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We consider one-parameter families of smooth uniformly 
contractive iterated function systems {fλ

j } on the real line. 
Given a family of parameter dependent measures {μλ} on 
the symbolic space, we study geometric and dimensional 
properties of their images under the natural projection maps 
Πλ. The main novelty of our work is that the measures μλ

depend on the parameter, whereas up till now it has been 
usually assumed that the measure on the symbolic space is 
fixed and the parameter dependence comes only from the 
natural projection. This is especially the case in the question 
of absolute continuity of the projected measure (Πλ)∗μλ, 
where we had to develop a new approach in place of earlier 
attempt which contains an error. Our main result states that 
if μλ are Gibbs measures for a family of Hölder continuous 
potentials φλ, with Hölder continuous dependence on λ and 
{Πλ} satisfy the transversality condition, then the projected 
measure (Πλ)∗μλ is absolutely continuous for Lebesgue a.e. λ, 
such that the ratio of entropy over the Lyapunov exponent is 
strictly greater than 1. We deduce it from a more general 
almost sure lower bound on the Sobolev dimension for 
families of measures with regular enough dependence on 
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the parameter. Under less restrictive assumptions, we also 
obtain an almost sure formula for the Hausdorff dimension. As 
applications of our results, we study stationary measures for 
iterated function systems with place-dependent probabilities 
(place-dependent Bernoulli convolutions and the Blackwell 
measure for binary channel) and equilibrium measures for 
hyperbolic IFS with overlaps (in particular: natural measures 
for non-homogeneous self-similar IFS and certain systems 
corresponding to random continued fractions).
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let A = {1, . . . , m} and let Ψ = {fj}j∈A be a set of contracting smooth functions on 
a compact interval I ⊂ R mapping I into itself. We call the set Ψ an iterated function 
system (IFS) on I. It is well known that there exists a unique non-empty compact set 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Λ ⊆ I such that it is invariant with respect to the IFS, that is Λ =
⋃

j∈A fj (Λ). We call 
the set Λ the attractor of the IFS, see Hutchinson [17] or Falconer [11].

Moreover, let Ω = AN be the symbolic space and σ the left shift transformation on Ω. 
There is a natural projection Π: Ω �→ Λ defined as

Π(ω) := lim
n→∞

fω1 ◦ · · · ◦ fωn
(x), for ω = (ω1, ω2, . . .) ∈ Ω,

where x ∈ I is any point (the limit does not depend on the choice of x). If μ is a 
probability measure on Ω then we call the measure Π∗μ = μ ◦ Π−1 on Λ the push-
forward measure of μ. Usually, we assume that μ is σ-invariant and ergodic. Let us 
denote the entropy of μ by hμ and the Lyapunov exponent by χμ. The ratio hμ/χμ is 
called the Lyapunov dimension of μ.

Considerable attention has been paid to the dimension theory and measure theoretic 
properties of attractors and push-forward measures of iterated function systems. A nat-
ural upper bound for the Hausdorff and box counting dimension of the attractor is the 
unique root s of the pressure function s �→ P (−s log |f ′

ω1
(Π(σω))|) = 0, see the next 

section for definitions. Ruelle [36] showed that in case of separation, e.g., the Open Set 
Condition (OSC), the Hausdorff dimension of the attractor equals to the root of the 
pressure function, see also Falconer [10]. Similarly, the Hausdorff dimension of the push-
forward measures is bounded above by the Lyapunov dimension of μ; moreover, if the 
OSC holds, then the dimension equals to the Lyapunov dimension of μ, see Feng and 
Hu [13].

The situation becomes more complicated if there are overlaps between the maps. 
To handle this case, Pollicott and Simon [34] introduced the transversality method for 
parametrized families of iterated function systems. Later, this method was widely applied 
and generalized, see for example, Solomyak [45,46], Peres and Solomyak [30,31], Simon 
and Solomyak [42], Neunhäuserer [26], Ngai and Wang [27], and Peres and Schlag [29].

