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The one-dimensional repulsive SU(n) Hubbard model is investigated analytically by bosonization
approach and numerically using the density-matrix renormalization-group (DMRG) method for
n = 3,4, and 5 for commensurate fillings f = p/q where p and ¢ are relatively prime. It is shown
that the behavior of the system is drastically different depending on whether ¢ > n, ¢ = n, or ¢ < n.
When ¢ > n, the umklapp processes are irrelevant, the model is equivalent to an n-component
Luttinger liquid with central charge ¢ = n. When ¢ = n, the charge and spin modes are decoupled,
the umklapp processes open a charge gap for finite U > 0, whereas the spin modes remain gapless
and the central charge ¢ = n — 1. The translational symmetry is not broken in the ground state
for any n. On the other hand, when ¢ < n, the charge and spin modes are coupled, the umklapp
processes open gaps in all excitation branches, and a spatially nonuniform ground state develops.
Bond-ordered dimerized, trimerized or tetramerized phases are found depending on the filling.

PACS numbers: 71.10.Fd

I. INTRODUCTION

Recently, the SU(n)-symmetric generalization of the
standard SU(2) Hubbard model! has been intensively
studied theoretically.234:26.782 Apart from its theoret-
ical interest this model may mimic strongly correlated
electron systems where the orbital degrees of freedom of
d and f electrons play important role and these extra
degrees of freedom are taken into account by consider-
ing n-component fermions. On the other hand, ultracold
gases in optical lattices may also be simulated by such
multi-component models.

The Hamiltonian of the model is usually written in the
form

where N is the number of sites in the chain. The oper-
ator c;r’g (¢c;,) creates (annihilates) an electron at site i
with spin o, where the spin index is allowed to take n
different values. n; . is the particle-number operator, ¢ is
the hopping integral between nearest-neighbor sites, and
U is the strength of the on-site Coulomb repulsion. In
what follows ¢ will be taken as the unit of energy.

The model behaves as an m-component Tomonaga—
Luttinger liquid at generic fillings. Other type of behav-
ior may appear at commensurate fillings due to umklapp
processes. The possible phases, their nature and the crit-
ical coupling where they appear have been studied in
detail for two special commensurate fillings of the band,
namely for half filling and 1/n filling.2:3:4:2:6.7:8:9 Tt is well
established by now that the ground state is a fully gapped
bond-ordered dimerized state in the half-filled case for

any n > 2. Contrary to this, the ground state remains
translationally invariant in the 1/n-filled case, and only
the charge mode acquires a gap for U > U.. While As-
saraf et al.2 argued that UL, is finite, our recent numerical
work? has suggested a much less, perhaps U, = 0 crit-
ical value above which multiparticle umklapp processes
become relevant.

It is worth mentioning that the SU(n) Hubbard model
has a rich phase diagram in the attractive case, too.1%1
The one-third-filled SU(3) model has two distinct phases
in the high-dimensional limit. In one of them the fer-
mions form trions while in the other phase a color super-
fluid state emerges. The existence of these phases is not
yet settled in one dimension.

In the present paper, the role of multiparticle umklapp
processes will be further analyzed for general commensu-
rate fillings f = p/q, where p and ¢ are relatively prime.
We try to establish under what conditions the umklapp
processes can generate gaps in the charge or spin sectors,
and when and how the translational symmetry is broken.
To this end, partly analytic, partly numerical procedures
will be applied. We will generalize the method used in
Ref. 2] to the one-third-filled SU(n) model to show an-
alytically that the ground state cannot be spatially uni-
form. It is trimerized at least in the large-n limit. The
numerical work will show that in fact this trimerized state
with gapped excitations exists for n > 3 already.

In the numerical part, the length-dependence of the en-
tropy of finite blocks of a long chain is studied. Recently,
it has been shown that quantum phase transitions can
be conveniently studied by calculating some measure of
entanglement 12:13:14,12,16,17,18,19,.20 Thig can either be a
local quantity, e.g., the concurrence?!, a global quantity,
e.g., the fidelity,22 or the entropy of a block of several
sites.22 As has been demonstrated recently,2? the oscil-
latory behavior of the block entropy can reveal the posi-
tion of soft modes in the excitation spectrum of critical
systems or the spatial inhomogeneity of gapped models.
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This will allow us to demonstrate that at commensurate
fillings f = p/q the type of ground state of the one-
dimensional SU(n) models depends on whether ¢ = n,
qg<mn,orq>n.

