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ON THE REGULARITY OF CROSSED PRODUCTS

V. BOVDI, S. MIHOVSKI

Abstract. We study some generalizations of the notion of regular crossed
products K ∗G. For the case when K is an algebraically closed field, we give
necessary and sufficient conditions for the twisted group ring K ∗ G to be an
n-weakly regular ring, a ξ∗N-ring or a ring without nilpotent elements.

1. Introduction

Let G be a group, U(K) the group of units of the associative ringK with identity
and let σ : G → Aut(K) be a map of G into the group Aut(K) of automorphisms
of K. Let K ∗G = Kσ

ρG = {
∑

g∈G ugαg | αg ∈ K} be the crossed product (in the

sense of [1]), of the group G over the ring K with respect to the factor system

ρ = {ρ(g, h) ∈ U(K) | g, h ∈ G}

and the map σ : G → Aut(K). Moreover we assume that the factor system ρ is
normalized, i.e. ρ(g, 1) = ρ(1, g) = ρ(1, 1) = 1 for any g ∈ G.

In particular, if σ = 1, then the crossed product K ∗G is called a twisted group
ring, which we denote by KρG. If the factor system ρ is unitary, i.e. ρ(g, h) = 1
for all g, h ∈ G, then K ∗G is called a skew group ring and is denoted by KσG. In
the case, when ρ = 1 and σ = 1, then K ∗G is the ordinary group ring KG.

In the present paper we study properties of crossed products K ∗ G which are
generalizations of the notion of a regular ring. For the case when K ∗G is a twisted
group ring over the algebraically closed field K, we give necessary and sufficient
conditions for K ∗G to be an n-weakly regular ring (n ≥ 2), a ξ∗N -ring or a ring
without nilpotent elements. Our investigation can be considered as a generalization
of certain results of [2, 3, 4, 7, 11, 12] earlier obtained for group rings. Note that we
exclude the case when K ∗G is a skew group ring, so we do not cite any reference
from that topic.

2. Twisted group algebras without nilpotent elements

Denote the K-basis of K ∗ G by UG = {ug | g ∈ G}. The multiplication of
ug, uh ∈ UG is defined by uguh = ρ(g, h)ugh, where ρ(g, h) ∈ ρ and g, h ∈ G.
The factor system ρ of the crossed product K ∗ G is called symmetric, if for all
elements g, h ∈ G the condition gh = hg yields ρ(g, h) = ρ(h, g). The finite subset
Supp(a) = {g ∈ G | αg 6= 0} of G is called the support of the element a ∈ K ∗G.

We shall freely use the following.

Lemma 1. Let K ∗ G be a crossed product and suppose that axb = c for some
x, a, b, c ∈ K ∗ G. If H is the subgroup of G generated by Supp(a), Supp(b) and
Supp(c), then there exists an element y ∈ K ∗H, such that ayb = c.
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Proof. Indeed, if x = y + z, then ayb + azb = c, where y =
∑

h∈H uhαh and
z =

∑

g 6∈H ugβg. This shows that Supp(azb) ⊆ H . Since fgh 6∈ H for f ∈ Supp(a),

g ∈ Supp(z) and h ∈ Supp(b), we conclude that azb = 0 and ayb = c, as it was
requested. �

Corollary 1. If g ∈ G has infinite order, then ug − 1 is neither a one-sided zero
divisor, nor a one-sided invertible element of the crossed product K ∗G.

Proof. In fact, if ug − 1 is either a one-sided zero divisor, or a one-sided invertible
element of K ∗G, then by Lemma 1, we may assume that ug − u1 is also such an
element of K ∗H , where H = 〈g〉 is an infinite cyclic group. But H is an ordered
group, a contradiction. �

For twisted group algebras we give a refinement of Corollary 2 and Lemma 2 of
[7] (see p.68) which were earlier proved for group rings.

Theorem 1. Let KρG be a twisted group algebra of a torsion group G over the
algebraically closed field K. The ring KρG does not contain nilpotent elements if
and only if the following conditions hold:

(i) G is an abelian group;
(ii) the order of every elements in G is invertible in K;
(iii) the factor system ρ is symmetric.

Proof. Assume that the conditions (i), (ii) and (iii) hold. Then the twisted group
ring KρG is commutative. If x ∈ KρG is a nonzero nilpotent element and H =
〈Supp(x)〉, we conclude that KρH is a commutative artinian ring with a nonzero
nilpotent element x. So, by Theorem 2.2 of ([8], p.415), we get a contradiction.

