap the same procedure gives a =

1.0855, c = 5.0492, σ = 0.9060 and Uc = 0.0913 with
error κ = 5× 10−7 (this curve is also shown in Fig. 6) or
Uc = 0.099 with error κ = 2× 10−5 if σ = 0.5.

U ∆c ∆s

0.1 0.0010(5) 0.0017(4)
0.25 0.0016(4) 0.0021(4)
0.5 0.0040(4) 0.0035(4)
1 0.0128(3) 0.0086(3)
2 0.0618(2) 0.0339(3)
2.5 0.1047(1) 0.0559(2)
3 0.1537(2) 0.0794(2)
3.5 0.2047(1) 0.1057(1)
4 0.2586(1) 0.1318(1)

TABLE I: Extrapolated values of the spin and charge gaps
in the thermodynamic limit for the half-filled SU(3) Hubbard
model.

The one- and two-site entropies and the dimerization
appearing in the latter one are shown in Fig. 7 for system
sizes up to N = 90. The one-site entropy possesses a
maximum at U = 0, and none of the entropy functions
show any sign of anomaly for U > 0. The one-site entropy
can be fitted with a parabola giving s0 = 2.0791 (the
exact value is s0 = ln 8) and A = 0.0197 with κ = 5 ×
10−7. Bond dimerization is signaled again by the two-
site entropy, since Ds remain finite in the large-N limit
for all finite U values. Eq. (14) with fixed σ = 0.5 gives
a = 18.324, c = 5.827, and Uc = 0.013 with error κ =
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5× 10−7.

0 0.5 1 1.5 2 2.5 3 3.5 4
1.9

1.95

2

2.05

2.1
S

ite
 e

nt
ro

py  6
18
30
60
90
Inf

0 0.5 1 1.5 2 2.5 3 3.5 4
1.5

2

2.5

3

3.5

T
w

o−
si

te
 e

nt
ro

py

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

 D
s

U

FIG. 7: Entropy functions plotted as in Fig. 3, but for the
half-filled SU(3) Hubbard model.

This finding, the dimerization of the half-filled SU(3)
model has been corroborated by the study of the length
dependence of the block entropy. We have determined
the von Neumann entropy of blocks of length l for various
chain lengths and calculated the Fourier components. It
was found that an oscillatory component is superimposed
on the smoothly increasing s(l) as l varies from l = 0 till
l = N/2 (due to its definition s(l) decreases for l > N/2
to vanish at l = N) and a finite Fourier component at
q = π is obtained in the N → ∞ limit. This is shown in
Fig. 8. Comparison to the results obtained for the half-
filled SU(2) and SU(4) models, also shown in the figure,
it is clearly seen that the SU(3) model behaves like the
SU(4) model, both are dimerized, while the SU(2) model
is not.

Due to the limitations imposed by our computing fa-
cility we could calculate the entropy functions for the
SU(5) Hubbard model for chains up to N = 20 lattice
sites only. Therefore these results show tendencies only.
It was found that in the half-filled case the one-site and
two-site entropies have a smooth maximum at U = 0 and
the dimerization of the two-site entropy as a function of
U bf as well as the oscillation of the block entropy show
similar behavior as in the half-filled SU(3) and SU(4)
models: it is finite, the system is dimerized.

From all these results we conclude that the half-filled
SU(n) Hubbard models with odd n behave in the same
way as predicted for even n.
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FIG. 8: Finite-size scaling of the q = π Fourier component of
the half-filled SU(n) Hubbard model for n = 2, 3, 4 at U = 4.

VI. 1/n-FILLED SU(n) MODELS

The other interesting situation which in a certain sense
is the analogon of the half-filled SU(2) model is the 1/n-
filled band, where the number of electrons is equal to the
number of lattice sites. In this case umklapp processes in
which n particles with different spin indices are scattered
across from kF to −kF (or vice versa) may become rele-
vant. An earlier study3 of the model using both analytic
and numerical quantum Monte Carlo approach suggested
that the spin gap vanishes for all U , while the charge gap
opens exponentially slowly for U > Uc but with finite Uc.
Since these numerical calculations have been performed
for relatively short chains up to N = 30 sites, in this
section we investigate in detail the same problem for the
SU(3) model on longer chains using a different and hope-
fully more accurate procedure, and check the results for
SU(4) and SU(5) models, too.

A. SU(3) model at one-third filling

The U dependence of the spin gap obtained by DMRG
for the SU(3) one-third-filled Hubbard model and the
finite-size extrapolation are shown in Fig. 9. The corre-
sponding plots for the charge gaps are shown in Fig. 10.
As it is seen, for the chain lengths available the spin gap

is a decreasing function of U and it scales to zero slower
than 1/N . An upper bound ∆s = 0.003(2) is obtained
for all U if (12) is used for the extrapolation. A better
fit can be achieved by the ansatz

∆(N) = ∆ + a/N b, (16)

with the exponent b as a free parameter. This fit gives
∆s = 0.0006(3) with b varying between 0.9 and 0.98. This
difference is an indicator of the limits of our calculations.
As mentioned earlier a gap 5 × 10−4 should be taken to
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FIG. 9: Spin gap plotted as in Fig. 1, but for the one-third-
filled SU(3) Hubbard model.
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FIG. 10: Charge gap plotted as in Fig. 2, but for the one-
third-filled SU(3) Hubbard model.

be zero. Thus we conclude that the spin gap vanishes in
the large-N limit for all positive U .

