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Abstract. Recent experimental results for ultracold atomic gases as well as for high-Tc

superconductors indicate that superconductivity and density-wave states may coexist. We show
that the two types of order do not exclude each other in a one-dimensional fermion system if the
ground state is calculated on the mean-field level. The momentum-dependent superconductivity
does not need population imbalance in the inhomogeneous, charge-ordered state, the Cooper
pairs condense into a state with momentum fixed by the periodicity of charge ordering.

1. Introduction

The recent experimental realizations of ultracold fermion systems provide new possibilities to
analyze and understand more deeply a series of complicated phenomena like high-temperature
superconductivity and the special properties of high-Tc materials in their normal phase. An
important step in this direction can be made by studying the relationship between density waves
and pairing, and the coexistence of these types of ordering. The phenomenon was studied, e.g.,
in an extended work by Micnas et al. [1], where the authors analyzed three-dimensional fermion
lattice models with local interactions. However, fluctuations destroy true long-range order in one
dimension. Indeed, the lower critical temperature of the mixed state, where zero-momentum
pairs and spatial ordering were found to be present simultaneously in a narrow temperature
interval, is suppressed [2]. The mean-field result can, however, be an indication of a corresponding
ordering in quasi-one-dimensional systems. Recent quantum Monte Carlo calculations in one
dimension [3] as well as dynamical mean-field calculations in higher dimensions [4] for ultracold
fermion systems in the presence of a harmonic confinement potential also point in that direction.
There is a parameter regime with dominant simultaneous instabilities to superconductivity and
charge ordering. This state can be interpreted as a supersolid-like phase, and it has been found
in one-dimensional fermion chains for commensurate Fermi-mixtures [5] using Luttinger-liquid
description or in the strong-coupling limit for a ladder [6].

In a translation-invariant system, the Cooper pairs condense into a zero-momentum state in
order to gain energy. In the presence of charge ordering that violates translational symmetry,
pairs with finite momentum may have lower energy. In this paper, starting from a spatially
homogeneous one-dimensional fermion system, we analyze the possibility of superconductivity
occurring in the presence of a nonvanishing charge-density-wave (CDW) order parameter.
Charge ordering and superconductivity are treated in a mean-field approximation and we allow
for the momentum dependence of the superconducting order parameter.
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2. Mean-field model

The g-ology model [7] provides us with one of the most general but mathematically well tractable
model which describes a one-dimensional interacting fermion system. We consider contact
interaction where all couplings between electrons with parallel spins are zero. The Hamiltonian
density of the model H(x) = H0(x) + Hint(x) is

H0(x) =
∑

σ

ivF(L†
σ∂xLσ −R†

σ∂xRσ), (1)

Hint(x) = g1(L
†
↑R

†
↓L↓R↑ + L†

↓R
†
↑L↑R↓) + g2(L

†
↑R

†
↓R↓L↑ + L†

↓R
†
↑R↑L↓)

+ g3(L
†
↑L

†
↓R↓R↑ +R†

↑R
†
↓L↓L↑) + g4(L

†
↑L

†
↓L↓L↑ +R†

↑R
†
↓R↓R↑), (2)

where the position dependence of the fields L(x) and R(x) is not written out for the sake of

brevity, Lσ (L†
σ) and Rσ (R†

σ) are the field operators (and their adjoints) of the left- and right-
moving fermions, respectively, and vF is the Fermi velocity.

