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ASSOCIATIVE SPECTRA OF GRAPH ALGEBRAS I.

FOUNDATIONS, UNDIRECTED GRAPHS, ANTIASSOCIATIVE

GRAPHS

ERKKO LEHTONEN AND TAMÁS WALDHAUSER

Abstract. Associative spectra of graph algebras are examined with the help
of homomorphisms of DFS trees. Undirected graphs are classified according
to the associative spectra of their graph algebras; there are only three dis-
tinct possibilities: constant 1, powers of 2, and Catalan numbers. Associative
and antiassociative digraphs are described, and associative spectra are deter-
mined for certain families of digraphs, such as paths, cycles, and graphs on
two vertices.

1. Introduction

Associativity is a fundamental property of binary operations, and one tends to
take it for granted, since the most frequently encountered operations are associative.
However, there are also many noteworthy operations that are not associative, such
as subtraction, cross product of vectors, implication, just to name a few. For
a systematic study of phenomena related to (non)associativity, one may consider
an arbitrary nonempty set A together with a binary operation x · y on A. Let
us emphasize that we denote the operation as multiplication only for notational
convenience; the operation can be any map A×A→ A, (x, y) 7→ x · y. This yields
the algebraic structure A = (A; ·), called a groupoid (note that the term groupoid
has a different meaning in category theory).

Given such a groupoid, there are several ways of measuring how far our operation
is from being associative. For finite A, a natural “measure of nonassociativity” is
the number of triples (a, b, c) ∈ A3 such that (a · b) · c 6= a · (b · c). This notion
was studied by A. C. Climescu [6] as early as 1947, and later by T. Kepka and
M. Trch in a long series of papers starting with [11]. Another option is to count
the minimum number of changes one has to make in the operation table in order
to make it associative [12].

B. Csákány suggested a third method, namely to look at how many of the iden-
tities that are consequences of associativity are (not) satisfied. If the operation is
associative, then there is no need to use parentheses in a product x1 · x2 · . . . · xn,
as the result will be the same anyway, but if the operation is not associative, then
one must insert n− 2 pairs of parentheses in order to make the product unambigu-
ous. The Catalan numbers Cn−1 = 1

n

(

2n−2
n−1

)

give the number of ways of inserting

parentheses (or round brackets) meaningfully, and each such bracketing induces
an n-variable function An → A. For associative binary operations all these n-ary
functions will be the same, but for arbitrary operations we may get as many as
Cn−1 functions. The associative spectrum of A is the sequence {sn(A)}

∞

n=1 that
counts the number of different n-ary functions on A arising from bracketings of
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2 ASSOCIATIVE SPECTRA OF GRAPH ALGEBRAS I

the product x1 · x2 · . . . · xn. If A is a semigroup (i.e., if x · y is associative), then
sn(A) = 1 for all n ∈ N, and intuitively we can say that the faster the spectrum
grows, the less associative the operation is.

The associative spectrum was introduced in [8], and some basic properties and
many examples of associative spectra were presented. In particular, it was shown
that the cross product and the implication have a Catalan spectrum, hence they
are as nonassociative as a binary operation can be. We shall call such operations
(groupoids) antiassociative. The associative spectrum of the subtraction operation
is given by sn = 2n−2, thus subtraction is somewhere between being associative and
antiassociative. Examples of groupoids with constant and linear spectra were also
given in [8], furthermore, in [14] groupoids with polynomial spectra of arbitrary
degrees were constructed. It was also proved in [14] that there exist a continuum
of different associative spectra (allowing infinite base sets, of course). Similar ques-
tions were investigated in [2, 3, 4], where some of the earlier results were rediscovered
(with a different terminology).

In this paper we study associative spectra of certain binary operations associated
to graphs. Let us define a “multiplication” on the vertices of a graph as follows: let
u · v = u if there is an edge from u to v and let u · v = ∞ otherwise (here ∞ is an
external absorbing element). We define the arising graph algebras more precisely
in Section 2, where we also present the required background on bracketings and
spectra.

For undirected graphs we obtain a full description of all possible associative
spectra in Section 3. It turns out that there are only three possibilities: we have
either sn = 1, sn = 2n−2 or sn = Cn−1. Note the sharp contrast between this
result and the abundance of different (growth rates of) spectra presented in [8,
14]. In Theorem 3.3 we also give explicit characterizations of undirected graphs
corresponding to each of the three spectra.

We determine antiassociative digraphs in Section 4; this together with the de-
scription of associative digraphs [15] gives us at least a picture about the two ex-
trema of the spectrum(!) of associative spectra of digraphs. Finally, in Section 5 we
compute the associative spectra of some concrete graphs such as cycles and paths,
and we also determine the spectra of graphs on two vertices. A more detailed anal-
ysis of the associative spectra of general digraphs will be a topic of a forthcoming
paper.

2. Preliminaries

2.1. General notation. We denote by N and N+ the set of nonnegative integers
and the set of positive integers, respectively. For a, b ∈ N, let [a, b] := {i ∈ N | a ≤
i ≤ b}. (Thus [a, b] = ∅ if a > b.) For n ∈ N, let [n] := [1, n] = {1, . . . , n}.

2.2. Directed graphs. By a directed graph (or digraph or simply graph) we mean a
pairG = (V,E), where V = V (G) is a nonempty set of vertices and E = E(G) ⊆ V 2

is a set of edges (or the edge relation). A digraph G′ = (V ′, E′) is a subgraph of
G = (V,E) if V ′ ⊆ V and E′ ⊆ E; it is an induced subgraph of G if additionally
E′ = E ∩ (V ′ × V ′).

If e = (u, v) ∈ E, then we say that e is an edge from u to v, and we sometimes
denote this by u → v. In this case we also say that u is an inneighbour of v and
v is an outneighbour of u. The outneigbourhood of a vertex u ∈ V (G), denoted by
NG

o (u), is the set of all outneighbours of u in G. The concept of inneighbourhood is
defined analogously. An edge of the form (u, u) is called a loop (on u) and sometimes
denoted by u 	 .

A walk of length ℓ from u to v in G is a sequence v0, . . . , vℓ of (not necessarily
distinct) vertices such that v0 = u, vℓ = v, and there is an edge from each vertex to
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the next one (except for the last vertex, of course): v0 → v1 → · · · → vℓ. If v0 = vℓ,
then we say that the walk is closed. A path (cycle) is a (closed) walk in which the
vertices are pairwise distinct (with the exception of the first and last vertex in case
of a cycle). A digraph without cycles is called acyclic.

We say that a vertex u is reachable from v if there exists a walk (equivalently,
a path) from v to u. A pair of vertices u and v are said to be strongly connected
if each one of u and v is reachable from the other. The relation of being strongly
connected is an equivalence relation, and the induced subgraphs of its equivalence
classes are called the strongly connected components of G. A digraph is strongly
connected if it has just one strongly connected component. A one-vertex graph with
no edge is strongly connected (let us call this the trivial strongly connected graph);
apart from this trivial example, every vertex of a strongly connected digraph is
contained in a cycle of nonzero length (this includes the graph of one vertex with
a loop on it).

A digraph with a symmetric edge relation is called an undirected graph. The
strongly connected components of an undirected graph are called connected compo-
nents. The underlying undirected graph of a digraph G = (V,E) is the undirected
graph (V,E′), where the edge relation E′ equals the symmetric closure of E.

A tree is an undirected graph in which any two vertices are connected by exactly
one path. A rooted directed tree is a directed acyclic graph whose underlying undi-
rected graph is a tree and that has a distinguished vertex, called a root, from which
all vertices are reachable. Let v be a vertex of a rooted directed tree T . Unless v
is the root of T , it has a unique inneighbour, which is referred to as the parent of
v. The outneighbours of v are called children of v. A childless vertex is called a
leaf. The vertices reachable from v are called descendants of v, and v is called an
ancestor of any of its descendants. The rooted induced subtree of T rooted at v,
denoted by Tv, is the subgraph of T induced by v and all its descendants.

The depth of a vertex v in a rooted directed tree T is the length of the (unique)
path from the root to v, denoted by dT (v). (Thus the root has depth 0.) The
height of T , denoted by h(T ), is the maximum of the depths of its vertices: h(T ) =
max{dT (v) | v ∈ V (T )}.

2.3. Graph algebras. Graph algebras were introduced by C. R. Shallon [17]. We
associate any digraph G = (V,E) with an algebra A(G) = (V ∪ {∞}; ◦,∞) of type
(2, 0), where∞ is a new element distinct from the vertices, and the binary operation
is defined by the following rule: for any x, y ∈ V ∪ {∞},

x ◦ y :=

{

x, if (x, y) ∈ E,

∞, otherwise.

The algebra A(G) is called the graph algebra of G. Graph algebras provide a simple
encoding of graphs as algebras, and using this encoding, the algebraic properties of
the graph algebra A(G) can be seen as properties of the graph G itself.

We are particularly interested in the satisfaction of identities by graph algebras.
Recall that a term is, informally speaking, a well-formed string comprising vari-
ables and function symbols from the language of algebras under consideration. An
identity is an ordered pair (t, t′) of terms, usually written as t ≈ t′. An algebra A

satisfies an identity t ≈ t′ if for all assignments of values to the variables occurring
in t and t′, the two terms get the same value when the function symbols are inter-
preted as the fundamental operations of A. An identity t ≈ t′ is trivial if t = t′.
Trivial identities are clearly satisfied by all algebras (of the given type). For further
details, see, e.g., [9].