The paper is organized as follows. The oscillatory be-
havior of the block entropy, the corresponding peaks in
its Fourier spectrum, and their relationship to the known
properties of the half-filled and 1/n-filled models are re-
called in Sec. II, where some new results necessitating
further studies are also given. An analytical investigation
of the role of umklapp processes at commensurate fillings
is presented in Sec. IIT and the possibility of spatial inho-
mogeneity of the ground state is discussed. The numer-
ical results for various fillings are presented in Sec. IV.
Finally our findings and conclusions are summarized in

Sec. V.

II. OSCILLATORY LENGTH DEPENDENCE OF
THE BLOCK ENTROPY

If a finite block of length [ of a long chain of NV sites is
considered, it is in a mixed state, even if the long chain
is in its ground state. The mixed state can be described
by a density matrix py(l) and the corresponding von
Neumann entropy is

sn(l) = —TF[PN(Z)lnPN(m : (2)

It is well known22:22 that this entropy as a function of the
block size grows logarithmically if the system is critical
and the spectrum is gapless. In addition, the central
charge ¢ can be derived2%27 from the initial slope of the
length dependence of sy (1),

sn(l) = gm {ﬁ sin (%l)] +g, (3)

™

where g is a shift due to the open boundary. It contains a
constant term which depends on the ground-state degen-
eracy and an alternating term decaying with a power of
the distance from the boundary.28:2? On the other hand
for noncritical, gapped models, sy (1) saturates to a finite
value when [ is far from the boundaries.

Recently it has been pointed out by some of us? that
a wider variety of behavior may be found for the length-
dependence of the block entropy. Namely, we have shown
that in some cases oscillations may appear in sy (7). This
can be best analyzed by considering the Fourier trans-
form

= 1 & —ikl
S0 = e Man (1) Q)
=0

for discrete wave numbers, k = 275 /N lying in the range
(—m,m). Since sy(l) = sy(N —1), 5(k) is real. It has
a large peak at k = 0, all other Fourier components are
negative. Peaks in |5(k)| carry information about the po-
sition of soft modes or the spatial inhomogeneity of the

ground state. More precisely if the amplitude of a peak
at a nonzero wave number k* remains finite in the ther-
modynamic limit, this indicates a periodic spatial mod-
ulation of the ground state with wavelength A\ = 27 /k*.
On the other hand, if a marked peak appears in |3(k)| but
its amplitude vanishes as N — oo, this allows to identify
the wave vector of soft modes in critical models.

In a recent work? we have shown that such oscillations
appear in sy(l) for the SU(n) Hubbard model as well.
The periodicity depends on both n and the band filling
f =p/q. This is shown for the n = 3 and n = 4 models
for the 1/n-filled and half-filled cases in Fig. Il for a large
value of U (U = 10).
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FIG. 1: Block entropy sn(!) of finite chains with N = 18 and
N = 16 site, respectively, for n = 3 and 4 at fillings f = 1/n
and f = 1/2 for U = 10. The solid line is our fit using Eq. (3.

In the 1/n-filled cases, sy (l) increases logarithmically
with the block length (and then goes down as [ ap-
proaches N). When every third or fourth values are
taken, depending on the periodicity, these selected val-
ues can be fitted to (@) as shown by the solid lines in
panels (a) and (c). This indicates gapless behavior and
gives ¢ = n—1. This is in agreement with the theoretical
expectation, since the charge mode becomes gapped due
to multiparticle umklapp processes and only the n — 1
spin modes are gapless. A distinct behavior is found in
half-filled systems, as seen in panels (b) and (d). The
quantity sy () oscillates with period two, and if only ev-
ery second point is taken, it seems to saturate beyond
some block length, before decreasing again, indicating
that the corresponding models are fully gapped.

The finite-size dependence of the peaks of |5(k)| ap-
pearing at k* = 2kp = 27 f characterizing the oscilla-
tion is shown in Fig. 2l It is seen that in the 1/n-filled
case the Fourier components at k* = 27/n vanish in the
thermodynamic limit, while a finite value is obtained at
k* = m for half-filled models. This corroborates our find-
ing that the 1/n-filled SU(n) models are critical with
a spatially uniform ground state while a gapped bond-
ordered dimerized phase appears at half filling.

We have done similar calculations for more general
commensurate fillings of the band. Figure B shows the
results obtained for n = 3, f = 2/5 as well as for n = 4,
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FIG. 2: Finite-size dependence of |§(k*)| for various n and
fillings for U = 10. The solid line is the finite-size-scaling fit.

f = 1/3. When every fifth points are taken for the
f = 2/5 filled SU(3) model, they can be fitted to (3)
yielding ¢ = 3 for the central charge. This indicates that
all modes, including the charge mode, are gapless.
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FIG. 3: Same as Fig. [l but for (a) n = 3,f =2/5, N = 20
and (b) n=4,f=1/3, N =24.