In order to decouple the interaction terms we use a mean-field approximation taking into
account different types of nonmagnetic ordering like charge-density wave and Cooper instability.
Density wave is expected to appear with wave vector ±2kF due to the nesting property of
the Fermi surface at ±2kF, and the processes with large momentum transfer (g1 and g3)
are responsible for their appearance. Whereas backward processes (g1) and nonchiral small-
momentum-transfer processes (g2) lead to the usual zero-momentum Cooper pairs, umklapp
processes (g3) and chiral small-momentum-transfer processes (g4) can lead to pairing with
nonzero – in particular ±2kF – momentum. Suppose that the inversion symmetry of the system
is preserved in the various phases. The expectation values of the zero-momentum pairs is
then invariant under the exchange of left- and right-moving fermions,

〈

L↓R↑

〉

=
〈

R↓L↑

〉

. For
similar reasons, the expectation values of the chiral pairs with momentum −2kF (left-moving
pairs) and with momentum 2kF (right-moving pairs) are equal,

〈

L↓L↑

〉

=
〈

R↓R↑

〉

, and the
averages of the particle-hole pairs with momentum 2kF and −2kF, respectively, are also equal,
〈

R†
σLσ

〉

=
〈

L†
σRσ

〉

. Therefore the phase of the charge-density-wave order parameter ∆DW is
2lπ with integer l, so ∆DW = ∆∗

DW . The corresponding order parameters are defined by the
expressions
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∆DW = −1

2
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σLσ

〉

. (4)

The Hartree corrections from the g2 and g4 processes result in a shift of the chemical potential.
This will be neglected and the energy will be measured form the Fermi energy.

The interaction term of the mean-field Hamiltonian is split into two parts: HMF (x) =
H0(x) + H1(x) + H2(x), where

H1(x) = −∆DW

∑

σ

(L†
σRσ +R†

σLσ) − ∆(L↓R↑ +R↓L↑) − ∆∗(R†
↑L

†
↓ + L†
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†
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−∆c(L↓L↑ +R↓R↑) − ∆∗
c(L

†
↑L

†
↓ +R†

↑R
†
↓) , (5)

and H2 just shifts the energy:

H2(x) = − ∆2
DW

g1 + g3
− |∆|2
g1 + g2

− |∆c|2
g3 + g4

. (6)

Note that the system described by the mean-field Hamiltonian HMF is not homogeneous
anymore.
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3. Diagonalization procedure

At this point it is worth to switch to momentum space by introducing the Fourier transforms of
the left- and right-moving fields by the definition Lσ(x) = 1/

√
L

∑

k Lk,σei(−kF+k)x and Rσ(x) =

1/
√
L

∑

k Rk,σei(kF+k)x. After suitable transformations the Hamiltonian has a generalized BCS
form. The diagonalization of this Hamiltonian can be achieved in the most general case by taking
the linear combination of the four operators L, L†, R and R† from the outset. In this work we
are interested in the special case where first a transition to the CDW phase takes place followed
by a superconducting instability of the CDW state. The Hamiltonian is then diagonalized first
in the left- and right-moving fermions by the canonical transformation ψk,↑ = ukLk,↑ + vkRk,↑,
ψ−k,↓ = u∗kL−k,↓ + v∗kR−k,↓, χk,↑ = −v∗kLk,↑ + u∗kRk,↑ and χ−k,↓ = −vkL−k,↓ + ukR−k,↓. The
coefficients uk and vk can be chosen to be real, since ∆DW is real due to our earlier choice,
the relative phase of uk and vk is zero. The diagonalization conditions for uk and vk are very
similar to those found for the usual CDW ordering with the additional relation ∆(v2

k − u2
k) = 0.

It follows from this equation that zero-momentum pairing is incompatible with CDW ordering,
∆ = 0. The Hamiltonian is diagonal in the left- and right-moving fields if

2u2
k = 1 +

ǫk
√

ǫ2k + ∆2
DW

, 2v2
k = 1 − ǫk

√

ǫ2k + ∆2
DW

, 2ukvk =
∆DW

√

ǫ2k + ∆2
DW

. (7)

The Hamiltonian in terms of the new fermionic ψ and χ operators has the form:

HMF =
∑

k

[

[

ǫk(v
2
k − u2

k) − ∆DW 2ukvk

]

ψ†
k,↑ψk,↑ +

[

ǫk(u
2
k − v2

k) + ∆DW 2ukvk

]

χ†
k,↑χk,↑

+
[

ǫk(v
2
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k) − ∆DW 2ukvk

]