Let t be a term in the language of graph algebras. Denote by var(t) the set of
variables occurring in t and by L(t) the leftmost variable occurring in t. We say
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Figure 1. The DFS tree of the bracketing ((x1((x2x3)x4))x5)(x6(x7x8)).

that t is trivial if it contains an occurrence of the constant symbol ∞; otherwise t is
nontrivial. Nontrivial terms are thus just groupoid terms. To any nontrivial term
t, we can associate a digraph G(t) = (V,E), where V = var(t), and (xi, xj) ∈ E if
and only if t has a subterm (t1 ◦ t2) with L(t1) = xi and L(t2) = xj .

The following result is very helpful for determining whether a graph algebra
satisfies an identity.

Proposition 2.1 (Pöschel, Wessel [16, Proposition 1.5(2)]). Let G = (V,E) be
a digraph, and let A(G) denote the corresponding graph algebra. Let t and t′ be
nontrivial terms in the language of graph algebras, and assume that var(t) = var(t′)
and L(t) = L(t′). Then the following conditions are equivalent:

(i) A(G) satisfies t ≈ t′;
(ii) for every map ϕ : var(t) → V , we have that ϕ is a homomorphism of G(t)

into G if and only if ϕ is a homomorphism of G(t′) into G.

2.4. Associative spectra. Let Bn denote the set of bracketings of size n, i.e.,
groupoid terms obtained from the string x1 · x2 · . . . · xn by inserting parentheses
appropriately. The number of bracketings of size n is given by the (n−1)-st Catalan

number Cn−1 = 1
n

(

2n−2
n−1

)

. If A = (A; ·) is a groupoid, then the equational theory of

A induces an equivalence relation σn(A) on Bn. The sequence {σn(A)}∞n=1 is called
the fine associative spectrum of A. The associative spectrum of A is the sequence
{sn(A)}∞n=1 of natural numbers defined by sn(A) := |Bn/σn(A)|. Equivalently,
sn(A) is the number of distinct term operations of A induced by the bracketings
of size n. Intuitively, the faster the associative spectrum grows, the less associative
the operation is. The groupoid A is a semigroup if and only if sn(A) = 1 for
all n ∈ N. On the other extreme we have the antiassociative groupoids whose
associative spectrum is given by the Catalan numbers: sn(A) = |Bn| = Cn−1.
These groupoids do not satisfy any nontrivial identity of the form t1 ≈ t2 with
t1, t2 ∈ Bn.

Since there exists only one bracketing of size 1, namely x1, and of size 2, namely
(x1x2), it is clear that s1(A) = s2(A) = 1 for every groupoid A. Therefore we
may always assume that n ≥ 3 when we consider bracketings of size n or the n-th
component of an associative spectrum.

2.5. DFS trees. It turns out that the graphs associated with bracketings are par-
ticularly nice; they are rooted directed trees of a very special form.

Definition 2.2. A DFS tree of size n is a rooted directed tree T on the vertex set
Xn := {x1, x2, . . . , xn} that has root x1 and for every vertex xi ∈ Xn, the induced
subtree Txi

has vertex set of the form X[i,i′] := {xj | j ∈ [i, i′]} for some i′ ∈ [n]
with i′ ≥ i.
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The name “DFS tree” stems from the fact that the vertices are labeled in an
order in which they may be traversed by the depth-first search (DFS) (see [7,
Section 22.3]) starting from the root. Figure 1 shows the DFS tree G(t) of size 8
that corresponds to the bracketing t = ((x1((x2x3)x4))x5)(x6(x7x8)). The dotted
line shows the walk traversed by the depth first search (using the convention that
the search continues always with the leftmost unvisited child). Note that the order
of first occurrence of the vertices along this walk is x1, x2, . . . , x8.

Lemma 2.3 (cf. [7, Theorem 22.7 (Parenthesis theorem)]). Let T be a rooted
directed tree on Xn. The following are equivalent.

(i) T is a DFS tree.
(ii) The sequence x1, x2, . . . , xn is a possible order in which the vertices of T

may be traversed by the depth-first search starting from the root.

Proof. (i) ⇒ (ii): Assume that T satisfies condition (i). Condition (ii) will follow if
we prove that for each vertex xi ∈ Xn, the vertices of the rooted induced subtree Txi

(by our assumption V (Txi
) = X[i,i′] for some i′ ≥ i) may be traversed by the depth-

first search in the order xi, xi+1, . . . , xi′ . We proceed by induction on the height of
subtrees. The claim obviously holds for rooted induced subtrees of height 0. Assume
that the claim holds for rooted induced subtrees of height at most k, and let xi ∈ Xn

be a vertex such that h(Txi
) = k+1. Let xi1 , xi2 , . . . , xiℓ be the children of xi in T

with i1 < i2 < · · · < iℓ. By condition (i), for each s ∈ [ℓ], V (Txis
) = X[is,i′s]

for some
i′s ≥ is; in fact i′s = is+1 − 1 for 1 ≤ s < ℓ, i1 = i + 1, and V (Txi

) = X[i,i′
ℓ
]. By the

induction hypothesis, the vertices of Txis
may be traversed by the depth-first search

in the order xis , xis+1, . . . , xi′s ; consequently, the vertices of Txi
may be traversed

in the order xi, xi1 , xi1+1, . . . , xi′
1
, xi2 , xi2+1, . . . , xi′

2
, . . . , xiℓ , xiℓ+1, . . . , xi′

ℓ
, that is,

in the order xi, xi+1, . . . , xi′
ℓ
.

(ii) ⇒ (i): Assume that T satisfies condition (ii). For any xi ∈ Xn, xi is the
first vertex in Txi

visited by the depth-first search, all vertices of Txi
are traversed

before the depth-first search continues with vertices not belonging to Txi
, and once

the depth-first search leaves the subtree Txi
it will never return to it. Consequently,

condition (i) clearly holds. �

Bracketings of size n are in a one-to-one correspondence with DFS trees of size
n.

Lemma 2.4 (cf. Kiss [13, Lemma 2]). Let n ∈ N.

(a) For any bracketing t ∈ Bn, the graph G(t) is a DFS tree of size n.
(b) Conversely, for every DFS tree T of size n, there is a unique bracketing

t ∈ Bn such that G(t) = T .

Proof. (a) Let t ∈ Bn. Then G(t) is a graph on Xn by definition. We will prove
by induction on the structure of terms that for every subterm t′ of t, the graph
G(t′) is a directed tree on var(t′) with root L(t′) such that for every xi ∈ var(t′),
the subtree of G(t′) rooted at xi has vertex set of the form X[i,i′] for some i′ ∈ [n]
with i′ ≥ i. The claim obviously holds for any subterm of the form t′ = xi ∈ Xn.
Let now t′ = (t1 ◦ t2), and assume that the claim holds for the subterms t1 and
t2. By the induction hypothesis, for ℓ ∈ {1, 2}, G(tℓ) is a directed tree on var(tℓ)
with root L(tℓ); moreover, var(tℓ) = X[pℓ,qℓ], where pℓ = L(tℓ) and qℓ ≥ pℓ. In
fact, q1 = p2 − 1. Since var(t1) ∩ var(t2) = ∅, G(t′) is obtained by adding the edge
L(t1) → L(t2) to the disjoint union of G(t1) and G(t2); the resulting graph is a
directed tree on var(t′) = X[p1,q2]. Moreover, given a vertex xi ∈ var(t′), we have
that the subtree of G(t′) induced by xi is identical to the one induced by xi in G(t1)
if xi ∈ var(t1)\{xp1

} and identical to the one induced by xi in G(t2) if xi ∈ var(t2);
by the induction hypothesis, the subtree has the desired form.
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(b) For the purpose of this proof, we relax the notions of bracketing and DFS
tree so as to allow variable or vertex sets of the form X[a,b]. Let a, b ∈ N with a ≤ b,
and let n := b − a+ 1. A term t with var(t) = X[a,b] is an [a, b]-bracketing if t can
be obtained from some t′ ∈ Bn by replacing each variable xi by xa+i−1, 1 ≤ i ≤ n.
Similarly, a rooted directed tree T on X[a,b] is an [a, b]-DFS tree if there is a DFS
tree T ′ of size n such that the map xi 7→ xa+i−1 is an isomorphism T ′ → T .

