ON THE REGULARITY OF CROSSED PRODUCTS

V. BOVDI, S. MIHOVSKI

ABSTRACT. We study some generalizations of the notion of regular crossed products K * G. For the case when K is an algebraically closed field, we give necessary and sufficient conditions for the twisted group ring K * G to be an *n*-weakly regular ring, a ξ^*N -ring or a ring without nilpotent elements.

1. INTRODUCTION

Let G be a group, U(K) the group of units of the associative ring K with identity and let $\sigma : G \to \operatorname{Aut}(K)$ be a map of G into the group $\operatorname{Aut}(K)$ of automorphisms of K. Let $K * G = K_{\rho}^{\sigma}G = \{\sum_{g \in G} u_g \alpha_g \mid \alpha_g \in K\}$ be the crossed product (in the sense of [1]), of the group G over the ring K with respect to the factor system

$$\rho = \{\rho(g,h) \in U(K) \mid g,h \in G\}$$

and the map $\sigma : G \to \operatorname{Aut}(K)$. Moreover we assume that the factor system ρ is normalized, i.e. $\rho(g, 1) = \rho(1, g) = \rho(1, 1) = 1$ for any $g \in G$.

In particular, if $\sigma = 1$, then the crossed product K * G is called a *twisted group* ring, which we denote by $K_{\rho}G$. If the factor system ρ is unitary, i.e. $\rho(g,h) = 1$ for all $g, h \in G$, then K * G is called a *skew group ring* and is denoted by $K^{\sigma}G$. In the case, when $\rho = 1$ and $\sigma = 1$, then K * G is the ordinary group ring KG.

In the present paper we study properties of crossed products K * G which are generalizations of the notion of a regular ring. For the case when K * G is a twisted group ring over the algebraically closed field K, we give necessary and sufficient conditions for K * G to be an *n*-weakly regular ring $(n \ge 2)$, a ξ^*N -ring or a ring without nilpotent elements. Our investigation can be considered as a generalization of certain results of [2, 3, 4, 7, 11, 12] earlier obtained for group rings. Note that we exclude the case when K * G is a skew group ring, so we do not cite any reference from that topic.

2. Twisted group algebras without nilpotent elements

Denote the K-basis of K * G by $U_G = \{u_g \mid g \in G\}$. The multiplication of $u_g, u_h \in U_G$ is defined by $u_g u_h = \rho(g, h) u_{gh}$, where $\rho(g, h) \in \rho$ and $g, h \in G$. The factor system ρ of the crossed product K * G is called *symmetric*, if for all elements $g, h \in G$ the condition gh = hg yields $\rho(g, h) = \rho(h, g)$. The finite subset $\operatorname{Supp}(a) = \{g \in G \mid \alpha_g \neq 0\}$ of G is called the *support* of the element $a \in K * G$. We shall freely use the following.

Lemma 1. Let K * G be a crossed product and suppose that axb = c for some $x, a, b, c \in K * G$. If H is the subgroup of G generated by Supp(a), Supp(b) and Supp(c), then there exists an element $y \in K * H$, such that ayb = c.

²⁰¹⁰ Mathematics Subject Classification. Primary: 16S35; Secondary: 20C07, 16S34, 16E50. Key words and phrases. crossed product, twisted group ring, regular ring.

Proof. Indeed, if x = y + z, then ayb + azb = c, where $y = \sum_{h \in H} u_h \alpha_h$ and $z = \sum_{g \notin H} u_g \beta_g$. This shows that $\operatorname{Supp}(azb) \subseteq H$. Since $fgh \notin H$ for $f \in \operatorname{Supp}(a)$, $g \in \operatorname{Supp}(z)$ and $h \in \operatorname{Supp}(b)$, we conclude that azb = 0 and ayb = c, as it was requested.

Corollary 1. If $g \in G$ has infinite order, then $u_g - 1$ is neither a one-sided zero divisor, nor a one-sided invertible element of the crossed product K * G.