ψ†
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[

ǫk(u
2
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k) + ∆DW 2ukvk

]

χ†
−k,↓χ−k,↓
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†
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†
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cχ
†
k,↑χ

†
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]

+H2. (8)

This is a BCS Hamiltonian where the quasiparticles of the CDW state interact via a pairing
potential. The result ∆ = 0 implies that CDW and homogeneous superconductivity cannot
coexist. Due to the fact that the spectrum of the ψ and χ excitations is gapped (∆DW ), the
Cooper instability does not appear at arbitrary weak interactions. The binding energy of the
Cooper pairs has to overcome the Peierls gap.

The BCS Hamiltonian Eq. (8) can be diagonalized by the Bogoliubov transformation: αk,↑ =

wkψk,↑−zkψ†
−k,↓, α−k,↓ = wkψ−k,↓+zkψ

†
k,↑, βk,↑ = w′

kχk,↑−z′kχ
†
−k,↓, and β−k,↓ = w′

kχ−k,↓+z
′
kχ

†
k,↑.

The wk, w
′
k coefficients are chosen to be real, zk, z

′
k are complex quantities. We find

2|wk|2 = 1 −

√

ǫ2k + ∆2
DW

√

ǫ2k + ∆2
DW + |∆c|2

, 2|zk|2 = 1 +

√

ǫ2k + ∆2
DW

√

ǫ2k + ∆2
DW + |∆c|2

,

2w∗
kzk =

∆∗
c

√

ǫ2k + ∆2
DW + |∆c|2

,

(9)

and similar expressions for w′
k and z′k. Now the Hamiltonian has the form

H = EGS +
∑

k,σ

[

Eα
k α

†
k,σαk,σ + Eβ

k β
†
k,σβk,σ

]

(10)

with

E
α(β)
k =

√

v2
Fk

2 + ∆2
DW + |∆c|2, (11)
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and the ground state energy is:

EGS = −
∑

k

√

v2
Fk

2 + ∆2
DW + |∆c|2 −

1

g1 + g3
∆2

DW − 1

g3 + g4
|∆c|2. (12)

The above expression for the ground-state energy can be readily analyzed with respect to ∆DW

and ∆c. It is found that a superconducting phase can exist in the presence of CDW ordering:
EGS has a minimum where both order parameters are finite for attractive interaction gi < 0.
The coexistence of the two types of ordering leads to the lowest ground state energy and a
supersolid-like state occurs.

4. Concluding remarks

In the presented work we have analyzed the competition and coexistence of spatial inhomogeneity
and superconductivity. While earlier works found a preference for zero-momentum pairing in
the supersolid phase, our aim was to study the possible formation of superconducting pairs in
the charge-density-wave state. That is why the diagonalization of the Hamiltonian has been
carried out in two steps. A spatially inhomogeneous phase is formed in the first step and
the possibility of superconductivity was studied in such a system. Thus, the unconventional
Cooper pairs are bound states of the quasiparticles of the CDW phase. This can happen for
sufficiently strong attraction, since the binding energy of the pairs has to be larger than the
CDW gap. This requirement for the strength of the interaction can be satisfied in the regime
where our weak-coupling analysis is appropriate, since ∆DW is much less than the bandwidth.
The evolving pairs have to follow the periodicity of the density ordering. True long range order
cannot be expected in one-dimension, our results concern to the dominant instability. The
method can be generalized to higher dimensions for systems with nesting Fermi surface and –
based on our preliminary analysis – it leads to similar results [8]. The system can be realized
with ultracold fermions in a harmonic trap strongly confined to one dimension with or without
optical lattice. Note that the spatial inhomogeneity considered here is a consequence of the
strong electron-electron interaction and is not due to an external periodic potential, hence the
periodicity is determined by the number of particles. In this case the umklapp processes do not
give contribution. If the system is on lattice, umklapp scatterings can become relevant in the
half-filled case and they enhance the coexistence of charge ordering and inhomogeneous pairing.
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