Such a fit does not work for the one-third-filled SU(4)
model. To better see the difference |$(k)| is consid-
ered again. The amplitude of the Fourier component at
k* = 47 /5, also displayed in Fig. 2] for the n = 3 model,
vanishes in the N — oo limit. On the other hand |5(k)]
remains finite at k* = 27/3 in the one-third-filled n = 4
model.

When the same calculations are repeated for the n =5
model at f = 1/2,1/3,1/4, and 1/5, peaks appear in
|5(k)| at k* = 7,27 /3, 7/2, and 27/5, respectively. As
is seen in Fig. @ the amplitude of the peaks remains
finite even when N — oo in the first three cases, while it
vanishes in the last case.

These results indicate that the role of umklapp pro-
cesses depends on the relationship between the number
of components n and the relative primes p and ¢ char-
acterizing the commensurate filling. In what follows this
problem will be studied first analytically in a bosoniza-
tion approach and large-n expansion technique, and then
numerically using the DMRG method.
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FIG. 4: Same as Fig. 2 but for n = 5. The solid line is the
finite-size-scaling fit.

IIT. ANALYTICAL CONSIDERATIONS

A. The role of umklapp processes: a bosonization
approach

Following the usual procedure we write the Hamil-
tonian () in momentum space and linearize the free-
particle spectrum around the two Fermi points (+kp).
The underlying assumption is that the low-lying excita-
tions determine the physics of the system. Depending on
whether the momentum of the fermions is close to +kp
or —kp, one can distinguish left- and right-moving parti-
cles, and the interaction processes also can be classified
on the basis of whether the incoming and scattered parti-
cles are right or left movers and the momentum transfer
is small (forward scattering) or large, of the order of 2kp
(backward scattering). In a generic model the strength
of the various scattering processes may be different. For
the sake of simplicity we neglect chiral processes in which
both particles move in the same direction before and af-
ter the interaction, since they lead to the renormalization
of the Fermi velocity only.

One can recognize that at generic fillings, where um-
klapp processes do not play a role, the forward and back-
ward scattering processes can be interpreted as current—
current interactions and their contribution to the Hamil-
tonian density can be conveniently rewritten using Dirac
fermions®® in the following short form (automatic sum-
mation for the repeated indices is understood):

= %9010203041/)01 (I)Vudjdz (17)1/103 (x)'}/,udjtu (I)(E))
Here o; denote the spin indices that can take the val-
ues 1,...,m, 7, with g = 1,2 are the Dirac matrices,
in our case the standard Pauli matrices (o4, 0,), and
¥(x) = f(x)y;. While the Hubbard model contains a
single interaction parameter U, the couplings ¢s,oy0304
may be different for physically different processes in more
realistic models. In the renormalization-group treatment
we will assume this to be the case. It is assumed, how-

Hint (17)



ever, that the spin of the fermions does not change in the
scattering process and the couplings are symmetric un-
der the exchange (01, 02) <> (03,04). If the fermion field
Yy (x) is decomposed into left- and right-moving compo-
nents according to

wate) = (o).

the usual backward- and forward-scattering processes are
in fact recovered. In the standard g-ology3! notation
Joo'o'o 18 denoted by —g1, and goooror By g2.

The well-known renormalization-group (RG) equa-
tions, the 8 function can be written for these scattering
processes in a short form:3°

1/;0(17) = (L(TT(I), RL(ZE)) ) (6)

8lnga1020304 =3 =g g
T a1 A/ /r  — Moiogoz04 — Yoi10;030;Y0;0200
81nA’/A 1020304 1040304002004

(7)

— Yoi0; 0joq 9o;0203 05

where A is the cut-off parameter. These RG equations
have been analyzed earlier?? and it was found that the
backward-scattering processes scale out at generic fill-
ings in the SU(n) Hubbard model and for this reason
this model is equivalent to an n-component Luttinger lig-
uid in this case. The Hamiltonian can be diagonalized®
and the excitation spectrum can be determined exactly
in bosonic phase-field representation.32 There is one sym-
metric combination of the phase fields with different spin
indices, this is the so-called charge mode:

- % S o (@), (8)

while the n —1 antisymmetric combinations give the spin
modes:

bms(T) = \/T-l—l Z¢U — MPmi1(z) 9)
withm=1,...,n—1.