Proof. In fact, if $u_g - 1$ is either a one-sided zero divisor, or a one-sided invertible element of K * G, then by Lemma 1, we may assume that $u_g - u_1$ is also such an element of K * H, where $H = \langle g \rangle$ is an infinite cyclic group. But H is an ordered group, a contradiction.

For twisted group algebras we give a refinement of Corollary 2 and Lemma 2 of [7] (see p.68) which were earlier proved for group rings.

Theorem 1. Let $K_{\rho}G$ be a twisted group algebra of a torsion group G over the algebraically closed field K. The ring $K_{\rho}G$ does not contain nilpotent elements if and only if the following conditions hold:

- (i) G is an abelian group;
- (ii) the order of every elements in G is invertible in K;
- (iii) the factor system ρ is symmetric.

Proof. Assume that the conditions (i), (ii) and (iii) hold. Then the twisted group ring $K_{\rho}G$ is commutative. If $x \in K_{\rho}G$ is a nonzero nilpotent element and $H = \langle \operatorname{Supp}(x) \rangle$, we conclude that $K_{\rho}H$ is a commutative artinian ring with a nonzero nilpotent element x. So, by Theorem 2.2 of ([8], p.415), we get a contradiction.

Conversely, let $K_{\rho}G$ be a twisted group ring without nilpotent elements. If $g \in G$ is of order n and $u_g^n = u_1 \alpha_g$, where $\alpha_g \in U(K)$, then there exists an element $\mu_g \in U(K)$ such that $\mu_g^n = \alpha_g^{-1}$, because K is algebraically closed. So for the element $v_g = u_g \mu_g$ we have $v_g^n = 1$. Obviously,

$$x = (v_g - 1)u_h(1 + v_g + v_g^2 + \dots + v_g^{n-1})$$

is a nilpotent element of $K_{\rho}G$ for all $h \in G$ as far as $x^2 = 0$. Thus x = 0, so we conclude that

(1)
$$u_h = v_g u_h v_g^i \qquad (0 \le i \le n-1).$$

Examining the supports we can deduce that $h^{-1}gh = g^{-i}$ $(h \in G)$. Therefore all cyclic subgroups of G are normal. This implies that G is either abelian or hamiltonian. If gh = hg, then i = n - 1 and by (1) it follows that $u_h v_g = v_g u_h$, since $v_g^n = 1$ is the identity element of $K_{\rho}G$. So we conclude that $\rho(g, h) = \rho(h, g)$, i.e. the factor system ρ is symmetric and condition (iii) holds.

If char(K) = p > 0 and G contains an element g of order p, then

$$(1 + v_g + v_g^2 + \dots + v_g^{p-1})^p = 0$$

and we get a contradiction. This implies that condition (ii) also follows.

Assume that G is hamiltonian and $\langle g, h | g^4 = h^4 = 1, g^2 = h^2, g^h = g^{-1} \rangle \cong Q_8$ is the quaternion group of order 8. Then $h^{-1}gh = g^{-1}$ and i = 1. Therefore in this case by (1) we have $u_h = v_g u_h v_g$, i.e.

(2)
$$v_h = v_g v_h v_g,$$

where $v_h = u_h \mu_h$ and $v_g^4 = v_h^4 = 1$. Since G contains 2-elements, it follows from (ii) that $\operatorname{char}(K) \neq 2$.

K being an algebraically closed field, it is clear that there exist nonzero elements $\alpha, \beta \in K$ for which $\alpha^2 + \beta^2 = 0$. Then by (2) it is easy to verify that

$$w = \alpha (v_g^2 v_h - v_h) + \beta (v_g^3 v_h - v_g v_h)$$

is a nonzero nilpotent element of $K_{\rho}G$.