We have a deeper understanding in the special case, when the maps of the IFS are 
similarities and the measure μ is Bernoulli, thanks to recent results. In his seminal pa-
per, Hochman [15], using methods of additive combinatorics, determined the value of 
the Hausdorff dimension of the attractor (self-similar set) and the push-forward mea-
sure (self-similar measure) under the exponential separation condition. Relying on this 
result and the Fourier decay of the push-forward measure, Shmerkin [39] proved that the 
exceptional set of parameters for absolute continuity of Bernoulli convolution measures 
has zero Hausdorff dimension. These results were extended by Shmerkin and Solomyak 
[40] and Saglietti, Shmerkin and Solomyak [37] to more general IFS of similarities and 
Bernoulli measures. Further progress on absolute continuity of Bernoulli convolutions 
was obtained by Varjú [48]. Jordan and Rapaport [19] showed that the dimension of 
the push-forward measure of any ergodic shift-invariant measure equals to the entropy 
over Lyapunov exponent ratio under the exponential separation condition. However, such 
strong results are unknown in the case when the IFS consists of general conformal maps.
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Simon, Solomyak and Urbański [43,44] showed that if a smoothly parametrized (hyper-
bolic or parabolic) family of conformal IFS’s {fλ

i }i∈A satisfies the transversality condition 
over a bounded open domain U of parameters, then for Lebesgue almost every parameter 
λ ∈ U the dimension of the attractor equals to min{1, sλ}, where sλ is the root of the 
pressure function, which depends on the parameter. Moreover, it has positive Lebesgue 
measure for almost every parameter, such that sλ > 1. Similarly, the dimension of the 
push-forward measure of any fixed ergodic shift-invariant measure μ is equal to the 
Lyapunov dimension of μ, and the measure is absolutely continuous for almost every 
parameter where hμ/χμ > 1. Peres and Schlag [29] obtained upper bounds on the Haus-
dorff dimension of the set of exceptional parameters using a version of transversality, in 
the framework of a “generalized projection”. All these results required a fixed ergodic 
shift-invariant measure on Ω. However, there are important cases when the measure on 
Ω depends also on the parameter λ. There are two natural occurrences of such situation.

One is the so-called place-dependent measures, which were studied by Fan and Lau 
[12], Hu, Lau and Wang [16], Jaroszewska [18], Jaroszewska and Rams [19], Kwiecińska 
and W. Słomczyński [22], Czudek [8] and others. Let {pi}i∈A be a family of Hölder 
continuous maps pi : I �→ [0, 1] such that 

∑
i∈A pi ≡ 1. Fan and Lau [12] showed that 

there exists a unique measure ν on I such that

ˆ
ϕ(x)dν(x) =

ˆ ∑
i∈A

pi(x)ϕ(fi(x))dν(x) for any continuous test function ϕ.

In view of a result by Bowen [6], it is clear that ν is the push-forward of the equilibrium 
measure μ (on the symbolic space AN) of the pressure corresponding to the potential 
ω �→ log pω1(Π(σω)). It is shown in [12] that if the open set condition holds, then the 
dimension of ν equals hμ

χμ
. In the case of parametrized family {fλ

i }i∈A the equilibrium 
measure depends on the parameter.

Bárány [1] studied such parametrized place-dependent families and claimed to gener-
alize the result of [44] for this case. However, the proof contains a crucial error, which 
cannot be fixed easily. In the present paper we have managed to overcome the obstacles 
and correct the error, using a delicate modification of the Peres-Schlag [29] method. In 
fact, our results are much more general. Here we state the main result in the most impor-
tant situation, in non-technical terms; complete statements may be found in Section 3.

Theorem 1.1. Let {fλ
j }j∈A be a C2+δ smooth family of hyperbolic IFS on a compact 

interval, smoothly depending on a real parameter λ ∈ U , and let Πλ : Ω → R be the corre-
sponding natural projection map. We assume that the (classical) transversality condition 
holds on U . Let {μλ}λ∈U be a family of Gibbs measures, corresponding to a family of 
Hölder-continuous potentials, with a Hölder-continuous dependence on parameter. Then 
the push-forward measure (Πλ)∗μλ is absolutely continuous for Lebesgue-a.e. λ ∈ U such 
that hμλ

/χμλ
> 1.
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We also showed, under slightly less restrictive assumptions, that the push-forward 
measure (Πλ)∗μλ has Hausdorff dimension equal to min{1, hμλ

/χμλ
} almost everywhere 

in U . The proof of this result is not as difficult, similar to Bárány-Rams [7], and is 
included for completeness.