Similarly to the spin-charge separation in the two-
component Luttinger model, one finds complete mode
separation. The Hamiltonian density is the sum of the
contributions of the individual modes,

7) = > Hj(o), (10)

where j = ¢, 18,2s,...,(n—1)s. Each term has the usual

bosonic form:

huj

Hj(z) = =

{ms @ + - 0@ | )

where II;(x) is the momentum canonically conjugated
to ¢;(x). The renormalized velocities and the Luttinger

parameters can be given in terms of the new couplings
g2;; appearing after diagonalization® in the spin indices:

\/ g2,] ’ (123“)

1 — QQJ
K; = : 12b
J 1+g27j ( )

In a finite system, where the momentum is quantized
in units of 27/ L, the excitation spectrum of the Luttinger
model can be written as:

E=Y b2t (w40l 484 AL), (13)
J

where n’, are integers describing the bosonic excitations
and

. 1 1 2
A, = 1—6(\/1(ij + \/?51\1]-) : (14)
J

where 0 N; is the change in the number of particles in the
jth channel, and similarly J; describes the current in the
jth channel created by adding particles to or removing
them from the branches of the dispersion relation.

The total momentum is given by

P:hkFJchZh%T (ni—nj_+N‘+—N‘_). (15)
J

Thus soft modes appear not only at zero momentum but
at integer multiples of 2kp, too, since the charge current
Je is an even number if the total charge is conserved.
Since

NO 27

2kp = S — 16
F n L’ (16)

where N? is the number of particles in the system, and
the filling of the band is f = N?/nN, the position of
these soft modes depends on the filling only, 2kr = 27 f.

We know that the usual umklapp processes, scattering
of two right movers into left-moving states or vice versa,
that were neglected so far, are relevant in a half-filled
system for any n.2-7 Multiparticle umklapp processes may
become relevant at other commensurate fillings. To see
what kind of processes are allowed we have to take into
account that the total quasimomentum transferred in an
umklapp process has to be an integer multiple of 2x. If
the band is f = p/q filled and consequently kr = p7/q, q
particles have to be scattered from one Fermi point to the
opposite one to satisfy this condition. This is illustrated
in Fig. Bl Since there are n different types of fermion in
the SU(n) model, and the Hubbard interaction is local,
only such umklapp processes are allowed by the Pauli
principle in which the number of scattered particles is less
than or equal to n. Thus g-particle umklapp processes
are forbidden in our model when ¢ > n.
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FIG. 5: Umklapp processes in the SU(3) symmetric Hubbard
model. (a) Any two of the three types of fermion can be
scattered in the half-filled case. (b) Fermions with the three
possible spin orientations participate in the scattering process
in the one-third-filled case.

The role of multiparticle umklapp processes in the con-
ductivity of the SU(2) Hubbard model has been stud-
ied in Ref. |33]. A different aspect, whether the charge
and spin modes are coupled or not by the possible mul-
tiparticle umklapp processes has been considered for the
SU(n) model.?2 The g-particle umklapp processes can be
described in the bosonic phase-field representation by

Hy(z) = g3 /dx Z cos [2 ((;501 () + ...+ ¢o, (:E))} )
{o:}
(17)
The phase fields appearing here are the phases of the
bosonic representation of the particles participating in
the scattering process, and {o;}’ indicates that all spin
indices have to be different.

This Hamiltonian can be expressed in terms of the
phase fields corresponding to the charge and spin modes,
making use of the inverse of () and ([@)). It is clear that
if ¢ = n, only the symmetric combination of the phase
fields, that is the charge mode defined in () appears in
(I@). This means that in this case the g-particle umklapp
processes couple to the charge mode only. The Hamilto-
nian density of the charge mode is identical to that of the
well-known sine-Gordon model which has a fully gapped
excitation spectrum. Thus the charge mode becomes
gapped for finite U. The n — 1 spin modes are not in-
fluenced by the umklapp processes in the 1/n-filled case.
They remain gapless and the central charge is c =n — 1.

When ¢ < n, the sum of the ¢ phase fields correspond-
ing to the ¢ particles required for umklapp processes, will
contain various combinations of the n boson fields, lead-
ing to a mixing (coupling) of the charge and spin modes,
thus opening gaps in all modes. The model becomes non-
critical for U > U,.

When on the other hand ¢ > n, umklapp processes
are forbidden by Pauli’s exclusion principle when the in-
teraction is local. The charge and spin modes remain

gapless, thus ¢ = n for U > 0. The expected behavior
for different cases is summarized in Table [I

n c phase k*
g=n anyn n-—1 C0S(n—1) 2mp/n
g<n mn#2 - C0S0 2mp/q
g>n anyn n CiS(n—1) 2mp/q

TABLE I:. Central charge ¢ and the type of phase charac-
terized by the number of soft modes in the charge and spin
sectors (CxSy) for the p/qg-filled SU(n) Hubbard model.

B. Spatial inhomogeneity in the large-n limit of the
SU(n) Hubbard-Heisenberg model at one-third
filling

We have seen that the spectrum is fully gapped when
g < n. The question naturally arises whether the opening
of a gap at multiples of k* = 2kr is related to a breaking
of the translational symmetry, an instability against the
formation of a spatially inhomogeneous state with the
corresponding wave number.