We show that for any a, b ∈ N with a ≤ b, it holds that for every [a, b]-DFS
tree T , there exists a unique [a, b]-bracketing t such that G(t) = T . We proceed by
induction on the length b−a of the interval [a, b]. The claim is obvious for b−a = 0,
i.e., a = b. Assume that the claim holds whenever b − a ≤ k. Let now a and b
be such that b − a = k + 1, and let T be an [a, b]-DFS tree. Let xi1 , xi2 , . . . , xiℓ
be the children of the root vertex xa, and assume that i1 < i2 < · · · < iℓ. Then
T −Txiℓ

is an [a, iℓ−1]-DFS tree and Txiℓ
is an [iℓ, b]-DFS tree, so by the induction

hypothesis there exist a unique [a, iℓ − 1]-bracketing r such that T − Txiℓ
= G(r)

and a unique [iℓ, b]-bracketing s such that Txiℓ
= G(s). Then t := (r ◦s) is an [a, b]-

bracketing and it is easy to see that G(t) = T because L(r) = xa and L(s) = xiℓ .
This proved existence. As for uniqueness, assume t′ is another [a, b]-bracketing
such that G(t′) = T . Since xa → xiℓ is an edge in T , t′ must contain a subterm
of the form (r′ ◦ s′) where L(r′) = xa, L(s

′) = xiℓ . Then var(r′) = X[a,iℓ−1], so
G(r′) is the subtree of T with vertex set X[a,iℓ−1], that is G(r

′) = T −Txiℓ
= G(r).

Observe that t′ contains no subterm of the form (r′ ◦s′)◦s′′ (otherwise L(s′′) =: xp
would be a child of xa with p > iℓ, contradicting the choice of iℓ). Consequently
var(s′) = X[iℓ,b], so G(s

′) = Txiℓ
= G(s). By the induction hypothesis r = r′ and

s = s′, so t = (r ◦ s) = (r′ ◦ s′) = t′. �

Proposition 2.5. DFS trees are uniquely determined by their depth sequences: if
T and T ′ are DFS trees of size n such that dT (xi) = dT ′(xi) for all i ∈ {1, . . . , n},
then T = T ′.

Proof. Suppose, to the contrary, that DFS trees T and T ′ satisfy dT (xi) = dT ′(xi)
for all i ∈ {1, . . . , n} but T 6= T ′. Then there exists a vertex xd ∈ Xn such that
its parent xp in T is distinct from its parent xq in T ′. Assume without loss of
generality that p < q. Since dT (xd) = dT ′(xd), we also have dT ′(xp) = dT (xp) =
dT (xd) − 1 = dT ′(xd) − 1 = dT ′(xq) = dT (xq). It follows from this that xd ∈ Txp

and xq /∈ Txp
; therefore p < d < q by Definition 2.2. On the other hand, xd ∈ T ′

xq
;

therefore q < d. We have reached a contradiction. �

A sequence (d1, . . . , dn) of nonnegative integers is called a zag sequence1 if

(1) d1 = 0, d2 = 1, and 1 ≤ di+1 ≤ di + 1 for all i ∈ {1, . . . , n− 1}.

This notion was introduced in [8], where bracketings were represented by binary
trees instead of DFS trees. (See also Exercise 19(u) in [18].) The depth of a vertex
in a DFS tree is the same as the so-called “right depth” of the corresponding vertex
in the binary tree representing the same bracketing. Therefore, 2.8 of [8] implies
that depth sequences of DFS trees are in a one-to-one correspondence with zag
sequences. We include the easy proof of this fact for the sake of self-containedness.

Proposition 2.6. A sequence (d1, . . . , dn) of nonnegative integers is the depth
sequence of a DFS tree of size n if and only if it is a zag sequence.

Proof. Necessity is clear: if xi+1 is a child of xi in a DFS tree T , then dT (xi+1) =
dT (xi)+1; otherwise xi+1 is a child of one of the ancestors of xi, hence dT (xi+1) ≤
dT (xi). We prove sufficiency by induction on n. The case n = 1 is trivial, so

1Another, perhaps more telling name suggested by Béla Csákány is Sisyphus sequence: zag
sequences can increase only gradually, in steps of 1, but they can decrease arbitrarily.
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Figure 2. The Dyck path of the DFS tree of Figure 1.

let n ≥ 2, and assume that every zag sequence of length less than n is the depth
sequence of a DFS tree (which is unique, by Proposition 2.5). Let (d1, . . . , dn) be a
zag sequence, and let dk = 1 be the last occurrence of 1 in the sequence (possibly
k = 2). Then d1, . . . , dk−1 and dk − 1, . . . , dn − 1 are zag sequences of length less
than n, hence, by our induction hypothesis, they are depth sequences of DFS trees
T1 (of size k − 1) and T2 (of size n− k + 1), respectively. Let us form the disjoint
union of T1 and T2 after applying the renaming xi 7→ xi+k−1 to the vertices of T2.
Now if we add an edge from x1 (the root of T1) to xk (the new root of T2), then
we obtain a DFS tree of size n with depth sequence (d1, . . . , dn). �

Remark 2.7. Zag sequences of length n can be visualized as lattice paths from the
origin to to the line x = n− 1 using steps (1, 1), (1, 0), (1,−1), (1,−2), . . . . Another
family of lattice paths is also closely related to bracketings and DFS trees. A Dyck
path of semilength n is a lattice path from (0, 0) to (2n, 0) consisting of n up-steps
U = (1, 1) and n down-steps D = (1,−1) in such a way that the path never goes
below the x axis. To construct the Dyck path corresponding to a DFS tree T , let us
draw T in such a way that all edges point upwards, and the children of every vertex
are drawn in increasing order (of their subscripts) from left to right. (All DFS trees
in this paper are drawn using this convention.) Let us follow the depth-first search
on T , including the backtracking steps, returning to the root in the end (see the
dotted line in Figure 1). For each step, we add an up-step U or a down-step D to
our lattice path starting at the origin according to whether we are moving upwards
or downwards in the tree. (See Figure 2 for the Dyck path corresponding to the
DFS tree of Figure 1. The first occurrence of each vertex during the depth-first
search is labelled on the diagram.) This way we obtain a bijection from the set of
DFS trees of size n to the set of Dyck paths of semilength n − 1. A wormderful
explanation of this bijection is presented in [19, p. 10], where this process is actually
used to define the depth-first order.

2.6. Collapsing maps and a few lemmas.

Definition 2.8. Let T be a DFS tree of size n, and let G be a digraph. If h = h(T )
and W : v0 → v1 → · · · → vh is a walk in G, then the mapping ϕ : Xn → V (G),
xi 7→ vdT (xi) is clearly a homomorphism of T into G. Similarly, if C : u0 → u1 →
· · · → uℓ−1 → u0 is a closed walk inG with ℓ ≥ 1, then the mapping ψ : Xn → V (G),
xi 7→ vdT (xi) mod ℓ is a homomorphism of T into G. Such homomorphisms ϕ and ψ
are referred to as collapsing maps of T on W and C, respectively, and we say that
the DFS tree T is collapsed on the walk W (on the closed walk C) by ϕ (by ψ).

We will often specify homomorphisms of DFS trees by giving a piecewise def-
inition in which each piece is a collapsing map of a subgraph. In particular, if
T is a DFS tree of size n, xd ∈ Xn, s = dT (xd) > 0, h = h(T ), h′ = h(Txd

),
W : v0 → v1 → · · · → vs → · · · → vh is a walk in G, vs−1 → u0 is an edge, and W ′

is either a walk u0 → u1 → · · · → uh′ or a closed walk u0 → u1 → · · · → uℓ → u0,
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then the mapping ϕ : Xn → V (G) that collapses T \ Txd
on W and Txd

on W ′ is a
homomorphism of T into G, and we will refer to ϕ as the collapsing map of (T, xd)
on (W,W ′), and we say that (T, xd) is collapsed on (W,W ′) by ϕ.

With the help of collapsing maps and Proposition 2.1, we can derive conditions
for the edges of a digraph satisfying a bracketing identity. Let us illustrate this
with a few examples that will serve as helpful tools later.

Lemma 2.9. Let t, t′ ∈ Bn, t 6= t′, T := G(t), T ′ := G(t′), h := h(T ), and let G
be a digraph such that A(G) satisfies the identity t ≈ t′. If W : v0 → v1 → · · · → vh
is a walk in G, then (vdT (a), vdT (b)) ∈ E(G) for every (a, b) ∈ E(T ′).

Proof. The collapsing map ϕ of T to W is a homomorphism of T into G, so it is
also a homomorphism of T ′ into G by Proposition 2.1. Consequently, for every edge
(a, b) of T ′, we have (vdT (a), vdT (b)) = (ϕ(a), ϕ(b)) ∈ E(G). �

Lemma 2.10. Let t, t′ ∈ Bn, t 6= t′, T := G(t), T ′ := G(t′), and let G be a digraph
such that A(G) satisfies the identity t ≈ t′. Then the following statements hold.

(a) If u, v ∈ V (G), {(u, u), (u, v)} ⊆ E(G), and G contains arbitrarily long
walks with initial vertex v, then {(v, u), (v, v)} ⊆ E(G).

(b) If u, v, w ∈ V (G) and {(u, u), (v, v), (w,w), (v, u), (v, w)} ⊆ E(G), then
{(u,w), (w, u)} ⊆ E(G).

(c) If dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, u, v, w ∈ V (G), {(u, v), (v, u),
(v, w)} ⊆ E(G) and G contains arbitrarily long walks with initial vertex w,
then (w, v) ∈ E(G).

(d) If dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, u, v, u
′, v′ ∈ V (G), {(u, v),

(v, u), (u, v′), (v′, u), (v, u′), (u′, v)} ⊆ E(G), then {(u′, v′), (v′, u′)} ⊆ E(G).

