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THERMODYNAMIC APPROACH TO GENERALIZED
CONTINUA

P. VANL1:2:3  A. BEREZOVSKI4 AND C. PAPENFUSS5

ABSTRACT. Governing equations of dissipative generalized solid mechanics are
derived by thermodynamic methods in the Piola-Kirchhoff framework using
the Liu procedure. The isotropic small strain case is investigated in more
detail. The connection to the Ginzburg-Landau type evolution, dual internal
variables, and a thermodynamic generalization of the standard linear solid
model of rheology is demonstrated. Specific examples are chosen to emphasize
experimental confirmations and predictions beyond less general approaches.

1. INTRODUCTION

Conventional theories of continua do not provide the description of a microstruc-
tural influence because material elements are considered as indistinct pieces of mat-
ter. Generalized continuum theories (higher-order or higher-grade) are first exam-
ples of what has been proposed to describe the macroscopic behavior of materials
with inner material structure. Though their constitutive structure is restricted by
the second law of thermodynamics, the contribution of small-scale events to entropy
fluxes and sources is still not completely investigated.

Governing equations of generalized continuum mechanics can be obtained by
different ways. The four most widely accepted approaches are the following: the
variational approach by Mindlin [I], the microhomogenization procedure by Eringen
an Suhubi [2], the virtual power method by Germain [3] and the Galiean invariance
based considerations of Eringen [4] [{].

Mindlin [I] derived governing equations in the small strain approximation with
the help of a variational principle analogous to that in ideal elasticity. In his the-
ory of microdeformations, Mindlin introduced kinetic and potential energy for both
micro- an macro-displacements as well as a tensor characterizing micro-inertia. In
the Mindlin theory, the potential energy density is a quadratic function of the
macro-strain, the relative strain, and the micro-deformation gradient. With this
variational foundation, the Mindlin theory is an idealized one, which does not in-
clude any dissipation.

In their approach to generalized continua, Eringen and Suhubi [2 5] did not
start from a variational principle. They obtained an evolution equation of the
micro-strain extending mechanical concepts of inertia, stress, strain, and energy
onto the microlevel and calculating velocity moments of the microevolution of the
momentum. The zeroth moment of the mesoscopic momentum balance results in
the macroscopic Cauchy equation and the first moment gives the evolution equation
of the micromomentum. In their constitutive theory, Eringen and Suhubi consider
the microdeformation and the gradient of the microdeformation as general internal
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variables and calculate the entropy production accordingly. They obtained the
following expression for the entropy production TA([2] (5.13)):

TA :qz(?l 10gT + (Tij - ﬁj)aivj + (Skl — Tkl — &kl)Vkl—F (1)

+(tkim — fkim)OmVrr — pCaba > 0.
Here g; is the heat flux, i.e. flux of the internal energy density, T is the temperature,
T;; is the stress, p is the matter density, s;; is the relative stress, v;; is the microv-
elocity gradient, p;j; is the double stress, the derivative of the free energy with
respect to the microdeformation gradient. Tilde denotes the reversible, nondissipa-
tive parts of the corresponding quantities. Further, &;; = fij — 5;; is the reversible
microstress, the derivative of the free energy with respect to the microdeformation.
Equation (Il defines §;;, the reversible relative stress, too. The last term gives
the entropy production due to additional internal variables &,, a = 1,..n, and (,
denotes the related intensive variable, the derivative of the entropy density with
respect to &,. Here the notation of derivatives and indices follow Mindlin as far as
it was possible. Remarkable is that the Eringen-Suhubi theory defines the entropy
flux in its classical form J; = ¢;/T.

The second method of Eringen starts from the energy balance and derives the
additional balances from the requirement of Galiean invariance [4 5] [6]. However,
the final equations and the consitutive theory is identical with the preivous case.

As we can see, the descriptions of generalized continua are weakly nonlocal from
the beginning because the gradient of the microdeformation is introduced as a state
variable. This is true also for the third approach that uses the principle of virtual
power in order to derive the evolution equation of the microdeformation. The
virtual power method is essentially dealing with statics. Dynamics in this method
is introduced by an assumption that inertia is connected to virtual displacements
directly [3, [7] or with the help of dissipation potentials. In the first case, the
dissipation requires separate considerations. In the second case, the dissipation is
introduced together with inertial terms.

Let us underline some common properties of above mentioned approaches:

(1) The connection of new microstructural variables to mechanical effects has a
kinematic background. However, the microdeformation can be originated in
different structural changes (e.g. microcracking), which is not necessarily
connected to energy alterations due to the change of a Riemann geometry
of the material manifold.

(2) The evolution equations of microstructural variables are originated in me-
chanics. Variational principles, moment series developement as well as
virtual power with dissipation potentials are mechanical concepts. In the
derivation of the governing equations the dissipative effects are considered
as secondary and frequently disregarded.

(3) The entropy flux has the same form as that in the simplest case of Cauchy
continua.

(4) In all these approaches, it is customary to introduce internal variables in-
dependently of the microdeformation, representing already identified struc-
tural changes of continua, e.g. damage or cracking [8| [9].

Intuitively, it is natural to expect that the microstructure affects also dissipative
phenomena. It is needed, therefore, to investigate in detail how dissipation effects
are described by generalized continuum theories.
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The response of materials to external loads can be expressed explicitly as a
functional [I0]. On the other hand, additional internal variables can be introduced
to define this functional in an implicit manner by means of their evolution equations.

It is well known, that variational principles may exist for a dissipative evolution,
but they are not of the usual Hamiltonian kind. At best, they need to be modi-
fied because they do not work without any further ado [11} 12} 13]. Regarding the
homogenization technics of Eringen and Suhubi for internal variables [2], it should
be noted that there is no primary microscopic candidate for an evolution equation,
therefore their method cannot be applied beyond the kinematic determinations.
Direct statistical or kinetic theory related calculations (as for example [14]) would
require a particular microstructure and an interpretation of the internal variable.
The original approach of mesoscopic theory, motivated by mixtures, does not re-
quire a very detailed mesoscopic interpretation, but the treatment of dissipative
phenomena is not complete there [I5, [16] Finally, regarding the third treatment,
the principle of virtual power is a mechanical concept, and internal variables (if
any) are not related to any kind of spacial changes of continua.