To analyze the stability of the homogeneous state we
generalize the procedure used by Marston and Affleck?
to the one-third-filled case in the large-U limit. When n
is an integer multiple of 3, the number of fermions sit-
ting on each site is an integer in a homogeneous sample,
and a finite energy is needed to add an extra particle.
This energy gap at kg may imply a tripling of the spatial
period in the ground state. To search for this spatial in-
homogeneity a more general model, the SU(n) symmetric
generalization of the Hubbard-Heisenberg model will be
considerd. Its Hamiltonian is

N n
J
S I L TR
i=1 o,0'=1
_ t;(CI,UCHLU +he) + 5(0_1 & o g) ] |

The chemical potential is shifted to zero at one-third fill-
ing, and the Hubbard coupling U and Heisenberg cou-
pling J are rescaled by 2/n so that the spacing of the en-
ergy levels remain the same as n increases. We note that
the usual J >~ <ij> SiS; nearest-neighbor Heisenberg in-
teraction breaks up into three terms in fermionic repre-
sentation of the spin operators. One of them only shifts
the chemical potential, another corresponds to nearest-
neighbor Coulomb interaction (that is unimportant in the
large U limit), therefore they are neglected.

The equilibrium state will be determined from the
minimum of the free energy that can be derived from
the partition function of the system. In functional inte-
gral formalism the partition function can be expressed
with the Lagrangian of the model. At finite tem-
peratures the imaginary time Lagrangian is L[c,cl] =



Zi,a ( i, o(d/dT)

Z—/[dc][dcT]eXp(—/OﬂdTL[c,cT]>. (19)

Here  is the inverse temperature. The integral occur-
ring in the above expression cannot be calculated in a
simple way due to the quartic terms in the Lagrangian.
However, these quartic terms can be eliminated by a
Hubbard-Stratonovich transformation based on the in-
tegral identity

.+ H ) and the partition function is

exp(VX?) / dYexp(—Y?/4V + XY). (20)
In our case the quantities corresponding to X are
- c;rﬁgci_’g and > _ c;gciﬂ_’g. Therefore we have to in-
troduce 2N bosonic fields: ¢; and x;,;+1. We note that
the fields ¢; and x;it1 correspond? to site- and bond-
centered densities, respectively.
Adding the appropriate terms to the Lagrangian gives

Lie,cf, ¢, x] € Lie, ]

, 2
(G (S 5]
2

—i-%zl: ‘EXi,i-i-l + EZU:CZT,GCHLU

The new Lagrangian is quadratic in the fields, however
the fermionic fields are coupled to the bosonic ones. The
explicit form of the Lagrangian is

(21)

d ) 1
Lie,ct, é,x] = Z {CIU(E + Z¢z‘)ciyg + E|Xi,i+1|2

1 1
+ [(Xi,iJrl — t)c;-f)aci_i_lp + h.c.] + ng)? - Z§¢z} (22)

The partition function is obtained by integrating over ¢
and cf:

Zlpox] = / [dc][dcT]exp(— /0 Y ar Lie.c' o, x]) (23)

Writing it in the form Z[¢,x] = exp(—Ses|o, x]), this
defines the effective action. The free energy can be ex-
pressed in a usual way via Z[¢, x| as

As mentioned in the previous subsection, if spatial os-
cillations occur in the system, they are expected to ap-
pear with wave number k* = 27 f. Thus we may expect
spontaneous trimerization at one-third filling. Therefore
we suppose that the boson field ¢; takes three differ-
ent values depending on whether ¢ = 3[, i = 3l + 1 or
i = 3l + 2 with integer [. They will be denoted as ¢1, ¢,

and ¢3. Similar assumption holds for the fields x; it1,
too. The three values are x1, x2, and x3. The lattice is
thus decomposed into three sublattices.

To get a real free energy the fields ¢, (a =1,2,3) are
redefined by continuing to the complex plane (i, — ¢q ).
The free energy can then be written as

3
F({(ba}a{xa = %Z (Nn 2 %d)i_%d)a)
+3 Y (E(k)

%

and the summation for k£ has to be performed over the
reduced Brillouin zone which is now one-third of the orig-
inal one (k runs from —7/3 to 7/3) and E(k) is the energy
spectrum of a single fermion coupled to the boson fields.
It is the eigenvalues of the Hamiltonian