Proof. Since t 6= t′, there exists a vertex xd that has distinct parents in T and
T ′, say xp and xq, respectively. We have p < d and q < d, and, changing the
roles of T and T ′ if necessary, we may assume that p < q < d. By Definition 2.2,
xq, xd ∈ V (Txp

) but xq /∈ V (Txd
). Let h := h(T ), s := dT (xd), r := dT (xq). Note

that dT (xp) = s− 1 and r ≥ s.
For each statement, we are going to provide suitable walksW : v0 → v1 → · · · →

vh and W ′ : u0 → u1 → · · · in G, with vs−1 → u0 being an edge, and we consider
the collapsing map ϕ of (T, xd) on (W,W ′), which is a homomorphism of T into G.
By Proposition 2.1, ϕ is also a homomorphism of T ′ into G. Since (xq , xd) ∈ E(T ′),
we obtain the desired edge (ϕ(xq), ϕ(xd)) = (vr, u0) ∈ E(G).

(a) We obtain the edge v → u by letting W be the walk starting with r occur-
rences of u, followed by a walk of length h− r starting at v, and letting W ′ be the
cycle u → u. We obtain the edge v → v by letting W be as above and letting W ′

be a sufficiently long walk starting at v.
(b) We obtain the edge u→ w by letting W : v → · · · → v → u→ · · · → u with

r occurrences of v and h− r + 1 occurrences of u and W ′ : w → w. By swapping u
with w in the above, we obtain also the edge w → u.

(c) We obtain the edge w → v by letting W : v0 → v1 → · · · → vh be the walk in
which v0, . . . , vr−1 alternate between vertices u and v such that vr−1 = v, followed
by the vertices of a walk of length h− r starting at w, and letting W ′ be the cycle
v → u → v. Note that s − 1 = dT (xp) = dT (xd) − 1 ≡ dT ′(xd) − 1 = dT ′(xq) ≡
dT (xq) = r (mod 2), so vs−1 = u and vs−1 → u0 is indeed an edge in G.

(d) We obtain the edge u′ → v′ by letting W : v0 → v1 → · · · → vh be the walk
with vi := u for i ≡ r (mod 2), i 6= r, vr := u′, and vi := v for i 6≡ r (mod 2),
and letting W ′ be the cycle v′ → u→ v′. Note that we have s− 1 ≡ r (mod 2) as
above, so vs−1 = u and vs−1 → u0 is indeed an edge in G. �
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Remark 2.11. There exist arbitrarily long walks with initial vertex v if, for ex-
ample, v lies on a cycle, or there is a path from v to a vertex v′ that lies on a
cycle.

3. Associative spectra of graph algebras of undirected graphs

It is relatively easy to determine the associative spectra of graph algebras of
undirected graphs. It turns out that there are only three distinct possibilities: the
sequences of all 1’s, powers of 2, and Catalan numbers. Undirected graphs are
classified into these three types in Theorem 3.3.

As we will see, a key criterion for the classification of pairs of distinct DFS trees
of size n is whether the depths of each vertex in the two trees are congruent modulo
2.

Lemma 3.1. Let ∼ be the equivalence relation on Bn that relates t and t′ if and
only if dG(t)(xi) ≡ dG(t′)(xi) (mod 2) for all xi ∈ Xn. Then |Bn/∼| = 2n−2 for
n ≥ 2.

Proof. The depth sequence modulo 2 of a bracketing t ∈ Bn is the tuple dt,2 :=
(d1, d2, . . . , dn), where di := dG(t)(xi) mod 2. We clearly have dt,2 ∈ {0} × {1} ×
{0, 1}n−2, because x1 and x2 always have depths 0 and 1, respectively. On the other
hand, every tuple (d1, d2, . . . , dn) ∈ {0} × {1} × {0, 1}n−2 is the depth sequence
modulo 2 of some bracketing t ∈ Bn, which we can build as follows. The vertices
x1 and x2 must have depths 0 and 1, respectively. For j = 2, . . . , n, if dj 6= dj−1,
then we add xj as a child of xj−1; if dj = dj−1, then we add xj as a child of the
unique parent of xj−1. It is now obvious that |Bn/∼| = |{0} × {1} × {0, 1}n−2| =
2n−2. �

Lemma 3.2. Let K be an undirected connected graph with no loops. Assume that
for all vertices a, b, c, d of K it holds that if a → b → c → d is a walk in K, then
a→ d is an edge. Then K is complete bipartite.

Proof. Suppose, to the contrary, that K is not bipartite. Then K has a cycle of
odd length m ≥ 3, say v1 → v2 → · · · → vm → v1. By applying our assumption
to the walk vm−2 → vm−1 → vm → v1, we get the edge vm−2 → v1; hence
v1 → v2 → · · · → vm−2 → v1 is a cycle of length m − 2 in K. Repeating this
argument, we eventually arrive at a cycle of length 1. This contradicts the fact
that K has no loops.

We have established that K must be bipartite. It remains to show that K is
complete bipartite. Let B1, B2 be a bipartition of K, and let x ∈ B1, y ∈ B2. We
want to show that x→ y is an edge in K. Since K is connected, there exists a path
x = v0 → v1 → · · · → vn = y in K, with n odd. If n ≥ 3, then our assumption
implies that v0 → v1 → · · · → vn−3 → vn is a path of length n − 2 from x to y.
Repeating this argument, we eventually get a path of length 1 from x to y, i.e., an
edge x→ y. �

Theorem 3.3. Let G be an undirected graph.

(i) If every connected component of G is either trivial or a complete graph
(with loops), then A(G) satisfies every bracketing identity. In this case,
sn(A(G)) = 1 for all n ∈ N+.

(ii) If every connected component is either trivial, a complete graph (with loops),
or a complete bipartite graph, and the last case occurs at least once, then
A(G) satisfies a bracketing identity t ≈ t′ if and only if dG(t)(xi) ≡ dG(t′)(xi)

(mod 2) for all xi ∈ Xn. In this case, sn(A(G)) = 2n−2 for all n ≥ 2.
(iii) Otherwise A(G) satisfies no nontrivial bracketing identity. In this case,

sn(A(G)) = Cn−1 for all n ∈ N+.
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Proof. Let t, t′ ∈ Bn, t 6= t′. Denote T := G(t), T ′ := G(t′). Assume that
G = (V,E) satisfies t ≈ t′.

Claim 3.3.1. Every connected component of G containing a loop is a complete graph
(with loops).

Proof. Let K be a connected component of G containing a loop. We will show that
the edge relation E(K) is reflexive, symmetric, and transitive. From this we can
conclude that K is a complete graph with loops. The claim is obvious if K has only
one vertex, so we may assume that K has at least two vertices. The edge relation
is symmetric because G is undirected.

For reflexivity, let u be a vertex in K with a loop, and let v be a vertex adjacent
to u. It follows from Lemma 2.10(a) that (v, v) ∈ E(K) (note that v belongs to the
cycle v → u → v). From this we can conclude that every vertex in K has a loop,
that is, the edge relation E(K) is reflexive.

For transitivity, assume that (u, v) and (v, w) are edges in K. By reflexivity we
have loops at vertices u, v and w, and by symmetry we have also the edges (v, u)
and (w, v). Now Lemma 2.10(b) implies that (u,w) ∈ E(K). �Claim 3.3.1

Claim 3.3.2. Every nontrivial connected component of G without loops is a complete
bipartite graph. Such a component exists only if dT (xi) ≡ dT ′(xi) (mod 2) for all
xi ∈ Xn.

Proof. Let K be a nontrivial connected component of G without loops. Then K
contains an edge (u, v). Then the map ϕ : Xn → V ,

ϕ(x) =

{

u, if dT (x) ≡ 0 (mod 2),

v, if dT (x) ≡ 1 (mod 2),

is clearly a homomorphism of T into G. By Proposition 2.1, ϕ is a homomorphism
of T ′ into G, so dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn.

In order to conclude that K is complete bipartite, it suffices, by Lemma 3.2, to
show that if a → b → c → d is a walk in K, then (a, d) is an edge. Since the edge
relation is symmetric, this holds by Lemma 2.10(d). �Claim 3.3.2

Proof of Theorem 3.3 continued. Claims 3.3.1 and 3.3.2 show that if G satisfies
t ≈ t′, then the connected components of G are trivial, complete graphs (with
loops), or complete bipartite graphs, and if the last case occurs, then dT (xi) ≡
dT ′(xi) (mod 2) for all xi ∈ Xn.

Assume now that the connected components of G are trivial, complete graphs
(with loops), or complete bipartite graphs, and if one of the components is a com-
plete bipartite graph, then dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn. In order
to prove that G satisfies t ≈ t′, we apply Proposition 2.1. Let ϕ : Xn → V be a
homomorphism of T into G. Since T is connected and contains an edge, the image
of ϕ lies in a single nontrivial connected component K of G. If K is a complete
graph, then ϕ is obviously a homomorphism of T ′ into G.

Consider then the case where K is a complete bipartite graph with bipartition
B1, B2. It is easy to see that for all xi, xj ∈ Xn, ϕ(xi) and ϕ(xj) lie in the same
part (B1 or B2) if and only if dT (xi) ≡ dT (xj) (mod 2). By our assumption, we
have dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn, which implies that ϕ is also a
homomorphism of T ′ into G.