Conversely, let KρG be a twisted group ring without nilpotent elements. If
g ∈ G is of order n and un

g = u1αg, where αg ∈ U(K), then there exists an element

µg ∈ U(K) such that µn
g = α−1

g , because K is algebraically closed. So for the
element vg = ugµg we have vng = 1. Obviously,

x = (vg − 1)uh(1 + vg + v2g + · · ·+ vn−1
g )

is a nilpotent element of KρG for all h ∈ G as far as x2 = 0. Thus x = 0, so we
conclude that

(1) uh = vguhv
i
g (0 ≤ i ≤ n− 1).

Examining the supports we can deduce that h−1gh = g−i (h ∈ G). Therefore
all cyclic subgroups of G are normal. This implies that G is either abelian or
hamiltonian. If gh = hg, then i = n − 1 and by (1) it follows that uhvg = vguh,
since vng = 1 is the identity element of KρG. So we conclude that ρ(g, h) = ρ(h, g),
i.e. the factor system ρ is symmetric and condition (iii) holds.

If char(K) = p > 0 and G contains an element g of order p, then

(1 + vg + v2g + · · ·+ vp−1
g )p = 0

and we get a contradiction. This implies that condition (ii) also follows.
Assume that G is hamiltonian and 〈g, h | g4 = h4 = 1, g2 = h2, gh = g−1〉 ∼= Q8

is the quaternion group of order 8. Then h−1gh = g−1 and i = 1. Therefore in this
case by (1) we have uh = vguhvg, i.e.

(2) vh = vgvhvg,
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where vh = uhµh and v4g = v4h = 1. Since G contains 2-elements, it follows from
(ii) that char(K) 6= 2.

K being an algebraically closed field, it is clear that there exist nonzero elements
α, β ∈ K for which α2 + β2 = 0. Then by (2) it is easy to verify that

w = α(v2gvh − vh) + β(v3gvh − vgvh)

is a nonzero nilpotent element of KρG.
Indeed, h ∈ Supp

(

α(v2gvh − vh)
)

, but h 6∈ Supp
(

β(v3gvh − vgvh)
)

. Thus we have

w 6= 0. Moreover, by (2) we obtain that u2
hvg = vgu

2
h and uhv

2
g = v2guh. Then

w2 = (v2g − 1)2(αvh + βvgvh)
2. Since (v2g − 1)2 = 2(1− v2g) and

(αvh + βvgvh)
2 = (α2 + β2)v2h + αβv2h(v

2
g + 1)vg

= αβv2h(v
2
g + 1)vg,

we obtain w2 = 2(1− v2g)αβv
2
h(1+ v2g)vg = 0, which is impossible. Hence condition

(i) follows, as requested. �

3. Regular crossed products

An associative ring R with unity is called regular (strongly regular) if for every
a ∈ R there is an element b ∈ R, such that aba = a (ba2 = a, respectively). A
ring R is called ξ∗-ring (ξ∗N -ring) if for every a ∈ R there exists b ∈ R such that
aba− a is a central (central nilpotent, respectively) element of R. It is clear that
every regular ring is a ξ∗N -ring and every ξ∗N -ring is a ξ∗-ring (see [7, 12]).

By the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3,
p.660), it is well known that a group ring is regular if and only if K is regular, G
is a locally finite group and the order of every element g ∈ G is invertible in K.

Our first result for this section is the following.

Theorem 2. Let K ∗G be a crossed product of the group G over the ring K such
that one of the following conditions is satisfied:

(i) K ∗G is a ξ∗N -ring;
(ii) K ∗G is n-weakly regular.

Then G is a torsion group.

Proof. (i) Suppose that g ∈ G is an element of infinite order. Then there exists a
b ∈ K ∗G and a natural number n ≥ 1 such that

x = (ug − 1)b(ug − 1)− (ug − 1)

is a central element of K ∗G and xn = 0. If n = 1, then x = 0 and

(ug − 1)[b(ug − 1)− 1] = 0.

Since, by Corollary 1, the element ug − 1 is not a left zero divisor in K ∗ G, we
obtain that b(ug − 1) = 1, i.e. ug − 1 is a left invertible element in K ∗G, which is
also impossible. Therefore n > 1 and

xn = (ug − 1)[b(ug − 1)− 1]xn−1 = 0.

In the same way we obtain that z1 = [b(ug − 1) − 1]xn−1 = 0. Suppose that for
some k ≥ 1 we have zk = [b(ug − 1)− 1]kxn−k = 0. If 1 < k < n, as far as x is
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central,

zk = x[b(ug − 1)− 1]kxn−k−1

= (ug − 1)[b(ug − 1)− 1]k+1xn−k−1 = 0.