Indeed, $h \in \text{Supp}(\alpha(v_g^2 v_h - v_h))$, but $h \notin \text{Supp}(\beta(v_g^3 v_h - v_g v_h))$. Thus we have $w \neq 0$. Moreover, by (2) we obtain that $u_h^2 v_g = v_g u_h^2$ and $u_h v_g^2 = v_g^2 u_h$. Then $w^2 = (v_g^2 - 1)^2 (\alpha v_h + \beta v_g v_h)^2$. Since $(v_g^2 - 1)^2 = 2(1 - v_g^2)$ and

$$(\alpha v_h + \beta v_g v_h)^2 = (\alpha^2 + \beta^2)v_h^2 + \alpha\beta v_h^2(v_g^2 + 1)v_g$$
$$= \alpha\beta v_h^2(v_g^2 + 1)v_g,$$

we obtain $w^2 = 2(1 - v_g^2)\alpha\beta v_h^2(1 + v_g^2)v_g = 0$, which is impossible. Hence condition (i) follows, as requested.

3. Regular crossed products

An associative ring R with unity is called *regular (strongly regular)* if for every $a \in R$ there is an element $b \in R$, such that aba = a ($ba^2 = a$, respectively). A ring R is called ξ^* -ring (ξ^*N -ring) if for every $a \in R$ there exists $b \in R$ such that aba - a is a central (central nilpotent, respectively) element of R. It is clear that every regular ring is a ξ^*N -ring and every ξ^*N -ring is a ξ^* -ring (see [7, 12]).

By the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3, p.660), it is well known that a group ring is regular if and only if K is regular, G is a locally finite group and the order of every element $g \in G$ is invertible in K.

Our first result for this section is the following.

Theorem 2. Let K * G be a crossed product of the group G over the ring K such that one of the following conditions is satisfied:

- (i) K * G is a $\xi^* N$ -ring;
- (ii) K * G is n-weakly regular.

Then G is a torsion group.

Proof. (i) Suppose that $g \in G$ is an element of infinite order. Then there exists a $b \in K * G$ and a natural number $n \ge 1$ such that

$$x = (u_g - 1)b(u_g - 1) - (u_g - 1)$$

is a central element of K * G and $x^n = 0$. If n = 1, then x = 0 and

$$(u_g - 1)[b(u_g - 1) - 1] = 0.$$

Since, by Corollary 1, the element $u_g - 1$ is not a left zero divisor in K * G, we obtain that $b(u_g - 1) = 1$, i.e. $u_g - 1$ is a left invertible element in K * G, which is also impossible. Therefore n > 1 and

$$x^{n} = (u_{g} - 1)[b(u_{g} - 1) - 1]x^{n-1} = 0.$$

In the same way we obtain that $z_1 = [b(u_g - 1) - 1]x^{n-1} = 0$. Suppose that for some $k \ge 1$ we have $z_k = [b(u_g - 1) - 1]^k x^{n-k} = 0$. If 1 < k < n, as far as x is

central,

$$z_k = x[b(u_g - 1) - 1]^k x^{n-k-1}$$

= $(u_g - 1)[b(u_g - 1) - 1]^{k+1} x^{n-k-1} = 0.$

Now applying Corollary 1 we obtain that

$$z_{k+1} = [b(u_g - 1) - 1]^{k+1} x^{n-k-1} = 0.$$

Thus, by induction we conclude that $z_n = [b(u_g - 1) - 1]^n = 0.$

The last equality shows that there exists $z \in K * G$ such that $z(u_g - 1) = 1$, which, by Corollary 1, is impossible.

(ii) Suppose that $g \in G$ is an element of infinite order. Then for some $b, c \in K * G$ we have $u_g - 1 = (u_g - 1)b(u_g - 1)^n c$. By Corollary 1 we have

$$(u_g - 1)[1 - b(u_g - 1)^n c] = 0,$$

we conclude that $b(u_g - 1)^n c = 1$. Hence it follows that $b(u_g - 1)x = 1$, where $x = (u_g - 1)^{n-1}c$. If $e = xb(u_g - 1)$, then

$$e^{2} = x[b(u_{g} - 1)x]b(u_{g} - 1) = xb(u_{g} - 1) = e,$$

i.e. e is a central idempotent of K * G. Thus we have

$$1 = b(u_g - 1)x = b(u_g - 1)[xb(u_g - 1)]x$$

= $xb(u_g - 1)[b(u_g - 1)x] = xb(u_g - 1),$

i.e. $u_g - 1$ has a left invertible element $xb \in K * G$. Now again by Corollary 1 we obtain a contradiction, so the proof is complete.