It is known, that there are two alternate approaches to obtain the evolution
equations of internal variables directly. The thermodynamic approach is related to
internal variables of state and the variational one is regarded to dynamic degrees
of freedom, respectively [I7, [I8]. In the thermodynamic approach, the entropy
production is calculated considering additional constraints (e.g. balances), and the
evolution of internal variables is determined as a part of the constitutive theory
by means of the dissipation inequality. Evolution equations obtained in such a
way contain typically only first order time derivatives [19]. The most important
issues here are the stability of the weakly nonlocal extension (see critical remarks in
[20]), the thermodynamic consistency, and seemingly missing boundary conditions.
In the case of dynamic degrees of freedom, a Hamiltonian variational principle is
applied to the nondissipative part of the evolution, and the dissipative contribution
is calculated by dissipation potentials.

Recently, it was shown that one can get a unified description of the two meth-
ods introducing weakly nonlocal dual internal variables [2I]. Then the exact and
constructive exploitation of the entropy inequality, e.g. the Liu procedure, com-
bined with an Onsagerian linear approximation of constitutive functions leads to
completely solvable constraints. An essential ingredient of the approach of dual in-
ternal variables is the observation that in the case of higher-order gradient theories,
gradients of constraints of the entropy inequality are constraints on the constitutive
state space [22] 23] [24].

It has been observed recently [25] that the structure of the dual internal variable
system of evolution equations in the nondissipative case corresponds exactly to the
evolution equation in the Mindlin theory. In this case, one of the internal variables
can be interpreted as the microdeformation and another as the conjugated momen-
tum. It is worth to extend the dual internal variable approach to a broader class
of materials taking into account dissipative effects. This suggests a more general
procedure to construct evolution equations than in [21I]. The corresponding pro-
cedure is presented in the paper. It consists in the extension of the state space,
the formulation of constraints, the application of the Liu procedure to the entropy
inequality, the solution of obtained Liu equations, and the specification of a general
form of evolution equations for internal variables following from linear relationships
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between thermodynamic fluxes and forces. The relation to linear viscoelasticity, to
the pattern formation equations of the Ginzburg-Landau-type, and to the standard
linear solid model is demonstrated in the small-strain approximation. The same ap-
proximation is used to point out the extension of generalized continua descriptions
onto dissipative materials and microstructural thermal effects.

2. CONSTRUCTION OF EVOLUTION EQUATIONS

2.1. Balance laws. We start with the formulation of thermodynamic constraints
for continuum mechanics with dual internal variables in the Piola-Kirchhoff frame-
work (PK frame). In this way the following calculations are technically easier.

The balances of momentum and energy can be represented as follows:

Qoi)i — 8jtij = 0, (2)
00€ + 0iq; = t;;0;v;, (3)
where pg is the matter density, v; is the velocity field, ¢;; is the first Piola-Kirchhoff
stress, e is the specific internal energy and ¢; is the flux of internal energy density
in the PK frame. The dot denotes the material time derivative, which is a partial
time derivative on the material manifold. 0; denotes the (material) space derivative.
The Einstein summation rule is applied for repeated indices. Our index notation
is abstract, does not refer to any particular system of coordinates, and denotes the
tensorial degree and contractions in accordance with the traditional coordinate free
treatment in continuum mechanics [26]. In the notation we use uniformly lowercase
indices, i.e. do not distinguish between material and spatial indices and vectors and
covectors. This way it is easier to follow calculations, and examples are considered
in the small strain approximation where the differences are negligible.

The balances are introduced without source terms, the momentum and the total
energy are conserved, because source terms are irrelevant in a constitutive the-
ory. The relation between the deformation gradient Fj; and the velocity field is
considered as a constraint:

Fl‘j — 6j’l)i =0. (4)

Evolution equations of the internal variables 1;; and B;; are formally represented
as

bij + fi5 =0, Bij + gij =0, (5)

where the constitutive functions f;; and g;; depend on the whole set of state vari-

ables. Here the notation of Mindlin was applied for the first internal variable, 1;;,

which is the microdeformation there [IJ.
The entropy inequality is given as follows:

005+ 0;J; > 0, (6)

where s is the specific entropy and J; is the flux of the entropy density.
It is assumed that constitutive functions

tiijiv.fijvgijaSaJia (7)
are defined on the weakly nonlocal state space spanned by the following variables:
0jvi, Fij, O Fij, e, 0ie, iz, Oxiz, Onitbij, Bijs Ok Bijs Ok Bij- (8)

For the sake of simplicity, we consider a weakly nonlocal constitutive state space
of the first order in the deformation gradient and in the internal energy, but of
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the second order in the internal variables, i.e., their second gradients are included.
The velocity field is distinguished, because only its derivative is present in the
constitutive state space. This assumption allows us to avoid velocity related prob-
lematic aspects of the material frame indifference (see e.g. [27]) and corresponds
to acceleration insensitive materials.

2.2. Liu procedure. Balance of linear momentum (), balance of internal energy
@), kinematic relation (@), and evolution equations of internal variables (f) are con-
straints of the entropy inequality. Taking into account that the constitutive state
space is weakly nonlocal of the second order in the internal variables, we should
introduce additional constraints for derivatives of their evolution equations. We
consider a derivative of a constraint as a new constraint in case of higher order
weakly nonlocal constitutive state space. It is an important aspect for the devel-
opment of correct thermodynamic conditions in weakly nonlocal thermodynamic
theories [28] [29):

i + O fij = 0, Ok Bij + Okgij = 0. 9)

Then we introduce Lagrange-Farkas multipliers A;, &, Ay, Aij, Aijk, Bij, Biji for con-

straints @), @), @), )1, @)1, G)2, @)2, respectively. The constrained entropy
imbalance is, therefore,

008+ 05J; — Aj; (FU - 33'01') — Xi (000 — Ojtij) — K (00€ + 03q; — tij05v;) +
+ A (¢ij + fij) + Agji (3/@%]‘ + akfij) + (10)