A similar argument shows that every homomorphism of T ′ into G is also a
homomorphism of T into G. By Proposition 2.1, G satisfies t ≈ t′.

We have shown that G satisfies a nontrivial bracketing identity t ≈ t′ if and
only if the connected components of G are trivial, complete graphs (with loops),
or complete bipartite graphs, and if the last case occurs, then dT (xi) ≡ dT ′(xi)
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x3

G(t)

x1

x2 x3

G(t′)

Figure 3. Graphs associated with the terms of the associative
identity t ≈ t′ with t := x1(x2x3), t

′ := (x1x2)x3.

(mod 2) for all xi ∈ Xn. This gives us the three possible associative spectra. If A(G)
satisfies all bracketing identities, then A(G) is associative and sn(A(G)) = 1 for all
n ∈ N+. If A(G) satisfies no nontrivial bracketing identity, then sn(A(G)) = Cn−1

for all n ∈ N+. In the last possible case, σn(A(G)) relates t and t′ if and only
if dT (xi) ≡ dT ′(xi) (mod 2) for all xi ∈ Xn; by Lemma 3.1 we have sn(A(G)) =
2n−2. �

4. Associative and antiassociative digraphs

A digraph G is associative if A(G) satisfies the associative identity x1(x2x3) ≈
(x1x2)x3, i.e., if the associative spectrum of A(G) is constant 1. Associative di-
graphs were characterized by T. Poomsa-ard [15]; the equivalence of conditions (i)
and (ii) in the following can be verified by applying Proposition 2.1 to the DFS trees
associated with the two bracketings appearing in the associative law (see Figure 3).

Proposition 4.1 (Poomsa-ard [15, Proposition 2.2]). For any digraph G = (V,E),
the following statements are equivalent.

(i) G is associative.
(ii) For any edge (u, v) ∈ E and and any vertex w ∈ V , (u,w) ∈ E if and only

if (v, w) ∈ E.
(iii) The edge relation E is transitive and for every v ∈ V , the subgraph induced

by NG
o (v) is a complete graph.

On the other extreme, we have the antiassociative digraphs whose graph al-
gebras satisfy no nontrivial bracketing identities, i.e., the associative spectrum of
A(G) consists of the Catalan numbers. The goal of this section is to characterize
antiassociative digraphs. To this end, we introduce some numerical parameters of
bracketing identities in terms of the corresponding DFS trees, and we prove several
necessary conditions for a graph algebra to satisfy a given bracketing identity.

Definition 4.2. Let t, t′ ∈ Bn, t 6= t′, and let T := G(t), T ′ := G(t′).

(i) Let Ht,t′ := min{h(T ), h(T ′)}.
(ii) Let Mt,t′ be the largest integer m such that dT (xi) ≡ dT ′(xi) (mod m) for

all xi ∈ Xn. In other words, the depth sequences of T and T ′ are congruent
modulo Mt,t′ .

(iii) Let Lt,t′ be the largest integer m such that for all xi ∈ Xn,
(

dT (xi) ≤ m ∨ dT ′(xi) ≤ m
)

=⇒ dT (xi) = dT ′(xi).

In other words, the DFS trees T and T ′ are identical up to level Lt,t′ .

Note that 0 ≤ Ht,t′ < n (with Ht,t′ = 0 if and only if n = 1), 0 ≤ Lt,t′ < Ht,t′ and
1 ≤Mt,t′ ≤ Ht,t′ .
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Figure 4. DFS trees with Ht,t′ = 6, Mt,t′ = 3, Lt,t′ = 2.

Example 4.3. Figure 4 shows two DFS trees corresponding to certain terms t, t′ ∈
B20. It is straightforward to verify that Ht,t′ = 6, Mt,t′ = 3, and Lt,t′ = 2.

Lemma 4.4. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Denote H := Ht,t′ , M :=Mt,t′ , L := Lt,t′ . Then there exists an
integer r with L+1 ≤ r ≤ H and r ≡ L (mod M) such that the following holds: if
v0 → v1 → · · · → vH is a walk in G, then vr → vL+1 is an edge in G. In particular,
vL+1 belongs to a nontrivial strongly connected component.

Proof. By the definition of L, there exists a vertex xd ∈ Xn such that either
dT (xd) = L + 1 < dT ′(xd) or dT ′(xd) = L + 1 < dT (xd). By changing the
roles of T and T ′, if necessary, we may assume that dT (xd) = L + 1 < dT ′(xd).
Let xp be the parent of xd in T , and let xq be the parent of xd in T ′. Then
dT (xp) = L, and it follows from Definition 2.2 that V (Txp

) = V (T ′

xp
) because

the trees T and T ′ are identical up to level L. Since xd ∈ V (Txp
) = V (T ′

xp
) and

dT ′(xd) > L+1, we have xq ∈ V (T ′

xp
) = V (Txp

) and dT ′(xq) = dT ′(xd)−1 ≥ L+1,

so xq 6= xp; hence dT (xq) ≥ L + 1. Furthermore, by the definition of M , it holds
that dT (xq) ≡ dT ′(xq) = dT ′(xd)− 1 ≡ dT (xd)− 1 = L (mod M).

Write h := h(T ), h′ := h(T ′), and consider first the case that h ≤ h′, so h = H .
In this case, the statement holds with r := dT (xq), because L + 1 ≤ r = dT (xq) ≤
h = H and r = dT (xq) ≡ L (mod M), and by Lemma 2.9, it holds that if v0 →
v1 → · · · → vH is a walk in G, then (vdT (xq), vdT (xd)) = (vr, vL+1) ∈ E(G).

Consider now the case that h > h′, so h′ = H . Let u0 → u1 → · · · → uh be a
longest path in T , and write di := dT ′(ui) for i ∈ {0, . . . , h}. Now, since h > h′,
the sequence d0, d1, . . . , dh cannot be strictly increasing, so there exists an index j
with dj ≥ dj+1. Note that dj+1 ≥ L + 1, because the trees T and T ′ are identical
up to level L.

Assume that W : v0 → v1 → · · · → vH is a walk in G. By Lemma 2.9,
(vdj

, vdj+1
) ∈ E(G); consequently C : vdj+1

→ vdj+1+1 → · · · → vdj
→ vdj+1

is
a closed walk in G. Now, let W ′ be the walk in G that starts with v0 → v1 →
· · · → vdj+1

, and then it continues around the closed walk C until it reaches length
h. More precisely, W ′ is the walk v′0 → v′1 → · · · → v′h with v′i := vi∗ , where
i∗ is the largest integer m such that m ≤ min(i, dj) and m ≡ i (mod D), where
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D := dj − dj+1 + 1. By Lemma 2.9, (v′dT (xq)
, v′dT (xd)

) = (vr, vL+1) ∈ E(G), where

r := (dT (xq))
∗. By definition, we have L + 1 ≤ r ≤ dj ≤ h′ = H and r ≡ dT (xq)

(mod D). Furthermore,

D = dT ′(uj)− dT ′(uj+1) + 1 ≡ dT (uj)− dT (uj+1) + 1 = 0 (mod M),

so M | D, and it follows that r ≡ dT (xq) ≡ L (mod M).
Now we have a closed walk vL+1 → · · · → vr → vL+1 in G. This means, in

particular, that vL+1 belongs to a nontrivial strongly connected component. �

The next lemma generalizes Lemma 2.10(a).

Lemma 4.5. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Denote H := Ht,t′ , M := Mt,t′ , L := Lt,t′ . If m is a divisor of
M , U : u0 → u1 → · · · → um−1 → u0 is a closed walk in G, u0 → w is an edge,
and G contains arbitrarily long walks with initial vertex w, then w → u2 if m > 2
and w → u0 if 1 ≤ m ≤ 2.

Proof. For m = 1 this is Lemma 2.10(a). Assume that m ≥ 2. Let r be the number
provided by Lemma 4.4, and let v0 → v1 → · · · → vH be a walk that starts by
going around the closed walk U so that vr−1 = u0 (i.e., vi := ui−r+1 mod m for
0 ≤ i ≤ r − 1) and continues with a walk of length H − r with initial vertex w. By
Lemma 4.4, vr → vL+1 is an edge. We have vr = w and vL+1 = uL+1−r+1 mod m.
Since r ≡ L (mod M) and m |M , we have r ≡ L (mod m); hence L+1−r+1 ≡ 2
mod m. Therefore w → u2 is an edge if m > 2 and w → u0 is an edge if m = 2. �

Lemma 4.6. Let t, t′ ∈ Bn, t 6= t′. Then for every m ∈ N+, the directed m-cycle
Cm satisfies t ≈ t′ if and only if m is a divisor of Mt,t′ .