Corollary 2. If the crossed product K * G is a regular ring, then K is also a regular ring and G is a torsion group.

Proof. The claim follows from Theorem 2 and Lemma 1.

Observe that the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3, p.660) does not apply for crossed products. Indeed, if K is a non-perfect field of characteristic p > 0 and G is the p^{∞} -group, then there exists a twisted group ring $K_{\rho}G$, which must be a field (see [9], Proposition 4.2).

If G satisfies the maximum condition for finite normal subgroups and the group ring KG is a ξ^*N -ring, then G is locally finite (see [11], Theorem 3, p.16).

We shall prove the locally finiteness of G without the assumption of the maximum condition when K is a field. First we recall that (see [10], p.308)

$$\Delta(G) = \{g \in G \mid [G : C_G(g)] < \infty\}$$

is a subgroup of G, where $C_G(g)$ is the centralizer of g in G. Furthermore, we put

$$\Delta^p(G) = \langle g \in \Delta(G) \mid g \text{ is a } p \text{-element } \rangle,$$

that is the subgroup of $\Delta(G)$ which is generated by all *p*-elements of $\Delta(G)$.

Now we are ready to prove the following.

Theorem 3. Let KG be the group algebra of a group G over a field K. If KG is a ξ^*N -ring, then G is a locally finite group. Moreover, if char(K) = p > 0 then $\Delta^p(G)$ contains all p-elements of G.

4

Proof. Let $\mathfrak{N}(KG)$ be the union of all nilpotent ideals of KG. In particular, the central nilpotent elements of KG are in $\mathfrak{N}(KG)$ and, consequently, $KG/\mathfrak{N}(KG)$ is a regular ring.

Assume char(K) = p > 0. By Theorem 8.19 ([10], p.309),

 $\mathfrak{N}(KG) = \mathfrak{Rad}(K[\Delta^p(G)])KG,$

where $\mathfrak{Rad}(K[\Delta^p(G)])$ is the Jacobson radical of the group ring $K[\Delta^p(G)]$. Obviously, the augmentation ideal $\omega(K[\Delta^p(G)])$ is a maximal ideal of $K[\Delta^p(G)]$, so

$$\mathfrak{N}(KG) = \mathfrak{Rad}(K[\Delta^p(G)])KG \subseteq \omega(K[\Delta^p(G)])KG.$$

It is well-known (see [3], Theorem 3, p.660) that

$$K[G/(\Delta^p(G))] \cong KG/\omega(K[\Delta^p(G)])KG$$

and therefore the group algebra $K[G/\Delta^p(G)]$ is regular, as a homomorphic image of $KG/\mathfrak{N}(KG)$. This implies, by the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3, p.660), that $G/\Delta^p(G)$ is locally finite and has no *p*-element. Thus we obtain that $\Delta^p(G)$ contains all the *p*-elements of *G* and the group *G* is locally finite (see [5], Theorem 23.1.1, p.215).

If char(K) = 0, then $\mathfrak{N}(KG) = 0$ and KG is regular. According to Auslander-Connell-Villamayor's theorem the proof is complete.

4. *n*-weakly regular twisted group algebras

Let $n \ge 2$ be a fixed natural number. A ring R is called *n*-weakly regular [4] if for every $a \in R$ there exist elements $b, c \in R$ such that $a = aba^n c$.

Obviously, an *n*-weakly regular ring R has no nonzero nilpotent element. Indeed, if R contains a nonzero nilpotent element, then there exists a nonzero nilpotent element $a \in R$ with $a^2 = 0$. Hence $a = aba^n c = 0$, which is impossible. From this fact we can conclude that all idempotents of an *n*-weakly regular ring are central.

In [2] (Theorem 2, p.119) it was proved that the group algebra KG over a field K is *n*-weakly regular $(n \ge 2)$ if and only if K and G satisfy at least one of the following two conditions:

- (i) char(K) = p > 0 and G is an abelian torsion group without p-elements;
- (ii) $\operatorname{char}(K) = 0$ and G is either an abelian torsion group or a hamiltonian $\operatorname{gr} G = Q \times E \times A$, where A is an abelian torsion group without 2-elements and the equation $x^2 + y^2 + z^2 = 0$ in KA has only the trivial solution.