+ Bj; (ﬁz; + gij> + By (8;6[.31-3- + 8kgij) > 0.
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Liu equations are obtained as coefficients of higher derivatives after a straightfor-

ward calculation:

v 0=M\ (11)
0jv;i : 0g;u;5 =10 (12)
Fyj 00 0r,s=Ag (13)
wFij © Oour,;8=0 (14)
e 1 OeS=kK (15)
Bie © Dpes =0 (16)
Vij 1 00 Oy, = —Aji (17)
Otij 00 Doppnys = —Anji (18)
Oty = 0o oyp:;8 =0 (19)
Bij 00 0p;;8 = —Bji (20)
oBij © oo 08, 8:;5 = —Brji (21)
Mbij oo 08,,6:;8 =0 (22)
Okjvi + OppuiJj — 0e8 0a,0,45 — 0008, 91,8 00,0; firm—

0008, 81,8 09,v;91m = 0 (23)

OuFij @ Oo,r,;J1 — 0e8 o, Fy; Q1 — 00 Oy 500, Fs; from—
00 09y Bm S 0y Fi; Gnm =0 (24)

Oije + 0p,edj — 0es Dp,e 45 — 00 Q04,8 O, fim—
00 03,85 0,¢ Jim =0

(25)

6klm¢ij : 8817111!%]' Ji — Oes aalmwij dr — Qo aakwops 8817111!%]‘ fOP_
©o aakﬁops aalwn"l)ij gOZD = 0 (26)

OkimBij = 001,,8:; Tk — 0es Ooypy A — 00 00480, S 001,855 fop—
Q0 aakﬁops aalm,@ij Yop = 0 (27)

Liu equations (I, (I3), (1), (), (I8), @0) and (2I) determine Lagrange-Farkas

multipliers by corresponding entropy derivatives. The solution of Liu equations
@), (), @), @9) and [22) reduces the constitutive form of the entropy to the
following one: s = s(Fj;, e, ¥ij, Oxtij, Bij, OBij). The dissipation inequality then
follows considering Liu equations (23)-(27)) for the entropy flux. Together with
the mentioned form of the entropy function, these equations can be solved and we
obtain the entropy flux in the form:

Ji = 0e5Gi + 0000;41,,5 fim + 000,61, Gim + J3. (28)

Here the dependence of J? is reduced similarly to that of the specific entropy
J2 = J2(Fj, e,ij, Oktbij, Bij, OkBij). 1t should be noted that Eq. ([28) is not the
most general solution of corresponding Liu equations, because we did not consider
symmetries of functions in Eqs. ([I9), @2) and ()-@7). For example, Eq. () is

obtained as multiplier of Ox;v;, therefore only the symmetric part of Eq. () must be
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zero, but we consider, however, solutions that are more restrictive. This generality

is more than enough to derive dissipative generalization of generalized mechanics.
The dissipation inequality then follows as

OFij (Or, Jx — Oes O, Gk — 00 09,y OFy; fim — 00 o pins OF,, Gim) +

die (OeJi — 0es Oc Gi — 0000,41,, 8 Oe fim — 00 09,1, 8 DeGim) +

O Vij (Opy; Ik — Des Dyyy G — 000041, 8 iy fim — 0 Doy, s sy Gim) +

Oktij (0,90, Tk — 0 Doy Ak — 00 VoS Oopips; fom — 00 09 Bom s oy Gom) +

O Bij (9p:; Tk — 0es gy Gk — 00 oS gy fim — 00 0oy, Ipiy Gim) +

Ok Bij (Doyp:; Tk — Oes Doyp:; Ak — 00 Voo Doy fom — 00 Doy oS Dorpy; Gom) +

00 OF,; 8 Ejj + es ti0iv5 — 00 Oyp,;5 fij — 00 Op,;;8 gij(229)0

By substituting Eq. (28)) into the dissipation inequality we arrive at the following
expression:

Ok (0e8) Qi + Des ;0,05 + 0jv; 000, 5—

— (0p,;5 — Ox0o,0,5) c0fij — (a5 — OuDoyp,;5) 00gij + DiJ] = 0. (30)
Here 9.5 = 1/T, and we may identify thermodynamic fluxes and forces as follows:

1 1
2 <§> %+ 7 (tij + 00T, 8) Divy — (Dpyys — Doy s) 00 fij—

t;'Jj 7Xi]‘ (31)
- (aﬁijs - 8k83k5ij 5) 009ij + 81‘]10 >0,

where ¢} is the viscous stress. The entropy is a distinguished constitutive function,
that fixes the static information of the system. All other constitutive functions are
determined by means of entropy derivatives.

2.3. Evolution equations. The entropy production in the dissipation inequality
is represented as a sum of products, and there is an undetermined constitutive
function in each term multiplied by a given function of the constitutive state space.
Therefore, it is straightforward to point out the simplest solution of the dissipation
inequality assuming linear relationships between thermodynamic fluxes (terms with
undetermined constitutive functions) and their multipliers, thermodynamic forces
(see Table 1).

Thermal Mechanical Internal 1 Internal 2
Fluxes ¢ (ti]‘ + T,Qoap“s) /T fij gij
Forces | 0; (%) 0iv; Q0 (8wij5—8k88wij 5) Qo0 (a@ijs_aka@kﬁij 3)

Table 1. Thermodynamic fluxes and forces

The classical thermal interaction is vectorial, while other terms are tensorial. The
mechanical term is responsible for viscoelasticity if no other terms are present.
The last two terms constitutively determine evolution equations of second-order
tensorial internal variables v;; and 3;;. In isotropic materials ([B6)-(37), tensorial
mechanical and internal variables may be coupled independently of the vectorial
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thermal constitutive function:

1
1 1
Tt;)j = T (tij + QoTaFi]. S) = L}jlklakvl + L%J-leXkl + Lllfklykl (33)
bij = fij = Lzzjlklakvl + L%j?kszl + L?J'Bklykl (34)
Bij = gij = L}jOcvr + L5y X + L Yi (35)

So we have the three times three matrix of fourth order tensors L{j‘]kl called conduc-
tivity tensors. In isotropic materials they are characterized by three scalar material
parameters each and can be represented for all I, J = 1,2, 3 as follows:

L =17 005 + 1376105 + 1570456k (36)

where 9;; is the Kronecker delta. Therefore, there are 14-3x9 = 28 material conduc-
tivity coefficients in isotropic media with dual internal variables. Representation
[B6) can be decomposed into traceless symmetric, antisymmetric (deviatoric) and
spherical parts, i.e., is equivalent to

L[%cl = SIJ(Si(k(Sjl) =+ aIJ(Si[k(Sjl] =+ ZIJ(Sijék[, (37)