=3 (tn -

1 /3), (25)

t
z bip1 + (x2 t)bi+1ci+2

+(x3 —t)el 00, 5 + h.c.)
+grala, + ¢2b;‘r+1bi+1 + ¢3Cj+2ci+2} , (26)

where the operators a, b and ¢ belong to different sub-
lattices. In order to determine the one-particle spectrum
one has to diagonalize Hamiltonian (26]) in momentum
space. Therefore, we are looking for the eigenvalues of
the matrix

o1 (a—te ™ (xa—t)e’
(x1 —t)e™* ¢ (xa—te . (27)
(x3 —t)e ™ (x2 —t)e™* ®3

The energy spectrum FE(k) has three branches corre-
sponding to the three (real) solutions of the third-order
eigenvalue equation:

Ei(k) — (1 + 2+ ¢3)/3 = (28a)

)]

(28b)
Q

— sign(Q)+/|P| cos Ecosl <‘W i%ﬂﬂ

Here P and @ are the parameters in the eigenvalue equa-
tion when transformed to the form E3(k)+PE(k)+Q =0
with E(k) = E(k) — (¢1 + ¢2 + ¢3)/3.

The minimum of the free energy of a system with such
a spectrum cannot be evaluated quite generally. Fortu-
nately, we are only interested whether the three ¢, and
Xeo are different or not. This analysis can be carried out
easier in terms of the linear combinations:

— sign(Q)+/|P| cos E cos™ ! (‘ﬁ

Es3(k) — (¢ + ¢2 + ¢3)/3 =

¢ = (1 + d2 + ¢3)/3, (29a)
A¢y = (¢1 — $2)/2, (29b)
Ay :=(¢1 + ¢2 — 2¢3)/6, (29¢)



and similar definitions for y, Axi and Axs. One finds
that although the free energy has an extremum at A¢; =
A¢pe = 0 and Ayx; = Axz = 0, the free energy of the uni-
form state is not a local minimum. Thus a density-wave
has to appear in the system. We can conclude that the
SU(n) Hubbard model is unstable against the Heisenberg
coupling in the large-n limit and exhibits inhomogeneous
spatial ordering for U > 0.

From this analysis alone — due to the rather compli-
cated one-particle spectrum — we cannot decide whether
the system is dimerized, trimerized, or some other pe-
riodicity occurs, and whether the density wave is site-
centered or bond-centered. It is natural to relate the
nonuniform phase to the fully gaped excitation spectrum.
Thus when our previous considerations are taken into
account, trimerized phase is expected in one-third-filled
models. This will be supported by the numerical calcu-
lation. We will also see, that the trimerized phase is not
a special feature of the systems with integer number of
electrons per site. It occurs in one-third-filled system for
arbitrary n > 3.

IV. NUMERICAL STUDY OF THE SPATIAL
INHOMOGENEITY

In this section we present our numerical results ob-
tained by the DMRG3* method for the length depen-
dence of the block entropy sy(!) and its Fourier trans-
form 5(k) to relate them to the number and position of
soft modes when the model is critical, or to spatial inho-
mogeneity of the ground state for gapped models.

The spatial modulation of the ground state can be a
site- or a bond-centered density wave. A site-centered
density wave would manifest itself in an oscillation of
the von Neumann entropy of single sites, s;, with ¢ =
1,..., N or in the local electron density defined by

n

(ni) =Y (Vas|nia|Ves), (30)

a=1

where |¥qg) is the ground-state wavefunction. The wave
number of the charge oscillation can again be determined
from peaks in the Fourier transform of s; or (n;) denoted
as s1(k) and n(k), respectively.

The existence of a bond-centered density wave can be
demonstrated by studying the variation of the bond en-
ergy or the two-site entropy along the chain. To avoid
boundary effects we have calculated the difference of two-
site entropies in the middle of the chain, between first,
second, third and so on neighbor bonds:

Dy(N) =sn/2,N/241 — SN/241,N/242 » (31a
(

Qs(N) =5N/2,N/241 — SN/243,N/244 5 (31c

()
T5(N) =SN/2,N/24+1 — SN/242,N/2+3 »
(N)
Py(N)

N) =snj2,N/241 — SN/244,N/245 -

For convenience the number of sites in the chain was al-
ways even. Moreover, since we expect dimerized, trimer-
ized or tetramerized phases depending on the commensu-
rate filling p/q, the number of sites N was always taken
to be an integer multiple of q.

When a doubling of the lattice periodicity of the
ground state is indicated by a finite peak in |5(k)| at
k* = 7, a truly dimerized phase gives equal finite values
for Ds; and Qs and vanishing T and P, in the N — oo
limit. Stronger and a weaker bonds alternate along the
chain. When the peak in |§(k)| appears at k* = 27/3
and a trimerized phase is expected, Ts should be finite
and Qg should vanish. Symmetry considerations imply
that two equally strong bonds are followed by a weaker
or stronger bond in this case. In a tetramerized phase,
the peak in |§(k)| appears at k* = w/2, Dy, Ts, and Qs
may be finite in the N — oo limit and only P, vanishes
necessarily.