In the case when K is an algebraically close field, this result can be extended to.

Theorem 4. A twisted group algebra $K_{\rho}G$ of a group G over the algebraically closed field K is n-weakly regular $(n \ge 2)$ if and only if the following conditions hold:

- (i) G is an abelian torsion group;
- (ii) the order of every element of G is invertible in K;
- (iii) the factor system ρ is symmetric.

Proof. Suppose that $K_{\rho}G$ is *n*-weakly regular. Then conditions (i), (ii) and (iii) hold by Theorems 1 and 2.

Conversely, if K and G satisfy the conditions (i), (ii) and (iii), then $K_{\rho}G$ is a commutative ring. Let $a \in K_{\rho}G$ be an arbitrary element. Then $a \in K_{\rho}H$, where $H = \langle \text{Supp}(a) \rangle$ is a finite abelian group. Since $K_{\rho}H$ is a commutative semisimple artinian ring ([8], Theorem 2.2), we conclude that $K_{\rho}H$ is a direct product of

fields, so $K_{\rho}H$ is *n*-weakly regular. This implies that $K_{\rho}G$ is *n*-weakly regular, as requested.

Analyzing the result of [2] (see Theorem 2, p.119) on *n*-weakly regular group rings and [7] (see Corollary 2, p.70) about strongly regular group rings we deduce that when K is a field, then these two classes coincide.

In the case of twisted group algebras over an algebraically closed basic field we have the following.

Corollary 3. Let $K_{\rho}G$ be a twisted group algebra of a group G over an algebraically closed field K. The following statements are equivalent:

- (i) $K_{\rho}G$ is strongly regular;
- (ii) $K_{\rho}G$ is n-weakly regular for every natural number $n \geq 2$;
- (iii) $K_{\rho}G$ is n-weakly regular for some natural number $n \geq 2$;
- (iv) G is an abelian torsion group, the order of every element of G is invertible in K and the factor system ρ is symmetric.

Proof. Suppose that $K_{\rho}G$ is a strongly regular ring. If $a \in K_{\rho}G$ and $a = a^2b$, then a = aba, because $K_{\rho}G$ does not contain nilpotent elements. Now by induction it follows that $a = ab^n c$ for some $c \in K_{\rho}G$ and for every natural number $n \ge 1$. So (i) implies (ii) and, obviously, (ii) implies (iii). By the preceding theorem, (iii) implies (iv). Finally, by the Auslander-Connell-Villamayor theorem and by (iv) it follows that $K_{\rho}G$ is a commutative von Neumann ring and so (iv) implies (i).

5. ξN -twisted group algebras

A ring R is called a ξN -ring if for any $a \in R$ there exists $b \in R$ such that $a^2b - a$ is a central nilpotent element of R (see [11]).

Obviously, every ξN -ring is a ξ -ring and, therefore, (see [6], Theorem 1, p.714) we deduce that every ξN -ring is a $\xi^* N$ -ring. Moreover, (see [6], Lemma 2, p.715) it follows that in ξN -rings all nilpotent elements are central.

 ξN -group rings over commutative rings are described in [11] (Theorem 2, p.15). From this description, it follows that a group ring KG over a field K of characteristic p > 0 is a ξN -ring if and only if G is an abelian torsion group.

Finally we prove the following.

Theorem 5. A twisted group algebra $K_{\rho}G$ of a group G over the algebraically closed field K is a ξN -ring if and only if the following conditions hold:

- (i) G is an abelian torsion group;
- (ii) the factor system ρ is symmetric.