In contrast to this, the charge gap is a monotonically
increasing function of U for all finite system sizes. It
scales to finite values not only if U is large enough but
for small U values, as well. Our finite-size scaling analy-
sis predicts small but finite charge gap. The extrapolated
values are given in Table II. These values are larger than
those given in Ref. [3] where the longest chain used in
the finite size scaling analysis had N = 30 sites. The
reason for the discrepancy is that the 1/N2 corrections
in Eq. (11) can be seen for longer systems only. The
extrapolated values were fitted with the four-parameter
function (14). The best estimates for the parameters
are: a = 8.68, c = 28.12, σ = 1.62(3), and Uc = 0.03(3)
(this curve is also shown in Fig. 10). The error of the
fit is κ = 2 × 10−4. The fit with fixed σ = 0.5 gives
Uc = 0.36 with error κ = 2 × 10−3. These Uc values are

much smaller than the one found Ref. 3. Even though
it has been emphasized in that work that the extrapo-
lated charge gap can be fitted with Uc varying between
0 and 2.2, their best estimate was Uc = 2.2. The curve
using their parameter values, a = 45.050, c = 6.567, and
σ = 0.5 is also plotted in Fig. 10. It is clearly seen that
this curve is well below our extrapolated data even for
large U . The authors of Ref. [3] supported their find-
ing by a theoretical estimate for the critical coupling Uc

which they have found to be the order of unity. Our best
estimate at least an order of magnitude smaller.

U ∆c U ∆c

0.1 0.0037(4) 2 0.0065(3)
0.25 0.0039(5) 2.25 0.0101(3)
0.5 0.0043(4) 2.5 0.0183(2)
1 0.0048(4) 2.75 0.0360(2)
1.25 0.0049(4) 3 0.0702(2)
1.5 0.0051(4) 3.5 0.2090(1)
1.75 0.0053(3) 4 0.4421(1)

TABLE II: Extrapolated values of the charge gap in the
thermodynamic limit for the one-third-filled SU(3) Hubbard
model.

Since the numerical results on the gap do not give a
definite answer whether Uc is finite or not, while Ref. 3
gives analytic arguments in favor of a finite critical value,
we looked for further numerical evidence by studying the
entropy functions. Our results are shown in Fig. 7. The
one-site entropy possesses a maximum at U = 0. It shows
no anomaly for U > 0. For small U , it can be fitted with
the a quadratic U dependence with s0 = 1.9076 (the
exact value is s0 = 3 ln 3 − 2 ln 2) and A = 0.0138 with
κ = 2× 10−7.
A somewhat different behavior is obtained when the

entropy of bigger blocks are considered. This effect is
most pronounced when the entropy for a block of length
l = N/2 is considered. The block entropy as a function of
the block length oscillates now with a period of three, the
Fourier spectrum has a peak at q = 2π/3, however, this
component vanishes in the large N limit, indicating that
the system remains uniform. When the U dependence of
the blocks of length l = N/2 is taken, this quantity, in
contrast to what has been seen for the single-site entropy,
does not have its maximum at U = 0, but at a somewhat
larger value. This is seen in Fig. 12.
The accuracy, the allowed quantum information loss

was χ = 10−4 in this calculation, which allowed us to
consider chains with N = 120 sites, but this does not
influence the shape of the curves. The location of the
maximum is shifted by less then one percent. The inset in
the figure shows the finite-size scaling of Uc, the location
of the maximum of the curves. Similar calculation have
been performed for the excited state with N +1 or N −1
particles. The Uc values obtained from the maximum are
also shown in the inset. Extrapolation to the N → ∞
limit gives a critical Uc that is smaller than 0.1. Similar
result is observed for the two-site entropy. The location
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FIG. 11: Entropy functions plotted as in Fig. 3, but for the
one-third-filled SU(3) Hubbard model.
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lines are the result of polynomial fits. The inset shows the
finite-size scaling of Uc determined from the maximum of the
block entropy for the ground state as well as for excited states
with N + 1 or N − 1 particles.

of the maximum shifts to U = 0 and the dimerization Ds

vanishes for all positive U .

We have also checked the value of the central charge,
which is related to the number of soft modes, using the
initial slope of s(l). While for U = 0 a value close to
3 is found, our calculation indicates that it is only 2 for
U > 0.5. For smaller U values much longer chains would

be needed to get reliable results.
Therefore, on the basis of our numerical results we con-

clude that Uc is much smaller than predicted, and it could
even be zero. The ground state is uniform as is the case
for the half-filled SU(2) Hubbard model.