Now applying Corollary 1 we obtain that

zk+1 = [b(ug − 1)− 1]k+1xn−k−1 = 0.

Thus, by induction we conclude that zn = [b(ug − 1)− 1]n = 0.
The last equality shows that there exists z ∈ K ∗ G such that z(ug − 1) = 1,

which, by Corollary 1, is impossible.
(ii) Suppose that g ∈ G is an element of infinite order. Then for some b, c ∈ K ∗G

we have ug − 1 = (ug − 1)b(ug − 1)nc. By Corollary 1 we have

(ug − 1)[1− b(ug − 1)nc] = 0,

we conclude that b(ug − 1)nc = 1. Hence it follows that b(ug − 1)x = 1, where
x = (ug − 1)n−1c. If e = xb(ug − 1), then

e2 = x[b(ug − 1)x]b(ug − 1) = xb(ug − 1) = e,

i.e. e is a central idempotent of K ∗G. Thus we have

1 = b(ug − 1)x = b(ug − 1)[xb(ug − 1)]x

= xb(ug − 1)[b(ug − 1)x] = xb(ug − 1),

i.e. ug − 1 has a left invertible element xb ∈ K ∗G. Now again by Corollary 1 we
obtain a contradiction, so the proof is complete. �

Corollary 2. If the crossed product K ∗G is a regular ring, then K is also a regular
ring and G is a torsion group.

Proof. The claim follows from Theorem 2 and Lemma 1. �

Observe that the theorem of Auslander, Connell and Willamayor (see [3], The-
orem 3, p.660) does not apply for crossed products. Indeed, if K is a non-perfect
field of characteristic p > 0 and G is the p∞-group, then there exists a twisted
group ring KρG, which must be a field (see [9], Proposition 4.2).

If G satisfies the maximum condition for finite normal subgroups and the group
ring KG is a ξ∗N -ring, then G is locally finite (see [11], Theorem 3, p.16).

We shall prove the locally finiteness ofG without the assumption of the maximum
condition when K is a field. First we recall that (see [10], p.308)

∆(G) = {g ∈ G | [G : CG(g)] < ∞}

is a subgroup of G, where CG(g) is the centralizer of g in G. Furthermore, we put

∆p(G) = 〈 g ∈ ∆(G) | g is a p-element 〉,

that is the subgroup of ∆(G) which is generated by all p-elements of ∆(G).
Now we are ready to prove the following.

Theorem 3. Let KG be the group algebra of a group G over a field K. If KG is
a ξ∗N -ring, then G is a locally finite group. Moreover, if char(K) = p > 0 then
∆p(G) contains all p-elements of G.
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Proof. Let N(KG) be the union of all nilpotent ideals of KG. In particular, the
central nilpotent elements of KG are in N(KG) and, consequently, KG/N(KG) is
a regular ring.

Assume char(K) = p > 0. By Theorem 8.19 ([10], p.309),

N(KG) = Rad(K[∆p(G)])KG,

where Rad(K[∆p(G)]) is the Jacobson radical of the group ring K[∆p(G)]. Obvi-
ously, the augmentation ideal ω(K[∆p(G)]) is a maximal ideal of K[∆p(G)], so

N(KG) = Rad(K[∆p(G)])KG ⊆ ω(K[∆p(G)])KG.

It is well-known (see [3], Theorem 3, p.660) that

K[G/(∆p(G))] ∼= KG/ω(K[∆p(G)])KG

and therefore the group algebraK[G/∆p(G)] is regular, as a homomorphic image of
KG/N(KG). This implies, by the theorem of Auslander, Connell and Willamayor
(see [3], Theorem 3, p.660), that G/∆p(G) is locally finite and has no p-element.
Thus we obtain that ∆p(G) contains all the p-elements of G and the group G is
locally finite (see [5], Theorem 23.1.1, p.215).

If char(K) = 0, then N(KG) = 0 and KG is regular. According to Auslander-
Connell-Villamayor’s theorem the proof is complete. �

4. n-weakly regular twisted group algebras

Let n ≥ 2 be a fixed natural number. A ring R is called n-weakly regular [4] if
for every a ∈ R there exist elements b, c ∈ R such that a = abanc.

Obviously, an n-weakly regular ring R has no nonzero nilpotent element. Indeed,
if R contains a nonzero nilpotent element, then there exists a nonzero nilpotent
element a ∈ R with a2 = 0. Hence a = abanc = 0, which is impossible. From this
fact we can conclude that all idempotents of an n-weakly regular ring are central.