Proof. Let $K_{\rho}G$ be a ξN -ring. Then ([6], Theorem 1, p.714) the ring $K_{\rho}G$ is a ξ^*N -ring and, in view of Theorem 2, we conclude that G is a torsion group. As far as K is an algebraically closed field, for every element $g \in G$ of order n there exists an $\mu_g \in U(K)$, such that $v_g = u_g \mu_g$ $(u_g \in U_G)$ and $v_g^n = 1$. Then we put

$$z = (v_g - 1)v_h(1 + v_g + v_g^2 + \dots + v_g^{n-1}), \qquad (h \in H).$$

 $\mathbf{6}$

Clearly, $z^2 = 0$ and therefore z is a central element of $K_{\rho}G$. Thus $zv_h = v_h z$ and, so we obtain the equality

(3)
$$2v_h v_g v_h + \sum_{i=1}^{n-1} v_g^i v_h v_g v_h + \sum_{i=2}^{n-1} v_h v_g^i v_h$$
$$= \sum_{i=1}^{n-1} v_g^i v_h^2 + \sum_{i=0}^{n-1} v_h v_g^i v_h v_g$$

If char(K) = 2, then $2v_h v_g v_h = 0$. Consequently for the product $v_h v_g^2 v_h$ and for the corresponding supports we obtain the following three cases:

(A1)
$$v_h v_g^2 v_h = v_g^i v_h v_g v_h, hg^2 h = g^i hgh$$
 and $hgh^{-1} = g^i$ $(1 \le i \le n-1);$
(A2) $v_h v_g^2 v_h = v_h v_g^i v_h v_g, hg^2 h = hg^i hg$ and $hgh^{-1} = g^{2-i}$ $(1 \le i \le n-1);$
(A3) $v_h v_g^2 v_h = v_g^i v_h, hg^2 h = g^i h^2$ and $hg^2 h^{-1} = g^i$ $(1 \le i \le n-1).$

This shows that $\langle g^2 \rangle$ is a normal cyclic subgroup of G.

If g is a 2-element of G, then $1 + v_g$ is nilpotent and by Lemma 2 of [6] we deduce that $1 + v_q$ is a central element of $K_{\rho}G$. Therefore $v_q v_h = v_h v_q$ for every $h \in G$.

If g is an element of odd order, then $\langle g^2 \rangle = \langle g \rangle$ and from (A1), (A2) and (A3) we obtain that every cyclic subgroup of G is normal, i.e. G is either abelian, or hamiltonian. Since the 2-elements of G are central, we conclude that G is an abelian torsion group, i.e. condition (i) holds. Now by (A1) and (A2) it follows that i = 1and $v_g v_h = v_h v_g$. In case (A3) we have i = 2 and $v_h v_g^2 = v_g^2 v_h$. But $\langle v_g^2 \rangle = \langle v_h \rangle$, so v_h commutes with v_g^i for all $i = 1, \ldots, n-1$. Therefore condition (ii) also holds.

Now, suppose that $char(K) \neq 2$. Then by (3), we conclude that for the product $v_h v_g v_h$ we have the following four cases:

- (B1) $v_h v_g v_h = v_g^i v_h^2$, $hgh = g^i h^2$ and $hgh^{-1} = g^i$ $(1 \le i \le n 1);$ (B2) $v_h v_g v_h = v_h v_g^i v_h v_g$, $hgh = hg^i hg$ and $hgh^{-1} = g^{1-i}$ $(0 \le i \le n 1);$ (B3) $v_h v_g v_h = -v_h v_g^i v_h$, $hgh = hg^i h$ and $g^{i-1} = 1$, which is impossible, because $2 \leq i \leq n-1$ and g is of order n;
- (B4) $v_h v_g v_h = -v_g^i v_h v_g v_h$, $hgh = g^i hgh$ and $g^i = 1$, which is impossible, because $1 \le i \le n-1$.

Therefore $\langle g \rangle$ is a normal cyclic subgroup of G for every $g \in G$. Hence G is either abelian or a hamiltonian group.

Assume that G is hamiltonian and $\langle g, h \mid g^4 = 1, h^2 = g^2, hgh^{-1} = g^{-1} \rangle \cong Q_8.$ Then by (B1) and (B2), it follows that either i = 3 or i = 2, respectively. Hence we obtain that $v_h v_g = v_g^3 v_h$, where $v_g^4 = v_h^4 = 1$.