)

where braces () denote the traceless symmetric part of the corresponding tensor in
related indices 6;(0;1y = (dik 8;1+0,50i1)/2—06;0k1 /3 and the rectangular parenthesis
[ ] denotes the antisymmetric part as ;057 = (0ixdj1 — 0;x04)/2. Therefore, st =
W+l ol =117 —127, and 1Y = (3117 + 117 +117)/3. This kind of decomposition
is instructive because symmetric, antisymmetric, and spherical second-order tensors
are mutually orthogonal in the “double dot” product, i.e. taking the trace of their
product. Therefore, constitutive equations [B3)-(B5) can be decomposed into three
parts: five component traceless symmetric, three component antisymmetric, and
one component spherical parts are independent. The spherical part is determined
as

tZk = l“@kvk + ll2ka + llgykk, (38)
d’kk = lzlakvk + 122ka =+ 123Ykk7 (39)
Bk = 1P 0pvp + P2 X + 133V, (40)

In its turn, for the symmetric traceless, deviatoric part we have

thy = s 0uuny + s X iy + 57V, (41)
bgy = 70y + s Xijy + 5%V, (42)
By = 8" 0oy + s X (i) + %Y (43)

and the antisymmetric part is given in a tensorial form instead of the vectorial
invariants:

f) = atopuy + a'? X5 + a Vi, (44)
diig) = a0y + a¥ X + ¥V, (45)
Bij) = a* 0oy + a® Xij + Y. (46)
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Therefore, conductivity matrices of spherical, traceless symmetric, and antisym-
metric components are

lll 112 113 511 512 813 CLll CL12 a13
ZIJ — 121 l22 l23 , SIJ — 821 822 823 , aIJ — a21 a22 a23
131 l32 l33 831 832 833 a31 a32 a33

A7)

The second law requires that symmetric parts of 3x3 conductivity matrices 177,
s/ and a'” are positive definite.

With this requirement the thermodynamically consistent construction of con-
tinuum mechanical theory with second order tensorial dual internal variables
is complete. Balances of momentum and energy (), [B) and evolution equa-
tions of the internal variables (Bl) together with isotropic constitutive functions
B2)-@H) form a complete system, if a particular form of the entropy function

5(Fij, e, iz, Oxij, Bij, OkPij) is given.

2.4. Boundary conditions. It is remarkable that one can get natural boundary
conditions for internal variables with the requirement that the intrinsic part of
entropy flux (28] is zero at the boundary. There are three basic possibilities:

(1) Combined condition. In this case 0, y,,, s and 0g,3,,, s are orthogonal to fi.,
and gy, .

(2) No change condition. Internal variables do not change at the boundary, %j
and f;; are zero.

(3) Gradient condition. t;0p,4,, S = Oim and t;0s,8,, = Oy for any vector t;
that is parallel to the boundary. In the case of a quadratic dependence on
gradients, the condition is that gradients of internal variables are orthogonal
to the boundary.

2.5. Remarks on reciprocity relations. Classical irreversible thermodynamics
requires special conductivity matrices obtained by reciprocity relations. In the case
of symmetric matrices, the reciprocity relations are of Onsager type [30L [31], if the
matrices are antisymmetric, then they are of Casimir type [32]. These restrictions
are justified by arguments from statistical physics requiring a microscopic inter-
pretation of thermodynamic variables. If these variables are even or odd functions
of the microscopic velocities, then the conductivity matrix is symmetric or anti-
symmetric, respectively. However, in our case one cannot specify the conductivity
matrices, the conditions of Onsager or Casimir type reciprocity relations are not
fulfilled. In the following we will show some possible interpretations of the dual
internal variables, and we will see that the most straightforward interpretation,
namely, the micromorphic generalized mechanics when the internal variables are of
deformation and deformation rate type, requires general forms of the conductivity
matrices. Moreover, the background of internal variables in continuum mechan-
ics is originated in structural changes in a material, but not on the microscopic,
atomic, or mesoscopic level [2I]. Therefore we simply do not see any reasons to
further specialize the theory and we keep our treatment universal, independent of
microscopic or mesoscopic interpretations.

Idealized theories are characterized by a nondissipative behavior. In the case of
heat conduction, the heat conduction coefficient A is zero and, therefore, the heat
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flux, the flux of the internal energy density, is zero, too. In the case of pure mechan-
ical interaction without internal variables, the idealized theory is characterized by
zero viscosities, the bulk viscosity I'' = 7, = 0 and the shear viscosity s'! = 2n =0
are zero, together with the condition a'! = 0. Therefore, the viscous stress is zero,
the stress in the momentum balance is the static stress t* = —oT O, ;5. However,
antisymmetric terms of conductivity matrices do not produce entropy, therefore in
our case the coupling between different terms may result in nondissipative trans-
port, too.

3. SPATIAL REPRESENTATION

In this section, we represent governing equations in spatial framework and at the
same time introduce the small strain approximation. Technical details are given in
the Appendix.

We can transform balances of internal energy and momentum (2), () into spatial
form due to the Nanson theorem, to obtain

0¢ + 0iq; = t;;05v;, (48)
Q’I.)i — 6jtij =0. (49)

Here p = go is the density in the actual configuration, t;; is the Cauchy stress
tensor, and ¢; is the spatial flux of the internal energy, the upper dot denotes the
substantial time derivative, ¢ = Oie + v'd%e. Spatial and material forms of these
balances are identical in the small strain approximation.

The spatial form of evolution equations of internal variables is the following:

o ¢

Yi; +fi; =0, Bij +9i; = 0. (50)
The symbol ¢ denotes the spatial form of the material time derivative of a second-
order tensor. The material time derivative is an upper convected one, because

internal variables are defined on the material manifold, supposedly independent of
the motion of the continuum (see Appendix):

o .
V= Yij — Okvithr; — Ok, (51)

i.e., spatial and material forms of constitutive functions for internal variables are
the same in the small strain approximation if velocity gradients are negligible. The
spatial form of the entropy flux is represented as

Ji = 0e5qi + 000,41, 5 frm + 000,6,,,5 Gim + J; - (52)

We do not deal here with any interpretation of the extra entropy flux J? and,
therefore, we assume that it is equal to zero. This requirement is not necessary,
and there are phenomena which can be modelled only with the help of nonzero
extra entropy flux [33] 34} [35].