In [2] (Theorem 2, p.119) it was proved that the group algebra KG over a field
K is n-weakly regular (n ≥ 2) if and only if K and G satisfy at least one of the
following two conditions:

(i) char(K) = p > 0 and G is an abelian torsion group without p-elements;
(ii) char(K) = 0 and G is either an abelian torsion group or a hamiltonian

grG = Q×E ×A, where A is an abelian torsion group without 2-elements
and the equation x2 + y2 + z2 = 0 in KA has only the trivial solution.

In the case when K is an algebraically close field, this result can be extended to.

Theorem 4. A twisted group algebra KρG of a group G over the algebraically
closed field K is n-weakly regular (n ≥ 2) if and only if the following conditions
hold:

(i) G is an abelian torsion group;
(ii) the order of every element of G is invertible in K;
(iii) the factor system ρ is symmetric.

Proof. Suppose that KρG is n-weakly regular. Then conditions (i), (ii) and (iii)
hold by Theorems 1 and 2.

Conversely, if K and G satisfy the conditions (i), (ii) and (iii), then KρG is a
commutative ring. Let a ∈ KρG be an arbitrary element. Then a ∈ KρH , where
H = 〈Supp(a)〉 is a finite abelian group. Since KρH is a commutative semisimple
artinian ring ([8], Theorem 2.2), we conclude that KρH is a direct product of



6 V. BOVDI, S. MIHOVSKI

fields, so KρH is n-weakly regular. This implies that KρG is n-weakly regular, as
requested. �

Analyzing the result of [2] (see Theorem 2, p.119) on n-weakly regular group
rings and [7] (see Corollary 2, p.70) about strongly regular group rings we deduce
that when K is a field, then these two classes coincide.

In the case of twisted group algebras over an algebraically closed basic field we
have the following.

Corollary 3. Let KρG be a twisted group algebra of a group G over an algebraically
closed field K. The following statements are equivalent:

(i) KρG is strongly regular;
(ii) KρG is n-weakly regular for every natural number n ≥ 2;
(iii) KρG is n-weakly regular for some natural number n ≥ 2;
(iv) G is an abelian torsion group, the order of every element of G is invertible

in K and the factor system ρ is symmetric.

Proof. Suppose that KρG is a strongly regular ring. If a ∈ KρG and a = a2b, then
a = aba, because KρG does not contain nilpotent elements. Now by induction it
follows that a = abnc for some c ∈ KρG and for every natural number n ≥ 1. So (i)
implies (ii) and, obviously, (ii) implies (iii). By the preceding theorem, (iii) implies
(iv). Finally, by the Auslander-Connell-Villamayor theorem and by (iv) it follows
that KρG is a commutative von Neumann ring and so (iv) implies (i). �

5. ξN-twisted group algebras

A ring R is called a ξN -ring if for any a ∈ R there exists b ∈ R such that a2b−a
is a central nilpotent element of R (see [11]).

Obviously, every ξN -ring is a ξ-ring and, therefore, (see [6], Theorem 1, p.714)
we deduce that every ξN -ring is a ξ∗N -ring. Moreover, (see [6], Lemma 2, p.715)
it follows that in ξN -rings all nilpotent elements are central.

ξN -group rings over commutative rings are described in [11] (Theorem 2, p.15).
From this description, it follows that a group ringKG over a fieldK of characteristic
p > 0 is a ξN -ring if and only if G is an abelian torsion group.

Finally we prove the following.

Theorem 5. A twisted group algebra KρG of a group G over the algebraically
closed field K is a ξN -ring if and only if the following conditions hold:

(i) G is an abelian torsion group;
(ii) the factor system ρ is symmetric.

Proof. Let KρG be a ξN -ring. Then ([6], Theorem 1, p.714) the ring KρG is a
ξ∗N -ring and, in view of Theorem 2, we conclude that G is a torsion group. As far
as K is an algebraically closed field, for every element g ∈ G of order n there exists
an µg ∈ U(K), such that vg = ugµg (ug ∈ UG) and vng = 1. Then we put

z = (vg − 1)vh(1 + vg + v2g + · · ·+ vn−1
g ), (h ∈ H).



REGULARITY 7

Clearly, z2 = 0 and therefore z is a central element of KρG. Thus zvh = vhz and,
so we obtain the equality

2vhvgvh +

n−1
∑

i=1

vigvhvgvh +

n−1
∑

i=2

vhv
i
gvh

=

n−1
∑

i=1

vigv
2
h +

n−1
∑

i=0

vhv
i
gvhvg.