Place-dependent measures play an important role, for example, in the theory of hidden 
Markov chains. Blackwell [5] expressed the entropy of hidden Markov chains over finite 
state space as an integral with respect to a place-dependent measure, which is nowadays 
called the Blackwell measure. The singularity of the Blackwell measure was studied 
by Bárány, Pollicott and Simon [3]. Later, Bárány and Kolossváry [2] showed that the 
transversality condition holds on a certain region of parameters and applied the main 
theorem of Bárány [1] to claim absolute continuity almost everywhere in this region. 
Since the Blackwell measure satisfies the assumptions of the main result of the present 
paper, we recover this result of Bárány and Kolossváry [2].

Another important case, when the parameter dependence of the measure occurs, is 
the natural measure of the parametrized IFS {fλ

i }i∈A, which is the equilibrium mea-
sure νλ with respect to the potential ω �→ sλ log |(fλ

ω1
)′(Πλ(σω))|. See [35] for more on 

the subject. In case of overlaps, neither the dimension nor the absolute continuity was 
known. Our result applies in this situation as well. In particular, it follows that a natural 
measure for non-homogeneous self-similar IFS is absolutely continuous for almost every 
parameter with similarity dimension strictly larger than 1, in the transversality region 
(such regions were found e.g. for non-homogeneous Bernoulli convolutions, see [26,27]). A 
similar conclusion is obtained for a (non-linear) system corresponding to certain random 
continued fractions.

1.1. About the proof

In order to prove “almost-sure” results for push-forwards of measures μλ depend-
ing on parameter, we need to impose “correct” continuity assumptions on the measure, 
which are, on one hand, sufficiently strong to apply the techniques, but on the other 
hand, can be verified in practice. These continuity assumptions are imposed on mea-
sures of cylinder sets and involve estimates of the ratios μλ([w])/μλ0([w]) for λ close 
to λ0. For the result on Hausdorff dimension of the push-forward measure, the con-
dition is less restrictive, see (M0) below, and we could apply more or less “classical” 
transversality techniques, since roughly speaking, we can “afford” to lose ε in dimension 
estimates.

The results on absolute continuity are much more delicate. The idea is to adapt the 
method of Peres-Schlag [29] and to show that almost everywhere in the super-critical 
parameter interval, the Sobolev dimension of the push-forward measure is greater than 
one. This implies not just absolute continuity, but also L2-density and even existence of 
L2-fractional derivatives of some positive order. This adaptation is not straightforward. 
First, [29] uses the notion of transversality of degree β, which has to be verified in our 
situation. Second, we cannot apply the result of [29] as a “black box”, but rather have 
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to work at a certain “discretized” level, in order to utilize the continuity assumptions 
on the measure dependence, see (M) below. It should be mentioned that Peres-Schlag 
[29] used their theorem on Sobolev dimension to estimate the Hausdorff dimension of 
the set of exceptional parameters for absolute continuity. We do not deal with this issue 
and only concern ourselves with almost sure absolute continuity. We should also point 
out that [29] contains two kinds of results: the infinite regularity case and the limited 
regularity case. It is the latter one (in fact, with the lowest possible regularity) that we 
adapt.

Another issue that comes up is that absolute continuity by the Peres-Schlag method 
is originally shown under the assumption that the correlation dimension of the measure 
μλ is greater than one (in the metric corresponding to λ), which is a stronger condition, 
in general, than hμλ

/χμλ
> 1. The usual approach to overcome this is to restrict the 

measure to a “Egorov set”, where the convergence in the ergodic theorems for the entropy 
and the Lyapunov exponent is uniform. This works fine when we consider the push-
forward of a fixed measure, but in our case this is more delicate, since we have to 
guarantee that (M) is preserved under the restriction. Here we manage to overcome the 
obstacle with the help of large deviations estimates for Gibbs measures (see [49,9,28]).

1.2. Organization of the paper

In the next section we collect all the main assumptions, definitions and notation. In 
Section 3 we state our main results. In fact, we state two results on almost sure absolute 
continuity: in the first one we don’t make the assumption that μλ is a family of Gibbs 
measures and only assume what is needed to prove almost sure absolute continuity in 
the parameter interval where the correlation dimension is greater than one. The sec-
ond one is the sharp result for Gibbs measures. Section 4 is devoted to preliminaries, 
mainly the regularity properties of the IFS and the parameter dependence. Shorter proofs 
are included in this section, but longer and more technical calculations are postponed 
to the Appendices. In Section 5 we prove the theorem on the Hausdorff dimension of 
the push-forward measures. In Section 6 we verify that the transversality of degree β
condition of Peres-Schlag holds under our “standard” transversality assumptions, given 
sufficient regularity. The “heart” of the proof, namely, the adaptation of a discretized 
Peres-Schlag method, where transversality condition is used, is contained in Section 7. 
Section 8 is devoted to the case of Gibbs measures: first we show that under the conti-
nuity assumptions on the potential, the Gibbs measures satisfy (M), and then use large 
deviation estimates to extract “large submeasures” still satisfying (M), but with corre-
lation dimension arbitrary close to hμλ