A. The numerical procedure

The numerical calculations presented in this paper
have been performed on finite chains with open bound-
ary condition (OBC) using the DMRG technique and the
dynamic block-state selection (DBSS) approach.32:36 We
have set the threshold value of the quantum information
loss x to 107° for n = 3,4 and to 107 for n = 5 and
the minimum number of block states My, to 256. In
spite of the large number of degrees of freedom per site
in the n = 5 case the entropy analysis allows one to
study this problem as well. The ground state has been
targeted using four to eight DMRG sweeps until the en-
tropy sum rule has been satisfied. The accuracy of the
Davidson diagonalization routine has been set to 107
and the largest dimension of the superblock Hamiltonian
was around three millions. As an indication of the com-
putational resources used in the present work we note
that the maximum number of block states was around
1600 for n = 3 and 900 for n = 4 and 5.

The large-N limit of the entropies and amplitudes of
the peaks in the Fourier spectrum can be obtained if
appropriate scaling functions are used. In a critical, gap-
less model, in leading order, these are expected to scale
to zero as 1/N while in a noncritical model the scaling
function depends on the boundary condition. Therefore
for any quantity A the finite-size scaling ansatz

A(N) = Ag + a/N” (32)

is used to evaluate the data obtained with OBC, where
Ap, a, (B are free parameters to be determined by the fit.



B. The numerical results
1. Models with g =n

The 1/n-filled case (¢ = n) has already been considered
in Ref. |9 and some of the results were listed in Sec. II.
As has been shown in Fig. [l sy (1) oscillates with period
n for finite systems. These oscillations are due to the
soft modes located at wave numbers k* = 27/n. Taking
every nth value only, sy (1) can be fitted accurately using
@) for relatively short chains already if U is large. After
a proper finite-size scaling, the fit gives ¢ = n — 1, as
expected.

Taking the Fourier transform of sy (1), besides the large
positive peak at k = 0, additional negative peaks are
found at the positions of the soft modes, at k* =, 27/3,
/4, and 27 /5 for n = 2, 3,4, 5, respectively. Their am-
plitude vanishes, however, in the N — oo limit. As a fur-
ther check that there are neither site- nor bond-centered
oscillations in the ground state we have analyzed s;, (n;)
and s;;41. All Fourier components of these quantities
scale to zero in the thermodynamic limit. As an exam-
ple, the finite-size dependence of n(k*) for n = 3 and
n = 4 is shown in Fig. [ at U = 10.

3

5X 10°
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O SU), f=1/3, k'=2m3
4t 0 SU(), f=2/5, K =4115 ||
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=
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FIG. 6: Finite-size dependence of n(k*) for various n and
fillings for U = 10. The solid line is the finite-size-scaling fit.

When the finite-size scaling of Dy, Ty, and Q) is ana-
lyzed one finds that they all vanish in the thermodynamic
limit as shown in Figs. [l B and @ for U = 10. All this
shows that the ground state of the 1/n-filled SU(n) Hub-
bard model is spatially homogeneous, the translational
symmetry is not broken.

2. Models with ¢ > n

We have chosen as an example n = 3 and f = 2/5. As
seen in Fig. Bla), the block entropy sy (l) oscillates with
period 5. When every fifth data points are fitted to (@3],
¢ = 3 is obtained. This indicates that the model remains

2.5 ]
D
2t 5 ]
0 SU@), =112
O SU(@), f=1/3
n” 15 0 SU), f=2/5 []
x  SU(4), f=1/2
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0 002 004 006 008 01 012 014 0.16

N

FIG. 7: Finite-size dependence of D, for various n and fillings
for U = 10. The solid line is the finite-size-scaling fit.
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FIG. 8: Finite-size dependence of T for various n and fillings
for U = 10. The solid line is the finite-size-scaling fit.

critical for finite U as well. The finite peak in |5(k)| at
k* = 47 /5 is due to soft modes. The amplitude of the
peak disappears in the N — oo limit, the ground state
of the system is uniform. This is confirmed by the calcu-
lation of §(k*), n(k*), Ds, Ts, and Qs shown in Figs. 2]
[0, [ B and @ respectively. There is neither a site- nor
a bond-centered oscillation in the occupation number or
bond strength.