(3)

If char(K) = 2, then 2vhvgvh = 0. Consequently for the product vhv
2
gvh and for

the corresponding supports we obtain the following three cases:

(a1) vhv
2
gvh = vigvhvgvh, hg

2h = gihgh and hgh−1 = gi (1 ≤ i ≤ n− 1);

(a2) vhv
2
gvh = vhv

i
gvhvg, hg

2h = hgihg and hgh−1 = g2−i (1 ≤ i ≤ n− 1);

(a3) vhv
2
gvh = vigvh, hg

2h = gih2 and hg2h−1 = gi (1 ≤ i ≤ n− 1).

This shows that 〈g2〉 is a normal cyclic subgroup of G.
If g is a 2-element of G, then 1+vg is nilpotent and by Lemma 2 of [6] we deduce

that 1 + vg is a central element of KρG. Therefore vgvh = vhvg for every h ∈ G.
If g is an element of odd order, then 〈g2〉 = 〈g〉 and from (a1), (a2) and (a3)

we obtain that every cyclic subgroup of G is normal, i.e. G is either abelian, or
hamiltonian. Since the 2-elements of G are central, we conclude that G is an abelian
torsion group, i.e. condition (i) holds. Now by (a1) and (a2) it follows that i = 1
and vgvh = vhvg. In case (a3) we have i = 2 and vhv

2
g = v2gvh. But 〈v

2
g〉 = 〈vh〉, so

vh commutes with vig for all i = 1, . . . , n− 1. Therefore condition (ii) also holds.
Now, suppose that char(K) 6= 2. Then by (3), we conclude that for the product

vhvgvh we have the following four cases:

(b1) vhvgvh = vigv
2
h, hgh = gih2 and hgh−1 = gi (1 ≤ i ≤ n− 1);

(b2) vhvgvh = vhv
i
gvhvg, hgh = hgihg and hgh−1 = g1−i (0 ≤ i ≤ n− 1);

(b3) vhvgvh = −vhv
i
gvh, hgh = hgih and gi−1 = 1, which is impossible, because

2 ≤ i ≤ n− 1 and g is of order n;
(b4) vhvgvh = −vigvhvgvh, hgh = gihgh and gi = 1, which is impossible, because

1 ≤ i ≤ n− 1.

Therefore 〈g〉 is a normal cyclic subgroup of G for every g ∈ G. Hence G is either
abelian or a hamiltonian group.

Assume that G is hamiltonian and 〈g, h | g4 = 1, h2 = g2, hgh−1 = g−1〉 ∼= Q8.
Then by (b1) and (b2), it follows that either i = 3 or i = 2, respectively. Hence we
obtain that vhvg = v3gvh, where v4g = v4h = 1.

Let (α, β) be a nontrivial solution of the equation x2 + y2 = 0 in K. Then as in
the proof of Theorem 1 we establish that

w = α(v2gvh − vh) + β(v3gvh − vgvh)

is a nonzero nilpotent element of KρG with z2 = 0. Therefore w is a central
element of KρG. But wvh 6= vhw, so we obtain a contradiction. Thus G is abelian
and condition (i) holds. If gh = hg, then by (b1) and (b2) it follows that either
i = 1 or i = 2, respectively. Hence we obtain that vhvg = vgvh for all g, h ∈ G and
so condition (ii) also follows.

Conversely, if the conditions (i) and (ii) hold, then KρG is a commutative ring.
For every element a ∈ KρG with H = 〈Supp(a)〉, the ring KρH is artinian and
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R ∼= KρH/Nil(KρH) is a finite sum of fields. Therefore R is strongly regular and
hence KρH is a ξN -ring. Since a ∈ KρH , we deduce that KρG is a ξN -ring.

Note that if KρG is a ξN -ring, then the periodicity of G can be proved directly.
Indeed, if g ∈ G is an element of infinite order and z = (ug − 1)2x − (ug − 1) is a
central nilpotent element of KρG, then zn = 0 for some n ≥ 1. By Corollary 1 we
deduce that [(ug − 1)x− 1]zn−1 = 0.

Using the fact that z is central, we can prove by induction that

[(ug − 1)x− 1]kzn−k = 0

for every k ≥ 1. Therefore [(ug − 1)x− 1]n = 0. This equality shows that ug − 1 is
right invertible in KρG, which again is impossible by Corollary 1. �
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