/χμλ
. After that, it only remains to collect the 

pieces to complete the proof of the main results; this is done in Section 9. Section 10 is 
devoted to applications. There we also present a sufficient condition for transversality 
to hold for “vertical” translation families of the form fλ

j (x) = fj(x) + aj(λ). Last, but 
not least, Section 11 contains some open questions and possible directions for further 
research.
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2. Assumptions, notation and definitions

Let A = {1, . . . , m} and suppose we have an IFS {fλ
j }j∈A on a compact interval 

X ⊂ R, depending on a parameter λ ∈ U ⊂ R with U being an open and bounded 
interval. Let diam(X) = 1 for simplicity. We assume that there exists δ ∈ (0, 1] such that

(A1) the maps fλ
j are C2+δ-smooth on X with M1 = sup

λ∈U
sup
j∈A

{∥∥∥ d2

dx2 f
λ
j

∥∥∥
∞

}
< ∞ and 

there exist constants C1, C2 > 0 such that∣∣∣∣ d2

dx2 f
λ
j (x) − d2

dx2 f
λ
j (y)

∣∣∣∣ ≤ C1|x−y|δ and
∣∣∣∣ d2

dx2 f
λ1
j (x) − d2

dx2 f
λ2
j (x)

∣∣∣∣ ≤ C2|λ1−λ2|δ

hold for all x, y ∈ X, j ∈ A, λ, λ1, λ2 ∈ U .
(A2) the maps λ �→ fλ

j (x) are C1+δ-smooth on U and there exists a constant C3 > 0
such that ∣∣∣∣ ddλfλ1

j (x) − d

dλ
fλ2
j (x)

∣∣∣∣ ≤ C3|λ1 − λ2|δ

holds for all x ∈ X, j ∈ A, λ1, λ2 ∈ U .
(A3) the second partial derivatives d2

dxdλf
λ
j (x), d2

dλdxf
λ
j (x) exist and are continuous on 

U × X (hence equal) with M2 = sup
j∈A

sup
λ∈U

∥∥∥ d2

dλdxf
λ
j (x)

∥∥∥
∞

< ∞ and there exist 

constants C4, C5 > 0 such that∣∣∣∣ d2

dxdλ
fλ
j (x) − d2

dxdλ
fλ
j (y)

∣∣∣∣ ≤ C4|x− y|δ and∣∣∣∣ d2

dxdλ
fλ1
j (x) − d2

dxdλ
fλ2
j (x)

∣∣∣∣ ≤ C5|λ1 − λ2|δ

hold for all x, y ∈ X, j ∈ A, λ, λ1, λ2 ∈ U .
(A4) the system {fλ

j }j∈A is uniformly hyperbolic and contractive: there exists γ1, γ2 > 0
such that

0 < γ1 ≤ |( d
dxf

λ
j )(x)| ≤ γ2 < 1 holds for all j ∈ A, x ∈ X, λ ∈ U.

Let Ω = AN and let σ denote the left shift on Ω. Let Ω∗ =
⋃
n≥0

An be the set of finite 

words over A and let |u| be the length of u. For u = (u1, . . . un) ∈ Ω∗ denote
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fλ
u = fλ

u1...un
:= fλ

u1
◦ . . . ◦ fλ

un

(with fu = id if u is an empty word) and let Πλ : Ω → X, λ ∈ U

Πλ(u) = lim
n→∞

fλ
u1...un

(x0) for u ∈ Ω

be the natural projection (it does not depend on the choice of x0 ∈ X). For u ∈ Ω∗ ∪ Ω
let u|n = (u1, . . . , un) denote the restriction of u to the first n coordinates. For u =
(u1, . . . , un) ∈ Ω∗ and 0 ≤ k ≤ |u| let σku = (uk+1, . . . , un). For u, v ∈ Ω let u ∧ v =
(u1, . . . , un), where n = sup{k ≥ 1 : uk = vk}, i.e. u ∧ v is the common prefix of u and v. 
For u ∈ Ω∗ let [u] = {ω ∈ Ω : ω||u| = u} be the cylinder corresponding to u.