B. The SU(n) models with n > 3

As mentioned in Sec. III, if an accuracy χ = 10−5 is
required, relatively short chains only could be studied
for n > 3. For the SU(4) model we calculated the en-
ergy gaps for large U values only to compare our results
with those obtained previously by quantum Monte Carlo
calculation.3 Here again—similarly to what has been seen
for n = 3—the values obtained for the gap are somewhat
larger than those reported in Ref. 3. For U = 4 we find
∆s = 0.05(3) and ∆c = 0.21(2) for the extrapolated gaps.
Since this small but finite ∆s does not allow to draw the
firm conclusion that the spin gap vanishes, the entropy
analysis has been performed.
The entropy functions for the quarter-filled SU(4)

model show similar qualitative behavior as the half-filled
SU(2) or the one-third-filled SU(3) models. The one-site
entropy possesses a maximum at U = 0 and for small U
it can be fitted with a quadratic form with s0 = 2.2353
(the exact value is s0 = 4 ln 4−3 ln3) and A = 0.138 with
error κ = 3× 10−4. None of the entropy functions show
any anomaly for U > 0. The dimerization of the two-site
entropy seems to scale to zero, since for any U it scales to
a value less than Ds = 0.02(3). Although for finite sys-
tems the Fourier spectrum of the block entropy s̃(q) has
a peak at q = π/2, it scales to zero in the thermodynamic
limit. The ground state is in fact uniform.
Due to the similarity in the behavior of the half-filled

SU(2), one-third-filled SU(3), and quarter-filled SU(4)
models, we suggest that—in disagreement with the re-
sult obtained by Assaraf et al.3 who predicted vanishing
charge gap for U < 2.8—the charge gap opens exponen-
tially slowly at Uc = 0.
The entropy functions of the 1/5-filled SU(5) model

have been calculated for chains up to N = 30 lattice
sites only. Although no reliable finite-size scaling could
be performed, our results indicate similar features as seen
in the other 1/n-filled models. The one-site entropy pos-
sesses a maximum at U = 0 and it is a smooth function
of U . We expect, therefore, that in this case as well the
Mott transition occurs at Uc = 0.

VII. CONCLUSION

In summary, we have studied the one-dimensional
SU(n) (n = 2, 3, 4, and 5) Hubbard model using the
density-matrix renormalization-group method. Excita-
tion gaps, l-site entropies, and Fourier spectrum of the
block entropy have been calculated numerically. The nu-
merical accuracy has been controlled by the quantum in-
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formation loss χ which also sets a limit on the largest
chain lengths whose properties could be determined with
an a priori defined accuracy. Our method has been
tested on the SU(2) Hubbard model in order to see simi-
larities and differences when the n > 2 cases are studied.
First, the model at half filling has been considered.

The prediction2 based on a large-n analytical calcula-
tion, that the SU(n) chain is bond dimerized for even
n > 2 has been numerically verified, and it has been
shown that exactly the same behavior is found for odd
n. For the half-filled models both the spin and charge
excitation gaps are finite for all finite Coulomb repul-
sion U , and they open exponentially slowly, indicating
a Kosterlitz-Thouless transition at Uc = 0. Since finite-
size scaling is notoriously difficult in the neighborhood
of a Kosterlitz-Thouless transition, we have studied the
behavior of several entropy functions. They show no
anomalies for U > 0 which also supports that Uc = 0.
This is, however, not a usual metal-insulator transition.
The dimerization for n > 2 has been corroborated by
the peak at q = π in the Fourier spectrum of the length
dependence of the block entropy.
Next, 1/n-filled systems have been studied. It has

been shown that the one-third-filled SU(3) model and
the quarter-filled SU(4) model behave exactly in the same
way as the half-filled SU(2) model. Although the length
dependence of the block entropy shows a characteris-
tic oscillation with a period of 1/n, the corresponding
Fourier components vanish in the thermodynamic limit,
confirming that the ground state is spatially uniform.
The spin gap vanishes while the charge gap opens ex-

ponentially slowly for U > 0. Moreover, the best fit
gives a value for Uc that is very close to zero. The loca-
tion of the transition has been checked by studying the
U dependence of various entropy functions. While the
one-site entropy has its maximum at U = 0, this is not
the case for larger blocks. Nevertheless, their maximum
shifts to U = 0 in the large N limit. Within our numeri-
cal accuracy the opening of the charge gap happens with
a Kosterlitz-Thouless type transition at Uc = 0. The
fifth-filled SU(5) Hubbard model shows similar behav-
ior. Of course, a finite but very small Uc < 0.1 cannot
be excluded, but even such a small value indicates that
the role of higher order umklapp processes needs to be
reexamined.

In a recent work,26 it has been shown that the entropy
profile of the SU(2) Hubbard model for different U values
as a function of the band filling indicates clearly the Mott
transition at half filling for any positive U . Extension of
this work to SU(n) models might provide further evidence
or discredit our result that in all cases studied Uc = 0.
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