8. Models with ¢ < n

One realization of this condition, the half-filled case
for n > 2 has been studied by us earlier.? It was found,
as shown in Fig.[Il that the block entropy oscillates with
period 2 for any n > 2. The peak in |5(k)| at k* = 7w does
not vanish in the thermodynamic limit (see Fig. 2). In
agreement with this Dy and @, are finite and converge
to the same value as shown in Figs. [{l and @ while T}
vanishes (see Fig. [§]). The same behavior is found in the
n = 5 model at half filling, as seen in the upper panel of
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FIG. 10: Finite-size dependence of Ds,Ts, Qs, and Ps for
the half-; one-third-, and quarter-filled one-dimensional SU(5)
Hubbard model at U = 10.

On the other hand, si(k*) and n(k*) vanish in the
thermodynamic limit (see Fig.[). The translational sym-
metry of the Hamiltonian is broken, the ground state of
the half-filled model is dimerized. Stronger and weaker
bonds alternate along the chain.

In the one-third-filled case of the n = 4 and n = 5
models (¢ < n) sy(l) oscillates with period 3 and the am-
plitude of the Fourier component §(k* = 27/3) remains
finite even for N — oo (see Figs.2land @]). This indicates
that the spatial periodicity is tripled in the ground state.
This is corroborated by our results shown in Figs. [7 8] [@,
and the middle panel of Dy and T scale to the same
finite value while Qs, s1(k*), and n(k*) vanish. In the
ground state, two bonds of equal strength are followed

by a weaker or stronger bond.

As a last example we have studied the quarter-filled
SU(5) Hubbard chain. We found that |$(k)| scales to a
finite value at k* = 7/4 as shown in Fig. [ All Fourier
components of the site entropy and local charge density
vanish for long chains, while Dy, T, and Qs scale to fi-
nite values. Only P; scales to zero, as shown in the lower
panel of Fig. [0l The ground state is a bond-ordered
tetramerized state. Fig. [[1] shows schematically the pe-
riodic modulation of the bond strength along the chain
for half-, one-third, and quarter-filled models.

Half-filled Dimerized
(OO O NN O O ENO L ONNO L ONNO L O NN

One-third—filled Trimerized

Quarter—filled Tetramerized

OO0 =0 OO0 OC=—=00—00

FIG. 11: Schematic plot of the local bond strength in half-,
one-third, and quarter-filled SU(5) Hubbard chains.

V. CONCLUSION

To study the role of multiparticle umklapp processes,
we have treated the one-dimensional SU(n) Hubbard
model analytically by bosonization approach and numer-
ically using the DMRG method for n = 3,4, and 5 for
commensurate fillings f = p/q where p and ¢ are relative
primes.

Our results confirm that umklapp processes play es-
sentially different role depending on the relationship be-
tween ¢ and n. When ¢ = n (this is the case in the
1/n-filled case) the charge and spin modes are not cou-
pled, the umklapp processes open gap only in the spec-
trum of charge modes. The system remains critical with
n — 1 gapless spin modes, the central chargeisc=n—1,
and the translational symmetry of the Hamiltonian is not
broken in the ground state.

When g > n, the leading-order umklapp processes are
forbidden in the model with local interaction by Pauli’s
exclusion principle. The model is equivalent to an n-
component Luttinger liquid with ¢ = n and the ground
state is spatially uniform for U > 0.

When, however, ¢ < n the charge and spin modes are
coupled by the umklapp processes and gap opens in the
spectrum of all modes. Even more interestingly, a spa-
tially nonuniform ground state emerges whose periodic-
ity depend on the filling. Half-filled models develop a
dimerized ground state, trimerized state appears in one-
third-filled models, the ground state is tetramerized in
quarter-filled models. Other periodicities would proba-
bly be found at other fillings. Our findings are summa-



rized in Table[[l which can be compared to the analytical
results given in Table [l

n plg ¢ periodicity k*
g=n 2 1/2 1 unform T

3 1/3 2 uniform 27/3

4 1/4 3 uniform /2

5 1/5 4 uniform 27 /5
g<n 3 1/2 - dimerized T

4 1/2 - dimerized ™

4 1/3 - trimerized 2m/3

5 1/2 - dimerized 0

5 1/3 - trimerized 27/3

5 1/4 - tetramerized /2
g>n 3 2/5 3 uniform 4 /5

TABLE II: Central charge and spatial inhomogeneity for the
p/g-filled SU(n) Hubbard chain. k™ in the last column gives
the wave number of soft modes when the model is critical
while it gives the wave number of the nonuniform ground
state when the model is gapped.
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We emphasize that our calculations were performed at
a relatively large value of U, where the nonuniformity of
the ground state is well developed, and the finite value
of the dimer, trimer or tetramer order parameter can
easily be detected. We conjecture, based on our earlier
calculations,? that the critical value U, above which the
nonuniform phase appears, is U, = 0.
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