We will assume that the following transversality condition is satisfied for λ ∈ U :

(T) ∃ η > 0 : ∀ u, v ∈ Ω, u1 �= v1, 
∣∣Πλ(u) − Πλ(v)

∣∣ < η =⇒
∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥
η.

In our setting, transversality condition (T) is equivalent to other transversality con-
ditions appearing in the literature - see Section 10.6 and Lemma 10.7 for details.

Let {μλ}λ∈U be a collection of finite Borel measures on Ω. We will consider two 
continuity assumptions on μλ:

(M0) for every λ0 and every ε > 0 there exist C, ξ > 0 such that

C−1e−ε|ω|μλ0([ω]) ≤ μλ([ω]) ≤ Ceε|ω|μλ0([ω])

holds for every ω ∈ Ω∗, |ω| ≥ 1 and λ ∈ U with |λ − λ0| < ξ;

(M) there exists c > 0 and θ ∈ (0, 1] such that for all ω ∈ Ω∗, |ω| ≥ 1, and all λ, λ′ ∈ U ,

e−c|λ−λ′|θ|ω|μλ′([ω]) ≤ μλ([ω]) ≤ ec|λ−λ′|θ|ω|μλ′([ω]).

Note that (M) implies (M0).
For a compact metric space (X, d), let M(X) denote the set of finite Borel measures 

on X and P(X) the set of Borel probability measures on X. For μ ∈ M(X) and α > 0, 
define the α-energy as

Eα(μ, d) =
¨

d(x, y)−αdμ(x)dμ(y). (2.1)

Define the correlation dimension of μ with respect to the metric d as

dimcor(μ, d) = sup{α > 0 : Eα(μ, d) < ∞}.
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For a Borel measure ν on R, the Fourier transform of ν is given by ν̂(ξ) =
´
eiξxdν(x). 

For a finite Borel measure ν and γ ∈ R, we define the homogenous Sobolev norm as

‖ν‖2
2,γ =

ˆ

R

|ν̂(ξ)|2|ξ|2γdξ

and the Sobolev dimension

dimS(ν) = sup

⎧⎨⎩α ∈ R :
ˆ

R

|ν̂(ξ)|2(1 + |ξ|)α−1dξ < ∞

⎫⎬⎭ .

Note that 0 ≤ dimS(ν) ≤ ∞ and
ˆ

R

|ν̂(ξ)|2(1 + |ξ|)α−1dξ < ∞ ⇐⇒
ˆ

R

|ν̂(ξ)|2|ξ|α−1dξ = ‖ν‖2
2,α−1

2
< ∞

for α > 0 (see [24, Section 5.2]). If 0 < dimS(ν) < 1, then dimS(ν) = dimcor(ν), 
where the correlation dimension is taken with respect to the standard metric on R. If 
dimS(ν) > 1, then ν is absolutely continuous with a density (Radon-Nikodym derivative) 
in L2(R), and moreover ν has fractional derivatives in L2 of some positive order – see 
[24, Theorem 5.4]

For an IFS {fλ
j }j∈A and a family of shift-invariant and ergodic probability measure 

μλ on Ω, let hμλ
be the entropy of μλ defined as

hμλ
= − lim

n→∞
1
n

∑
ω∈An

μλ([ω]) logμλ([ω])

and let χμλ
be the Lyapunov exponent of μλ given by

χμλ
= −

ˆ

Ω

log
∣∣∣(fλ

ω1

)′ (Πλ(σω))
∣∣∣ dμλ(ω).

For λ ∈ U we define a metric dλ on Ω by

dλ(u, v) =
∣∣fλ

u∧v(X)
∣∣ for u, v ∈ Ω. (2.2)

Let φ : Ω → R be a continuous function on the symbolic space Ω. A shift-invariant 
ergodic probability measure μ on Ω is called a Gibbs measure of the potential φ if there 
exists P ∈ R and CG ≥ 1 such that for every ω ∈ Ω and n ∈ N, holds the inequality

C−1
G ≤ μ([ω|n])

exp(−Pn +
n−1∑

φ(σkω))
≤ CG.
k=0
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It is known that if φ is Hölder continuous, then there exists a unique Gibbs measure of 
φ (see [6]).