Finally, the spatial form of the entropy production in the small strain approxi-
mation is the following:

1 1 .
g = 81 (T) qi + T (tij + QTaEi].S) €ij—

- (3%-5 - 8k83kwij S) inj - (aﬁijs - akaakﬁij S) 0gij = 0.

Here ¢;; is the Cauchy strain.

(53)
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The original dependency of the entropy function on the deformation gradient
F;; turns to a dependency on €;; because of the small strain approximation. More-
over, it is convenient to introduce the specific free energy function instead of the
specific entropy as a thermodynamic potential. In our case, the expression of the
corresponding partial Legendre transformation is:

w(T, €5, Vij, Ontbiz, Bij, OnPBij) = € — T's(e, €5, Vij, Oz, Bij, Ok Bij) (54)
Therefore,
0s 1 ow
% = T a.nd 8_T = =S, (55)

keeping fixed all other variables. Other partial derivatives of w and s are related
as follows:

os| 10w os | 1 ow ds | 1 0w
i, Toeijly’ Oyl, Towyly' 0B;l.  ToBiyly
Os _ 1 ow s | _ 1 Ow . (56)
DOij |, T O0ktbij |7 OOBij |, T 00k Bij | 1

All not indicated variables are kept fixed in the partial derivatives. In terms of the
free energy function, we can transform entropy production (G3) to the form

To=0,InT (Qi + injaakwijw + Qgijaakﬁij w) + (tij - Qafij w) éij+
+ (8¢ijw - ak(aakwijw)) inj + (aﬁijw - 8k(83k5ij w)) 09ij = 0.
It is worth to introduce thermodynamic forces and fluxes in the small strain ap-
proximation according to Eq. (&1):

(57)

Thermal Mechanical Internal 1 Internal 2
Fluxes dr = qret+ iy, = ofij 09ij
0fij Oy p;;w + 09ij 0o g ;w | tij — 00e;;w
Forces Bk InT éij Xi]‘ = Yvi]‘ =
8¢ijw — 8kaakwijw agijw — 8k85k5”’w

Table 2. Thermodynamic fluxes and forces in the small strain approximation

It is easy to see that thermodynamic forces and fluxes in the small strain approxi-
mation are very similar to those in the PK frame. The most important difference
is the regrouping of terms which are proportional to the temperature gradient.
This representation of forces and fluxes is more convenient for the separation (or
coupling) of thermodynamic and mechanical parts of the entropy production, espe-
cially in the case of thermal stresses. The solution of dissipation inequality (57 is
provided by conductivity equations:

dx = qk + injaakwijw + Qgijaakgijw =X InT, (58)
by = tij — 00w = L + L% Xu + LY, (59)
o A R N N R N

0Y;; = ofij = L ém + L3y Xm + LY,  (60)
o o R N R N

0 Bij = 09ij = L?jlklékl + L?flekl + L?;’kzykl- (61)

In the case of isotropic materials, a decomposition of conductivity matrices can
be performed introducing symmetric, antisymmetric and spherical parts of corre-
sponding tensorial forces and fluxes similarly to previous case:

i{ﬁd = SIJ5i<k5jl> + aIJ(Si[k(Sjl] + ZIJ5ij5kl. (62)
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In the following, we treat different special cases, all of them with constant conduc-
tivity matrices.

4. EXAMPLES

4.1. Linear viscoelasticity, relaxation, and Ginzburg-Landau equation.
We start with the simplest case when there is not any coupling between evolution
equations (B8)—(@I). In this case, the balance equation of the linear momentum
and evolution equations for internal variables are independent. This means that
the conductivity hypermatrix is diagonal L'? = L?! = L13 = [31 = [32 = [23 =0,
and we assume that the heat conduction coeflicient A is zero. The free energy is ad-
ditively decomposed into parts which are dependent on v;;, ;;, and €;; separately.
Dissipation inequality (7)) reduces to
To = (tij — Qaﬂjw) éij+

+ (awz'jw - ak(aakwijw)) inj + (aﬁzjw - ak(aak,@ijw)) 09ij >0,

and we see that terms related to internal variables are completely similar. This
means that in the absence of couplings it is enough to analyze only one of them.
For the viscous part of the stress we have, therefore,

(63)

lij — tfgl‘a =ty = Memdiy + s ey (64

where the elastic stress is introduced as usually

ow
Qae“ = tfjl-a = g)\ekk5ij + Q2/L€ij, (65)
ij
I = n, corresponds to the bulk viscosity and s'! = 7 is the shear viscosity.

All other coefficients in conductivity matrices are zero due to the absence of any
coupling. The evolution equation for the internal variable 1;; results in:

o A

Y djij = L1232lm (61/Jlmw - aka@szmw) : (66)
Assuming the isotropy of the conductivity tensor ﬁ”, we can decompose Eq. (6]
into six independent evolution equations for the spherical, symmetric traceless
and antisymmetric parts of the internal variable tensor. These evolution equa-
tions for the internal variable 1);; give the generalization of the Ginzburg-Landau-
Khalatnikov equation, introduced first as a scalar equation in the case of supercon-
ductors [36] [37]. For each free energy functional, the structure of such equations is
universal and widely used with different thermodynamic arguments [38|, [39, 40} [41].
The Ginzburg-Landau equation was derived by pure thermodynamic arguments
as the evolution equation for a second-order weakly nonlocal internal variable in
[28] (see also [25]). That derivation shows a universal character of the Ginzburg-
Landau equation: the second law requires an evolution equation of this form for
an internal variable without any other constraints independently of the microscopic
background.