Proof. DenoteM :=Mt,t′ . For notational simplicity, we suppose that V (Cm) = Zm

and for all i, j ∈ Zm, (i, j) ∈ E(Cm) if and only if j ≡ i + 1 (mod m).
Assume first that m | M . By the definition of M , we have dT (xi) ≡ dT ′(xi)

(mod M) for all xi ∈ Xn. Since m |M , this implies dT (xi) ≡ dT ′(xi) (mod m) for
all xi ∈ Xn. Let ϕ : T → Cm be a homomorphism. Then ϕ is necessarily of the
form xi 7→ (dT (xi) + k) mod m for some fixed k ∈ Zm (that is, ϕ collapses T onto
Cm). Then for every edge (xi, xj) of T

′, we have

ϕ(xj) ≡ dT (xj) + k ≡ dT ′(xj) + k = dT ′(xi) + 1 + k

≡ dT (xi) + k + 1 ≡ ϕ(xi) + 1 (mod m),

so (ϕ(xi), ϕ(xj)) is an edge of Cm. Therefore ϕ is a homomorphism of T ′ into Cm. A
similar argument shows that every homomorphism ϕ : T ′ → Cm is a homomorphism
T → Cm. By Proposition 2.1, Cm satisfies t ≈ t′.

Assume now that Cm satisfies t ≈ t′. Let ϕ : T → Cm be the collapsing map of
T on Cm with ϕ(xi) = dT (xi) mod m. By Proposition 2.1, ϕ is a homomorphism
T ′ → Cm. Since the only homomorphisms of T ′ to Cm are collapsing maps xi 7→
(dT ′(xi) + k) mod m for some k ∈ Zm, and since ϕ(x1) = dT (x1) = 0 = dT ′(x1), it
follows that dT ′(xi) ≡ dT (xi) (mod m) for all xi ∈ Xn. From the definition of M
it follows that m |M . �

Definition 4.7. A digraph G = (V,E) is called an m-whirl (m ∈ N+), if there
exists a partition {B0, . . . , Bm−1} of V such that for all x, y ∈ V , (x, y) ∈ E if and
only if x ∈ Bi and y ∈ Bi+1 for some i ∈ {0, . . . ,m − 1} (addition modulo m).
The sets Bi are referred to as the blocks of G. We say that blocks Bi and Bj are
consecutive if j ≡ i+1 (mod m); then Bi is called the predecessor of Bj and Bj is
called the successor of Bi. A digraph is called a whirl if it is an m-whirl for some
m ∈ N+.
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In other words, an m-whirl G is a strong homomorphic preimage of the directed
m-cycle Cm. By definition, 1-whirls are precisely the complete graphs with loops,
and 2-whirls are precisely the complete bipartite graphs. (Note the role of 1- and
2-whirls in Theorem 3.3.)

Lemma 4.8. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Then every strongly connected component of G is either trivial
or an m-whirl for some divisor m of Mt,t′ .

Proof. Let K be a nontrivial strongly connected component of G. Every vertex of
K lies on a cycle contained in K; let C be a shortest cycle in K, and assume that
C has length m. Lemma 4.6 implies that m is a divisor of Mt,t′ . We want to show
that K is an m-whirl.

Assume first that m = 1. Then K contains a vertex u with a loop. Let v be
an arbitrary vertex of K. By strong connectivity, there exists a path from u to v.
Since every vertex is contained in a cycle (again by strong connectivity), we can
deduce with the help of Lemma 2.10(a) that every vertex along the path from u to
v has a loop. We conclude that the edge relation of K is reflexive. The reflexivity
of the edge relation and Lemma 2.10(a) imply immediately that the edge relation is
symmetric. Now Lemma 2.10(b) implies in turn that the edge relation is transitive.
We conclude that K is a complete graph with loops, i.e., a 1-whirl.

Assume now that m = 2. Then Mt,t′ is even, K contains no loop, and there is a
cycle of length 2 in K, i.e., vertices u, v with (u, v), (v, u) ∈ E(G). With the help
of strong connectivity and Lemma 2.10(c), we can deduce that K is undirected. It
now follows from Lemmas 3.2 and 2.10(d) that K is a complete bipartite graph,
i.e., a 2-whirl.

From now on, assume that m > 2. For notational simplicity, suppose that
C = Zm and for all i, j ∈ Zm, i → j is an edge if and only if j ≡ i + 1 (mod m).
For each i ∈ Zm, let

Bi := NK
o (i − 1) = NG

o (i− 1) ∩ V (K) = {v ∈ V (K) | (i− 1, v) ∈ E(K)},

i.e., Bi is the set of all outneighbours of i − 1 (addition modulo m) belonging to
the strongly connected component K. Note that i ∈ Bi by definition. We show
that for all i ∈ Zm and for all v ∈ Bi, we have NK

o (v) = Bi+1. Let i ∈ Zm and
v ∈ Bi. Considering the closed walk i − 1 → i → · · · → m − 1 → 0 → · · · → i − 1
of length m and the edge i − 1 → v, Lemma 4.5 gives the edge v → i + 1 (note
that by strong connectivity every vertex of K, in particular v, belongs to a cycle).
Now let i ∈ Zm, v ∈ Bi and w ∈ Bi+1. Considering the closed walk i − 1 → i →
w → i+ 2 → · · · → m− 1 → 0 → · · · → i − 1 of length m and the edge i− 1 → v,
Lemma 4.5 gives the edge v → w. We have shown thus far that for all i ∈ Zm,
Bi+1 ⊆ NK

o (v) for all v ∈ Bi.
Now let i ∈ Zm, v ∈ Bi, and let w be a vertex of K with v → w. We have shown

above that v → i + 1 is an edge. Considering the closed walk v → i + 1 → · · · →
m − 1 → 0 → 1 → · · · → i − 1 → v of length m and the edge v → w, Lemma 4.5
gives the edge w → i + 2. Considering the closed walk i − 1 → v → w → i + 2 →
· · · → m−1 → 0 → 1 → · · · → i−1 of length m and the edge i−1 → i, Lemma 4.5
gives the edge i → w. Thus w ∈ Bi+1. This shows that for each vertex v of Bi,
NK

o (v) ⊆ Bi+1.
It remains to show that the sets B0, B1, . . . , Bm−1 constitute a partition of V (K).

Let us show first that these sets are pairwise disjoint. Suppose, to the contrary,
that Bi∩Bj 6= ∅ for some i 6= j, and let v ∈ Bi∩Bj . Then we have i−1 → v → i+1
and j − 1 → v → j + 1. We will find a contradiction by showing that K contains
a cycle shorter than C. If j = i + 1, then K contains the loop v → v, a cycle of
length 1. Otherwise v → i+ 1 → · · · → j − 1 → v is a cycle shorter than C.
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Suppose now, to the contrary, that
⋃m−1

i=0 Bi 6= V (K), and let v ∈ V (K) \
⋃m−1

i=0 Bi. Since K is strongly connected, there exists a path 0 = v0 → v1 → · · · →

vp = v in K. Then there exists an index q ∈ {0, . . . , p− 1} such that vq ∈
⋃m−1

i=0 Bi

and vq+1 /∈
⋃m−1

i=0 Bi, say vq ∈ Bj . But we have shown above that NK
o (vq) = Bj+1.

This gives the desired contradiction, and we conclude that K is an m-whirl. �

Lemma 4.9. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Then there is no path from a nontrivial strongly connected
component of G to another.

Proof. Suppose, to the contrary, that there are distinct nontrivial strongly con-
nected components K and K ′ and a path P from a vertex v ∈ V (K) to a vertex
v′ ∈ V (K ′). Assume that P is the shortest possible among all such paths. Then v
is the only vertex of P lying in K. Let w be the successor of v along this path.

By Lemma 4.8, K and K ′ are m- and m′-whirls, respectively, for some divisors
m and m′ of Mt,t′ . Hence v belongs to an m-cycle C in K and v′ belongs to an
m′-cycle C′ in K ′. Now Lemma 4.5 provides an edge from w to a vertex on C. This
means that w belongs to the strongly connected component K, a contradiction. �

Definition 4.10. Let G = (V,E) be a digraph. A walk in G is pleasant, if all its
vertices belong to trivial strongly connected components. Every pleasant walk is a
path.

Lemma 4.11. Let t, t′ ∈ Bn, t 6= t′, and let G be a digraph such that A(G) satisfies
the identity t ≈ t′. Then G has no pleasant path of length Ht,t′ .

Proof. Denote H := Ht,t′ , L := Lt,t′ . Suppose, to the contrary, that there exists a
pleasant path v0 → v1 → · · · → vH in G. By Lemma 4.4, there is an index r with
L+1 ≤ r ≤ H such that (vr, vL+1) is an edge of G. Consequently, vL+1 belongs to
a nontrivial strongly connected component, a contradiction. �

The necessary conditions established in the previous lemmas together are suffi-
cient for the satisfaction of some nontrivial bracketing identity. We prove this in
the following theorem, which provides a complete characterization of (not) anti-
associative digraphs. Note that this does not constitute a necessary and sufficient
condition for the satisfaction of a given nontrivial bracketing identity. Finding such
a condition will be a topic of a forthcoming paper.

Theorem 4.12. Let G be a digraph. Then A(G) is not antiassociative if and only
if the following conditions hold.

(i) Every nontrivial strongly connected component of G is a whirl.
(ii) There is no path from a nontrivial strongly connected component of G to

another.
(iii) There is a finite upper bound on the length of the pleasant paths in G.
(iv) There is a finite upper bound on the numbers m such that G contains an

m-whirl.