Let (α, β) be a nontrivial solution of the equation $x^2 + y^2 = 0$ in K. Then as in the proof of Theorem 1 we establish that

$$w = \alpha (v_g^2 v_h - v_h) + \beta (v_g^3 v_h - v_g v_h)$$

is a nonzero nilpotent element of $K_{\rho}G$ with $z^2 = 0$. Therefore w is a central element of $K_{\rho}G$. But $wv_h \neq v_h w$, so we obtain a contradiction. Thus G is abelian and condition (i) holds. If gh = hg, then by (B1) and (B2) it follows that either i = 1 or i = 2, respectively. Hence we obtain that $v_h v_g = v_g v_h$ for all $g, h \in G$ and so condition (ii) also follows.

Conversely, if the conditions (i) and (ii) hold, then $K_{\rho}G$ is a commutative ring. For every element $a \in K_{\rho}G$ with $H = \langle \operatorname{Supp}(a) \rangle$, the ring $K_{\rho}H$ is artinian and $R \cong K_{\rho}H/\mathfrak{Nil}(K_{\rho}H)$ is a finite sum of fields. Therefore R is strongly regular and hence $K_{\rho}H$ is a ξN -ring. Since $a \in K_{\rho}H$, we deduce that $K_{\rho}G$ is a ξN -ring.

Note that if $K_{\rho}G$ is a ξN -ring, then the periodicity of G can be proved directly. Indeed, if $g \in G$ is an element of infinite order and $z = (u_g - 1)^2 x - (u_g - 1)$ is a central nilpotent element of $K_{\rho}G$, then $z^n = 0$ for some $n \ge 1$. By Corollary 1 we deduce that $[(u_g - 1)x - 1]z^{n-1} = 0$.

Using the fact that z is central, we can prove by induction that

$$[(u_q - 1)x - 1]^k z^{n-k} = 0$$

for every $k \ge 1$. Therefore $[(u_g - 1)x - 1]^n = 0$. This equality shows that $u_g - 1$ is right invertible in $K_{\rho}G$, which again is impossible by Corollary 1.

References

- A. A. Bovdi. Crossed products of a semigroup and a ring. Dokl. Akad. Nauk SSSR, 137:1267– 1269, 1961.
- [2] A. A. Bovdi and T. P. Lángi. On the regularity of group algebras. Arch. Math. (Brno), 32(2):117–121, 1996.
- [3] I. G. Connell. On the group ring. Canad. J. Math., 15:650-685, 1963.
- [4] V. Gupta. A generalization of strongly regular rings. Acta Math. Hungar., 43(1-2):57-61, 1984.
- [5] M. Kargapolov and I. Merzliakov. Éléments de la théorie des groupes. Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics]. "Mir", Moscow, 1985. Translated from the Russian by V. Kotliar.
- [6] W. S. Martindale, III. The structure of a special class of rings. Proc. Amer. Math. Soc., 9:714-721, 1958.
- [7] S. V. Mihovski. On the stongly regular group rings. Bull. Inst. Math. Bulg. Acad. Sci., 14:67– 71, 1970.
- [8] D. S. Passman. Radicals of twisted group rings. Proc. London Math. Soc. (3), 20:409–437, 1970.
- [9] D. S. Passman. Radicals of twisted group rings. II. Proc. London Math. Soc. (3), 22:633-651, 1971.
- [10] D. S. Passman. The algebraic structure of group rings. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1977.
- [11] A. Rakhnev. Some properties of group ξ-rings. Plovdiv. Univ. Nauchn. Trud., 21(1):13-24, 1983.
- [12] Y. Utumi. On ξ-rings. Proc. Japan Acad., 33:63–66, 1957.

DEPARTMENT OF MATH. SCIENCES, UAE UNIVERSITY - AL-AIN, UNITED ARAB EMIRATES *E-mail address*: vbovdi@gmail.com

DEPARTMENT OF ALGEBRA, UNIVERSITY OF PLOVDIV, BULGARIA *E-mail address*: mihovski@uni-plovdiv.bg