The symmetric traceless form part of Eq. (66]) gives the de Gennes-Landau
theory of liquid crystals, if a suitable quadratic dependence of the free energy on
Yjy is introduced [42]. This very particular example of the proposed approach
shows the richness of the mathematical structure and its physical interpretation.
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4.2. Generalized standard linear solid. In this section we consider a coupling
between a single tensorial internal variable and deformation, which results in the
thermodynamic theory of rheology [43] [44]. Therefore, we still assume zero heat
conduction coefficient and L'3 = L3! = [32 = [23 = 0. However, L'2 # 0 and
L2 £ 0 anymore. Let us further reduce the treatment by introducing a local theory
for the single internal variable with the simplest quadratic dependence of the free
energy on the internal variable without its gradients. In this case, the free energy
can be written as

A
w(eyj, Yig) = € + peijeig+
b o b2 bs
+ i+ Ewijwij + 51%‘%1‘ + g1vhiiej; + g2(ij + bji)eij
Thermodynamic stability requires the convexity of the free energy, hence the in-
equalities follow:

3u+2X20, p=0, b2=0, ba+0b32>0, 3b1+2by=>0,

(67)

68
p(by +bs) — g7 20,  (3X\+2u)(3by + ba + b3) — (391 + 292)° > 0. (68)

The entropy production contains two tensorial terms that may be coupled:
To = (tij - Q@eijw) €ij + 8¢ingfij >0, (69)

In isotropic materials, spherical, deviatoric and antisymmetric parts of the ten-
sors are independent. For the deviatoric, symmetric traceless part we obtain the
following conductivity equations from Eqgs. (67) and (69):

tgy — 20(pe (igy + 92(i5)) = 8 éqizy — 57 (b2 + b3y + 292¢€0ij)) (70)

Qlé<ij> —s? ((bg + bg)@/J(ij) + 2926(1'3')) . (71)
Equation ([Z0) is a constitutive equation for the deviatoric part of the stress t;;y,
and Eq. () is the evolution equation of v;;y. Moreover, the second law requires
that the symmetric part of the conductivity matrix is positive definite, therefore,

o
QY5 =8

s12 _ 521\ 2
s1>0, $2>0, s's?—s'2s2 — (T) >0. (72)

The role of the internal variable may be better understood if we eliminate it from
Eqs. (TO)—(I). Taking the material time derivative of Eq. (70) and substituting

O
Yy from Eq. () and ¢y from Eq. () into the obtained form, the following
relation follows:

<t><7;j> + 52p(by + b3)tijy =
s'€us +p (b2 +b3)(2u + (s's® — s'25%1) + (571 — '%)299)] €y +
25°p” ((bz + bs)p — 297 )€y (73)
The positive definiteness of the free energy w requires that the coefficient (ba +

b3)pn — 292 is non-negative and Eq.(73) can be transformed to

o ) .
T tij) Ty = Ta€lij) + 2veqs) + Eeij), (74)
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where
1 1 2 2 2
=" = E = ba+b -2
T 5200 £ 03) Ta= 8T, s%p°((be + b3)p — 297),
v=p[(bs+b3)(2u+ (s's* — ') + (s*" — s"%)2g2)] 7. (75)

Constitutive relation (4] reduces to the Zener body of rheology or standard linear
solid [45], 6], if 74 = 0 and the nonlinear part of the time derivative is neglected.
This rheological model is widely used in different fields from biology [47] to en-
gineering [48]. The complete form of this constitutive relation (with 74 # 0) is
called the inertial Poynting-Thomson body. The proposed thermodynamic model
has remarkable properties which are distinctive in comparison with more intuitive
approaches:

(1) Neither the inertial term beyond the standard model, nor the coupled
volumetric-deviatoric effect is neglectable in general, both are important,
e.g. in experimental rock rheology [49, 50} 51], where an inertial Poynting-
Thomson body is used for both deviatoric and spherical parts of the defor-
mation in order to get a good agreement with experimental data.

(2) Reciprocity has not been required in the proposed approach. The same
is true in the simplest case of a standard linear solid body, otherwise the
second law of thermodynamics contradicts to observations [43].

(3) The complete form of constitutive equation ([7Q)- (1)) is preferable instead of
(@) if dynamical problems with the coupled balance of momentum (2)) are
needed to be solved. This is an important advantage of the thermodynamic
approach.

4.3. Dual internal variables. Now we consider dual (coupled) tensorial internal
variables which are independent of mechanical and thermal interactions (A = 0,
LW = [12 = ['3 = [2' = [31 = (). The evolution equations of the coupled
tensorial internal variables again follow from the dissipation inequality. In the
small strain approximation and with small velocity gradients, Eqs. (G0)-(GI]) are
simplified to

‘/.’ij = f/%szxkl + fi?j?’klykla (76)
Bij = f/?j?kzxkl + i?j?’klykl- (77)

Here X;; = 9y, w — Ok (0,y,,w), and Yy; = 0, w — Ok, (0, 5,,w). Equations (Z6)-
([T) are independent of balances of linear momentum and energy, if the free energy
can be decomposed into a sum of functions depending on two sets of variables, e, €;;
and 1;;, B;; separately, and if the objective time derivatives can be substituted by
the substantial time derivative, that is the nonlinear terms are neglectable in the
upper convected derivatives.

In the case of isotropic materials, tensorial equations ([GQ)—(7) are decomposed
into a spherical, deviatoric and antisymmetric parts with scalar coefficients. The
remarkable difference between the evolution described by a Ginzburg-Landau-type
equation based on a single internal variable and this dual structure becomes appar-
ent after the separation of the symmetric and antisymmetric parts of the particular
decompositions.

As an example, we consider completely decoupled deviatoric evolution equations.
Then conductivity matrices are two-dimensional and evolution equations are the
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following:

Wiy = 51X (g + (5 + )Yy, (78)

B(ij) = (5 —a)X ) + 52Y(5j - (79)
The above evolution equations are decomposed into a symmetric part, which repre-
sents a dissipative evolution and therefore produces entropy, and the antisymmetric
part that does not produce entropy and represents a non-dissipative part of the evo-
lution. The role of the non-dissipative part can be better understood with the help
of the following free energy function, where we assume a local theory for f;;y:

&
w(Bligy Vi) Okthiin)) = 5B Big) + wn(Wiig)) + we(Othiiz)) =
% %mw(ij)aiw(jk) + %5W<ik>aj¢<ii>'
(30)

b
Bun By + 3% Vi) + 5 Okt by +

¢
2
Here wy, is the homogeneous, local part and w, is the gradient dependent, weakly
nonlocal part of the free energy related to the variable v ;). The second line of Eq.
([B0) shows a particular quadratic form of corresponding functions. If fo = f3 =

0, then we obtain the usual second gradient theory. The non-dissipative part of
evolution equations ([78)-([79) has the form

Pigy = acBiijy, (81)
B(U) =-a (awuj)wh — O (aakwuj)wg)) (82)

It is easy to eliminate (), and obtain an evolution equation for 1, which is
second order in time:

1 -
%d}(i@ + Oy W — O (Do, 1y Wg) = 0 (83)
The last equation can be considered as the Euler-Lagrange equation of the La-
grangian
) 1 . .
L(%ny, Yiny) = ﬁlﬂ(miﬂ(m — WYy, Ok iny )- (84)
It is remarkable that natural thermodynamic boundary conditions of the zero en-
tropy flux requirement correspond exactly to natural boundary conditions of the

variational principle.