Proof. Assume that A(G) satisfies a nontrivial bracketing identity t ≈ t′. By
Lemma 4.4, the pleasant paths in G have length less than Ht,t′ . By Lemma 4.8,
every nontrivial strongly connected component of G is an m-whirl for some divisor
m of Mt,t′ ; such numbers m are clearly bounded above by Mt,t′ . By Lemma 4.9,
there is no path from a nontrivial strongly connected component of G to another.

Assume now that conditions (i)–(iv) hold. We will construct a nontrivial brack-
eting identity t ≈ t′ that is satisfied by A(G). We will define the terms t and t′

in terms of the corresponding DFS trees T := G(t) and T ′ := G(t′). Let P be an
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upper bound on the lengths of pleasant paths in G, as provided by condition (iii),
and let

M := lcm{m ∈ N+ | G contains an m-whirl},

which is a finite natural number by condition (iv), with the convention that lcm ∅ =
1. Let n := 3P +M + 6, and let T consist of the paths x1 → · · · → x2P+M+4 and
x2P+M+5 → · · · → x3P+M+6 and of the edge xP+2 → x2P+M+5. The tree T ′

is constructed in a similar way, but we replace the edge xP+2 → x2P+M+5 by
xP+M+2 → x2P+M+5. If ϕ : Xn → V (G) is a homomorphism of T into G, then
there is an i ∈ [1, P +2] such that ϕ(xi) belongs to a nontrivial strongly connected
component, by the definition of P . Similarly, ϕ(xj) and ϕ(xk) belong to a nontrivial
strongly connected component for some j ∈ [P+M+3, 2P+M+4] and for some k ∈
[2P+M+5, 3P+M+6]. Condition (ii) implies that ϕ(xi), ϕ(xi+1), . . . , ϕ(xj) are in
the same nontrivial strongly connected component K, and this includes the vertices
ϕ(xP+2), ϕ(xP+3), . . . , ϕ(xP+M+3). Similarly, also the vertices ϕ(x2P+M+5), . . . ,
ϕ(xk) belong toK. By the definition ofM , the componentK is anm-whirl for some
divisorm ofM . Therefore the vertices ϕ(xP+2) and ϕ(xP+M+2) belong to the same
block B ofK, and the vertices ϕ(xP+3), ϕ(xP+M+3) and ϕ(x2P+M+5) belong to the
successor block B′ of B. This implies that ϕ(xP+M+2) → ϕ(x2P+M+5) is an edge,
which proves that ϕ is also a homomorphism of T ′ into G. An analogous argument
shows that if ϕ is a homomorphism of T ′ into G, then ϕ is also a homomorphism
of T into G. Now if we let t and t′ be the bracketings corresponding to T and T ′,
respectively, then A(G) satisfies t ≈ t′ by Proposition 2.1. �

5. Some examples

In this section we determine the associative spectrum of a few special directed
graphs that are not covered by the results of the previous sections (i.e., they are
neither associative nor antiassociative), such as directed paths and cycles, all graphs
on two vertices, etc. For the spectra of directed paths, we shall need the number
of DFS trees of bounded height, so first we recall some known facts about these
numbers.

Let us denote the number of DFS trees of size n of height at most h by Dh(n).
The generating function

∑

∞

n=0Dh(n) · xn is a rational function (see [5]), hence the
sequence {Dh(n)}∞n=0 satisfies a linear recurrence relation:

Dh(n+ 1) =

(

h

1

)

Dh(n)−

(

h− 1

2

)

Dh(n− 1) +

(

h− 2

3

)

Dh(n− 2)− . . .

=

⌊h−1

2 ⌋
∑

k=0

(−1)k
(

h− k

k + 1

)

Dh(n− k).

We list these recurrence relations for h = 2, 3, 4, 5 in Table 1 together with explicit
formulas forDh(n) and the corresponding OEIS entries (for h = 5 the characteristic
polynomial of the linear recurrence is x3−5x2+6x−1, and its roots are not “nice”,
so we do not give an explicit formula for this case). Note that we have every
second Fibonacci number for h = 3 (we use the indexing F1 = F2 = 1). For more
information on the numbers Dh(n), see [5] (note that in [5] the height is defined
as the number of vertices of the longest path starting at the root, whereas in this
paper the number of edges is counted), and see also the OEIS entry A080934

Proposition 5.1. Let G be a directed path of length ℓ: v0 → v1 → · · · → vℓ. The
associative spectrum of the corresponding graph algebra is

sn(A(G)) =

{

Dℓ(n), if n ≤ ℓ+ 1,

Dℓ(n) + 1, if n ≥ ℓ+ 2.

https://oeis.org/A080934
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recurrence explicit formula OEIS entry

D2(n+ 1) = 2D2(n) D2(n) = 2n−2 A000079
D3(n+ 1) = 3D3(n)−D3(n− 1) D3(n) = F2n−3 A001519

D4(n+ 1) = 4D4(n)− 3D4(n− 1) D4(n) =
3n−2+1

2 A007051
D5(n+ 1) = 5D5(n)− 6D5(n− 1) +D5(n− 2) A080937

Table 1. Number of DFS trees with bounded height.

Proof. If T is a DFS tree with h(T ) > ℓ, then there is no homomorphism from T to
G, hence all bracketings corresponding to DFS trees of height at least ℓ+ 1 belong
to the same equivalence class of σn(A(G)) by Proposition 2.1. (Note that such trees
exist only if n ≥ ℓ + 2.) If h(T ) ≤ ℓ, then there exist homomorphisms from T to
G, for instance the collapsing map ϕ of T on G defined by ϕ(xi) = vdT (xi). Now
if T ′ is another DFS tree of size n, then ϕ is a homomorphism of T ′ to G if and
only if dT ′(xi) = dT (xi) for all i ∈ [n], and this implies T ′ = T by Proposition 2.5.
This together with Proposition 2.1 shows that each bracketing whose DFS tree has
height at most ℓ forms a singleton class in σn(A(G)). There are Dℓ(n) such classes,
and if n ≥ ℓ + 2, then we also have the class corresponding to trees of height at
least ℓ+ 1. �

Next we examine directed paths with some loops. By Theorem 4.12 (or just by
Lemma 4.9), if we have at least two loops on a path, then the graph is antiassocia-
tive, so it suffices to consider the case of only one loop. We determine the spectrum
of directed paths with a loop on the last vertex; the other cases constitute topic
for further research. (However, see Proposition 5.7 for the path of length 1 with a
loop on the first vertex.)

Lemma 5.2. Let ∼ be the equivalence relation on Bn that relates t and t′ if and
only if T := G(t) and T ′ := G(t′) coincide up to level h, i.e., Lt,t′ ≥ h. Then
|Bn/∼| = Dh+1(n).

Proof. The equivalence relation ∼ on Bn induces naturally an equivalence relation
on the set of zag sequences of length n, and we will use the same symbol ∼ for
this relation. For any zag sequence d = (d1, . . . , dn), let β(d) = (d′1, . . . , d

′

n) be
the sequence obtained from d by replacing each element greater than h by h + 1,
i.e., d′i = min(di, h + 1) for i = 1, . . . , n.2 It is straightforward to verify that β(d)
is also a zag sequence, and every zag sequence bounded above by h + 1 is in the
image of β (indeed, if d is bounded by h+ 1, then β(d) = d). Morover, for all zag
sequences d1,d2 of size n, we have β(d1) = β(d2) if and only if d1 ∼ d2. Thus
β is a surjection from the set of all zag sequences of size n to the set of all zag
sequences of size n bounded by h+1, and the kernel of β is the equivalence relation
∼. This implies that the number of equivalence classes of ∼ equals the cardinality
of the image of β, which is clearly Dh+1(n). �

Proposition 5.3. Let G be a directed path of length ℓ with a loop on the last vertex:
v0 → v1 → · · · → vℓ 	. The associative spectrum of the corresponding graph algebra
is sn(A(G)) = Dℓ(n).

Proof. Homomorphisms of a DFS tree T into G are uniquely determined by the
image of x1: a map ϕ : Xn → V (G) with ϕ(x1) = vk is a homomorphism from

2The map β can be explained in terms of DFS trees as follows: if T is the DFS tree correspond-
ing to the zag sequence d, then β(d) corresponds to the DFS tree obtained from T by turning,
for each vertex v at depth h, all descendants of v into children of v.

https://oeis.org/A000079
https://oeis.org/A001519
https://oeis.org/A007051
https://oeis.org/A080937
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T to G if and only if ϕ(xi) = vdT (xi)+k whenever dT (xi) < ℓ − k and ϕ(xi) = vℓ
whenever dT (xi) ≥ ℓ − k. This implies, by Proposition 2.1, that A(G) satisfies a
bracketing identity t ≈ t′ if and only if Lt,t′ ≥ ℓ − 1. Therefore, Lemma 5.2 gives
sn(A(G)) = Dℓ−1+1(n) = Dℓ(n). �

For the spectrum of the directed cycle Cm, we need to count depth sequences
modulom by Lemma 4.6 (or zag sequences modulom, according to Proposition 2.6).
The resulting numbers are called modular Catalan numbers in [10], and they are
denoted by Cm,n. For us it will be most convenient to define these numbers simply
as Cm,n := sn+1(A(Cm)), and we refer the reader to [10] for plenty of information on
these numbers (tables of numerical values, references to OEIS entries, formulas and
various combinatorial interpretations). We give two combinatorial interpretations
in the next proposition. The second one is stated in [10], but the proof is left to
the reader there, so we include the proof here.

Proposition 5.4. The associative spectrum sn(A(Cm)) = Cm,n−1 counts the num-
ber of zag sequences satisfying

(2) di+1 − di ∈ {2−m, 3−m, . . . , 0, 1} for all i ∈ {1, . . . , n− 1}.

Furthermore, sn(A(Cm)) = Cm,n−1 equals the number of Dyck paths of semilength
n− 1 that do not contain D · · ·DU = DmU .

Proof. According to Proposition 2.6 and Lemma 4.6, the associative spectrum of
A(Cm) counts the number of zag sequences modulo m. We claim that each zag
sequence of length n is congruent modulom to exactly one zag sequence (d1, . . . , dn)
that satisfies (2).

Since {2 − m, 3 − m, . . . , 0, 1} is a complete system of residues modulo m, it
is clear that if two zag sequences satisfying (2) are congruent modulo m, then
they are equal. (Note that since all zag sequences start with 0, the differences
di+1 − di uniquely determine the zag sequence.) To prove that every zag sequence
is congruent to a zag sequence that satisfies (2), let (d1, . . . , dn) be an arbitrary zag
sequence, and define the numbers 0 = d′1, . . . , d

′

n recursively by d′i+1 = d′i +(di+1 −
di)

∗, where (di+1 − di)
∗ is the unique element of the set {2 −m, 3 − m, . . . , 0, 1}

that is congruent to di+1 − di modulo m. Obviously, we have d′i ≡ di (mod m) and
d′i+1−d

′

i ≤ 1; we only need to prove that d′i ≥ 1 for i = 1, . . . , n. Since di+1−di ≤ 1
by the definition of a zag sequence, we have (di+1 − di)

∗ ≥ di+1 − di, and then an
easy induction argument proves that d′i ≥ di for i = 1, . . . , n. This shows that
d′1, . . . , d

′

n is indeed a zag sequence, hence our claim is proved.
We have proved so far that sn(A(Cm)) equals the number of zag sequences that

satisfy (2). Note the difference between (1) and (2): an arbitrary zag sequence can
have arbitrarily large decreases, while a sequence satisfying (2) can drop at most
by m − 2.3 To prove the statement about Dyck paths, let us rewrite (2) in terms
of the corresponding DFS tree T :

(3) dT (xi+1) ≥ dT (xi)− (m− 2) for all i ∈ {1, . . . , n− 1}.

If xi+1 is a child of xi, then this inequality holds trivially (in this case we have
dT (xi+1) = dT (xi) + 1). Otherwise, xi+1 is a child of one of the ancestors xp of xi,
thus the depth-first search goes down to xp (which has been visited before) after
the first visit of xi, and then from xp it takes one step up to reach xi+1 for the first
time. This can be seen in the Dyck path (see Remark 2.7) as a sequence of steps
D · · ·DU = DkU from the point labelled by xi to the point labelled by xi+1. (For
example, in Figure 2 we have the steps DDU from the label x4 to the label x5.) The
number of down-steps here is k = dT (xi)−dT (xp) = dT (xi)−dT (xi+1)+1. Thus (3)

3Good news for Sisyphus!
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G sn(A(G)) result Siena Catalog

1 Thm. 3.3, Prop. 4.1 1

1 Thm. 3.3, Prop. 4.1 3

1 Thm. 3.3, Prop. 4.1 80

2 Prop. 5.1 7, 4

2n−2 Prop. 5.7 9, 55

1 Prop. 4.1 29, 6

Cn−1 Thm. 4.12 84, 82

2n−2 Thm. 3.3 33, 56

Cn−1 Thm. 3.3, Thm. 4.12 35, 58

1 Thm. 3.3, Prop. 4.1 107, 128

Table 2. Digraphs on two vertices and their associative spectra.

is equivalent to k ≤ m− 1, hence (2) means that any sequence of consecutive steps
of the form D · · ·DU in the Dyck path can have at most m− 1 down-steps. �

Remark 5.5. Proposition 5.4 implies that sn(A(Cm)) is nondecreasing inm, hence
sn(A(Cm)) ≥ sn(A(C2)) = 2n−2 for all m ≥ 2 (see Lemma 3.1). The results of [8]
and [10] imply that the associative spectrum of A(Cm) coincides with that of the
operation x+ εy on complex numbers, where ε is a primitive m-th root of unity. In
particular, for m = 2, we have that the spectrum of subtraction consists of powers
of 2 (see 3.1 in [8]).

Now let us study digraphs on two vertices systematically. Up to isomorphism,
there are ten digraphs on two vertices; they are presented in Table 2. The corre-
sponding graph algebras are three-element groupoids, and the last column of the
table indicates the Siena Catalog numbers of their isomorphism class representa-
tives as listed in [1], as well as the ones of their opposite groupoids. Of these ten
digraphs, only three are not covered by Proposition 4.1 and Theorem 4.12 (i.e., that
are neither associative nor antiassociative): the undirected path of length one, the
directed path of length one, and the directed path of length one with a loop on the
first vertex. The first two ones are special cases of Theorem 3.3 and Proposition 5.1,
respectively. We treat the third one in Proposition 5.7, and for that we need to
investigate an equivalence relation on DFS trees determined by their leaves.

Let T and T ′ be DFS trees on n vertices. We say that T and T ′ are leaf-equivalent
if they have the same set of leaves.

Lemma 5.6. For n > 1, the number of leaf-equivalence classes of DFS trees on n
vertices is 2n−2.

Proof. The set of leaves of a DFS tree on n vertices is a subset of Xn that does not
contain the root x1, but it always contains xn. On the other hand, it is easy to see
that for every subset S = {xi1 , xi2 , . . . , xir} ⊆ Xn with 1 < i1 < i2 < · · · < ir = n,
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there exists a DFS tree whose leaves are precisely the elements of S. For example, we
can take the tree comprising just the paths from x1 to each xij ∈ S that are disjoint
except for the initial vertex: x1 → x2 → · · · → xi1 and x1 → xij−1+1 → · · · → xij
for 2 ≤ j ≤ r. The number of subsets of Xn containing xn but not containing x1 is
2n−2. �

Proposition 5.7. The associative spectrum sn of the graph algebra corresponding
to the graph G given by V (G) = {v, w}, E(G) = {(v, v), (v, w)} is sn = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {v, w} is a homomorphism of
T into G if and only if all vertices that are mapped to w are leaves in T . Therefore,
A(G) satisfies a bracketing identity t ≈ t′ if and only if the corresponding trees
T := G(t) and T ′ := G(t′) are leaf-equivalent. Now Lemma 5.6 implies that
sn = 2n−2. �

Finally, we consider some graphs on three vertices.

Proposition 5.8. The associative spectrum of the graph algebra corresponding to
the graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (u,w), (w,w)} is
sn(A(G)) = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) = v or ϕ(Xn) = w, or ϕ(x1) = u and all
other vertices are mapped to {v, w} in such a way, that if a vertex of depth one is
mapped to v (to w), then all of its descendants are also mapped to v (to w):

∀p ∈ Xn : dT (p) = 1 =⇒ ϕ(V (Tp)) = {ϕ(p)} ∈ {{v}, {w}}.

Thus the set of all homomorphisms of T into G is determined by the partition
{V (Tp) | p ∈ Xn and dT (p) = 1} of the set {x2, . . . , xn}. This partition is in
turn determined uniquely by the set of depth-one vertices. Indeed, if the depth-one
vertices of T are xi1 , . . . , xis with 2 = i1 < · · · < is ≤ n, then V (Txik

) = X[ik,ik+1−1]

for k = 1, . . . , s − 1 and V (Txis
) = X[is,n]. By Proposition 2.1, this implies that

A(G) satisfies a bracketing identity t ≈ t′ if and only if Lt,t′ ≥ 1. Therefore, by
Lemma 5.2 we have sn(A(G)) = D2(n) = 2n−2. �

Proposition 5.9. The associative spectrum of the graph algebra corresponding to
the graph G given by V (G) = {u, v, w}, E(G) = {(u, v), (v, v), (v, w), (w, v), (w,w)}
is sn(A(G)) = 2n−2.

Proof. For any DFS tree T of size n, a map ϕ : Xn → {u, v, w} is a homomorphism
of T into G if and only if either ϕ(Xn) ⊆ {v, w}, or ϕ(x1) = u, all depth-one vertices
are mapped to v, and the other vertices are mapped to {v, w} in an arbitrary way.
Thus the set of all homomorphisms of T into G is determined uniquely by the set of
depth-one vertices. Therefore, just as in the previous proposition, we can conclude
sn(A(G)) = D2(n) = 2n−2 with the help of Lemma 5.2. �

Remark 5.10. The graph algebra of the directed path of length one with loops
on both vertices is isomorphic to the three-element groupoid with Siena Catalog
number 84 and antiisomorphic to the one with number 82 (see [1]). These groupoids
were shown in [8, statements 2.4, 5.7] to be antiassociative; this result also follows
immediately from our Lemma 4.9.
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