4.4. Dissipative generalized continua. It was already observed by Berezovski,
Engelbrecht and Maugin [25] that generalized thermomechanics of solids is a partic-
ular case of the dual internal variables theory. They observed that evolution equa-
tions of the non-dissipative theory of Mindlin correspond exactly to non-dissipative
evolution equations of the dual internal variables theory. However, they did not
perform a complete thermodynamic analysis and, therefore, their observation is
restricted to the idealized non-dissipative case.

The corresponding thermodynamic analysis was performed in the second section
of the present paper exploiting the dissipation inequality. The coupled evolution
equations are represented in the form of linear conductivity equations. If one of the
internal variables is interpreted as a microdeformation, then our calculations are
to be considered as a pure thermodynamic derivation of a generalized dissipative
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continuum theory. The particular example of the theory of Mindlin arises then
under the following conditions:

(1) No thermal and viscous dissipation.
(2) Pure antisymmetric coupling between internal variables.
(3) Quadratic free energy function.

Another generalized continuum theory has been introduced by Eringen and
Suhubi [2]. To compare the entropy production, let us consider for simplicity a
continuum without additional internal variables in the small strain approximation
and uniform temperature field. Then the entropy production in the Eringen-Suhubi
theory () lack the first and the last terms and can be written with our notation
as

To = (tij — 00, w) éij + (si5 — Tij — 00y, w) Vi + (Rijk — oy, w) Oxthij > 0.
(85)

Here the internal variable v;; is identified with the microdeformation gradient xgj
of the Eringen-Suhubi theory and therefore the material time derivative is the sub-
stantial time derivative due to the deformation interpretation. For the comparison,
let us repeat here our entropy production (G3):
TO’ = (tij — Qaéij U)) 6134‘
0 o (86)
- (8¢ijw - 8k(86k'¢'ij ’LU)) 0 1/)ij - (8ﬁijw - ak(aakﬁij w)) 0 ﬂzgz 0.

The difference in the entropy flux in the two theories and the different concept of
constitutive quantities determine the diversity in the entropy production. We have
introduced the evolution equations of internal variables as constitutive relations to
be determined from the entropy inequality. Eringen and Suhubi [2] simply indicated
the form of the dissipation inequality following from their definition of stresses.

Regarding the exploitation of the second law one should observe the following:

— The micromomentum balance and the evolution equation of ;; are not
constructed from the dissipation inequality.

— The micromomentum balance is not used as a constraint for the entropy
inequality in the Eringen-Suhubi derivation. However, it is implicitly con-
sidered during the application of the Coleman-Noll procedure assuming that
the multipliers of the time derivatives should be zero.

— The entropy flux is not an arbitrary constitutive function, but it is restricted
to the classical J; = ¢;/T in the case of Eringen and Suhubi.

— The constitutive state space is not weakly nonlocal and not fixed in the
Eringen-Suhubi derivation.

As we have shown above, not only the basic assumptions, but also the final
equations of the Eringen-Suhubi theory are particular and can be obtained from
our generalized approach if several dissipative terms are neglected. Virtual power
approaches also introduce an entropy production that have a similar form and
similar limitations as the Eringen-Suhubi approach has (see e.g. [52]).

4.5. Heat conduction and weakly nonlocal internal variables: Microtem-
perature. Finally, let us consider the case with a non-zero heat conduction coef-
ficient \. Neglecting the viscosity influence (L' = L12 = '3 = [?1 = [3! = (),
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we chose the free energy dependence on internal variables in the form of Eq. (B0),
but with the reduced conductivity matrix for deviatoric evolution equations

bijy = aYgy, (87)
Bujy = —aX(ij) + 52Y(55).- (88)

which corresponds to the choice s = s; = 0 in Eqs. ([8)-(3). The free energy
dependence (B0) allows to represent the evolution equations in the form

gy = aéBij), (89)
Bli) = = (B iy wh = Ok (Dor iy o)) + 526Bij), (90)
which can be reduced to the single second-order evolution equation for the primary
internal variable
1 - So -
350tk — Pk + Oy wn = Ok (Do ey wg) = 0, (91)
which is similar to the Jeffreys type modification of the Maxwell-Cattaneo-Vernotte
equation [53].
The thermal part of the dissipation inequality is satisfied by the modified Fourier
law that follows from Eq. (B8]

qr + injaakwij’w + Qgijaakﬁijw = A0;InT. (92)

As it was shown [25] on the example of one-dimensional thermoelasticity, the pri-
mary internal variable 1 ;;, can be interpreted in this case as a microtemperature.
In this context, it is understood as a fluctuation of the macrotemperature due to the
influence of the existing microstructure. The solution of the equations shows that
influence of microtemperature may result in a wavelike propagation of temperature
if the corresponding damping effects are small [25].

5. SUMMARY AND DISCUSSION

The paper is devoted to the answer of the following question: How could we
obtain evolution equations of physical quantities, about which we do not know any-
thing, i.e., only general principles can be considered? There are essentially two
basic approaches. The first one postulates a variational principle of Hamiltonian
type coming from mechanics. In this case dissipation is something additional to
the non-dissipative basic mechanical evolution. The second approach is coming
from thermodynamics: one can assume that the evolution of new variables is not
exception from the second law and generate their governing differential equations
accordingly. This is the situation in the case of internal variables in general as it
was summarized by Maugin and Muschik [I7, [18]. The two approaches can be gen-
eralized. Thermodynamic principles and dual internal variables in the framework
of a second order weakly nonlocal theory give a straightforward and simple way of
the generalization [21].

As a result, the thermodynamic consistency of continuum mechanics with dual
tensorial internal variables was analyzed in the present paper by the Liu approach
to the exploitation of the second law in the Piola-Kirchhoff framework. Then local
evolution was considered in isotropic materials in the small strain approximation.
The entropy production was calculated and thermodynamic forces and fluxes were
identified. Then a quadratic free energy and linear conductivity relations closed
the system of equations. The final evolution equations in a non-dissipative case
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are equivalent of those for micromorphic continua, therefore, the thermodynamic
method gave a dissipative extension of the original Mindlin theory.

We have given several particular examples that arise as special cases of the gen-
eral theory. Our goal was only partially a justification, but also the identification of
the most important differences from other theories and the interpretation of some
qualitative predictions of our approach. We have seen that phenomena of microtem-
perature, sophisticated couplings in generalized rheology, and special properties of
the dissipative extension without assuming reciprocity relations, all are open for
experimental testing. We think that this approach is essential in the case of gener-
alized continua, where additional coefficients are considered hardly measurable.In
this respect we have analyzed the limitations of the dissipation in other classical
approaches, in particular in the Eringen-Suhubi theory, which is one of the most
developed from this point of view. We have seen, that due to the restrictive start-
ing assumptions (mechanical interpretation of the internal variable, locality, special
entropy flux, etc.) the considered dissipation is extremely limited. For example,
under the traditional approaches one cannot recover neither the Ginzburg-Landau
equation, nor simple viscoelasticity.

It is remarkable, that the finite deformation part of our approach shares short-
comings of the Piola-Kirchhoff framework. There are indications that the require-
ment of objectivity and material frame indifference are not treated properly in this
case [564] [55]. Beyond the reservations of using material manifolds in general, it is
also remarkable that the exclusion of velocity field v; from the constitutive state
space is not necessary |27, [56].

We expect several interesting phenomena by the analysis of higher-order non-
locality at the mechanical and thermal side. Here the comparison to phase field
approaches looks like a promising direction (see e.g. [57, 68, [59]).

6. APPENDIX

In this section we shortly derive the material time derivatives, introduce the
small strain approximation and describe the transformation of the balances between
a Piola-Kirchhoff and local frameworks. Here we distinguish between contra and
covariant as well as between material manifold and space-time vectors and tensor
components. The covariant and contravariant vectors are denoted by lower and
upper indices, the space vector and tensor components are denoted by minuscules,
and the vector and tensor components at the material manifold by capital letters.
We assume here that the reference configuration is relaxed, stress free, therefore
the transformation between the material and spatial descriptions is standard (see
e.g. [60]). For a more detailed kinematics, considering general bodies, see [54].

The material vectors are denoted by X*, the spatial ones by z?. Therefore, the
deformation gradient, the material manifold derivative of the motion, x*(t, X”7), is
given as:

Fiy=0,x" (93)

The transformation between material and spatial vectors and covectors is the fol-
lowing:

CLJ — (Ffl),]iai, ai — FiJa'], (94)

by = Fib;, bi = (F17by (95)

2
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In particular, the transformation of space derivatives follows the lower indexed
covector rule:

9y =F10;,  0;=(F1%0,. (96)
The summation over repeated indices is still assumed.

6.1. Material time derivatives. The transformation of time derivatives is dif-
ferent for quantities with different tensorial character. For scalars, the partial time
derivative on the material manifold, d;, is the substantial derivative for local quan-
tities. We use the convenient dot notation for local quantities that corresponds to
the partial time derivative on the material manifold for scalars, for the velocity and
for acceleration fields:

dra(t, X') = a = dyalt, ') + v'dialt, zV), (97)

gtxi = ’Ui7 5ttxi = gt’Ui = UZ (98)

The material time derivative of internal variables with various tensorial character
differ from each other. Here we give the calculation for the second-order tensorial
variable, ¥". According to the definition of material time derivatives, the par-

tial time derivative on the material manifold expressed by spatial fields gives the
material time derivative:
5.0 _3 —INT (p—1NJ )i
o' =0, (F~1)5(F~1)7)
=(F ) (E) 5 — (R0 R ()5 ()
_(F_l)li(F_l)JkatFkL(F_l)Ljo
—(F (P, (69 = Ot — T ™) (99)
Therefore, the spatial form of the abovementioned formula, the material time de-
rivative of the tensor, is given as
0 L . - oo
Y= FF 00" = — 0pu'yphl — gyt (100)
Here we used the kinematic relation for the spatial velocity gradient and the time

derivative of the deformation gradient 9;v¢ = 9, F* J(F_l)"j. In case of cotensors or

mixed tensors, the spatial form of the material time derivative is different.

6.2. Small strains. The small spatial strains are defined with the left Cauchy-
Green deformation A% = F', F /7 as

€= %(Aij —6%), (101)

This choice is the best considering the requirement of objectivity [54]. The material
time derivative of the strain in the small strain approximation is the symmetric part
of the velocity gradient

W = %A” ~ %(aivj + 07t). (102)

It should be noted that in the small strain approximation one may obtain identical
results starting from different deformation concepts.
The spatial form of the second material time derivative of the strain is particular

g — 5A” ~ 0D 4+ Ot O’ . (103)
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Here we have used that §,0'A"Y = Fi(F~1), F', F7.

6.3. Spatial balances. The relation between the local density ¢ and the material
density g is
_ 0o
~ det F’
where det F is the determinant of F'j

The local and Piola-Kirchhoff forms of the heat flux and the stress are, respec-
tively,

Y

¢ =(det F)'F'yq’, ¢ =det F(F~ 1)/, (104)
t9 = (det F)"'Fi 89 I = det F(F~1)T M. (105)

For the transformation of basic balances, the Nanson theorem is essential. It can
be written as:

9y (det F(F~1)7%) = 0. (106)

The proof is straightforward, when considering that the derivative of the determi-
nant is 9y (det F) = det F(F~1)8 9, F!}, and the derivative of the inverse deforma-
tion gradient is 9, (F~ 1)1, = —(F~1)!,0,Fl (F~1)X.

Then the transformation of the balance of internal energy follows by substituting

the definitions:
00¢ + Ok q" = det Foé + det F(F~')".01¢’ =

. Tin i . (107)
=det F(0é+ 0;¢’) = t"701v) = det F t"™ 90’
Similarly, the balance of linear momentum can be easily obtained:
000" + Ottt = ... = det F (00" + 9xt™) = 0". (108)

Therefore, we obtain usual local balances of internal energy and momentum (@S]
and (@9) without approximations.
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