3. Main results

Theorem 3.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . Let {μλ}λ∈U be a collection 
of finite ergodic shift-invariant Borel measures on Ω satisfying (M0), such that hμλ

and 
χμλ

are continuous in λ. Then equality

dimH((Πλ)∗μλ) = min
{

1, hμλ

χμλ

}
holds for Lebesgue almost every λ ∈ U .

The most general version of our main result is the following:

Theorem 3.2. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . Let {μλ}λ∈U be a collection 
of finite Borel measures on Ω satisfying (M). Then

dimS((Πλ)∗μλ) ≥ min {dimcor(μλ, dλ), 1 + min{δ, θ}}

holds for Lebesgue almost every λ ∈ U , where dλ is the metric on Ω defined in (2.2)
and δ, θ are from Assumptions (A1)-(A4) and (M) respectively. Consequently, (Πλ)∗μλ

is absolutely continuous with a density in L2 for Lebesgue almost every λ in the set 
{λ ∈ U : dimcor(μλ, dλ) > 1}.

In the special case of Gibbs measures for potentials with Hölder continuous dependence 
on the parameter, we get the following:

Theorem 3.3. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . Let {μλ}λ∈U be a family 
of Gibbs measures on Ω corresponding to a family of continuous potentials φλ : Ω �→ R

such that there exists 0 < α < 1 and b > 0 with

sup
λ∈U

vark(φλ) ≤ bαk, (3.1)

where vark(φ) = sup{|φ(ω1) −φ(ω2)| : |ω1 ∧ω2| = k}. Moreover, suppose that there exist 
constants c0 > 0 and θ > 0 such that

|φλ(ω) − φλ′
(ω)| ≤ c0|λ− λ′|θ for every ω ∈ Ω and λ, λ′ ∈ U . (3.2)
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Then {μλ}λ∈U satisfies (M), hence conclusions of Theorem 3.2 hold (with θ as in (3.2)). 
Furthermore, (Πλ)∗μλ is absolutely continuous for Lebesgue almost every λ in the set 
{λ ∈ U : hμλ

χμλ
> 1}.

4. Preliminaries

Throughout this section we assume that we are given an IFS {fλ
j }j∈A satisfying 

(A1) - (A4) for some δ ∈ (0, 1]. We state several auxiliary results concerning regularity 
properties of the IFS {fλ

j }j∈A and the natural projection Πλ, which will be used in 
subsequent sections. As some of the proofs are lengthy, yet standard in techniques, we 
postpone them partially to the Appendix.

Lemma 4.1. There exist constants C51 > 0 and C52 > 0 such that∣∣∣∣ d2

dx2 f
λ
u (x)

∣∣∣∣ ≤ C51

∣∣∣∣ ddxfλ
u (x)

∣∣∣∣ (4.1)

and ∣∣∣∣ d2

dλdx
fλ
u (x)

∣∣∣∣ ≤ C52|u|
∣∣∣∣ ddxfλ

u (x)
∣∣∣∣ (4.2)

hold for all λ ∈ U, x ∈ X, u ∈ Ω∗.

Proof. See Appendix A. �
Lemma 4.2 (Parametric bounded distortion property). There exist constants c62 >

0, C62 > 1 such that inequality

1
C62

e−c62|λ1−λ2||u| ≤
∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ d
dxf

λ2
u (y)

∣∣∣ ≤ C62e
c62|λ1−λ2||u| (4.3)

holds for all λ1, λ2 ∈ U, x, y ∈ X, u ∈ Ω∗.

Proof. First, let us prove the inequality with λ1 = λ2. For u = (u1, . . . , un) ∈ Ω∗, 
applying (A1) and (A4), together with inequality log x

y ≤ |x−y|
min{x,y} for x, y > 0 yields

log
∣∣ d
dxf

λ
u (x)

∣∣∣∣ d
dxf

λ
u (y)

∣∣
=

n∑
log

∣∣∣∣∣
(

d
dxf

λ
uk

)
(fλ

σkux)(
d fλ

)
(fλ

k y)

∣∣∣∣∣ ≤
n∑ ∣∣∣ ∣∣( d

dxf
λ
uk

)
(fλ

σkux)
∣∣− ∣∣( d

dxf
λ
uk

)
(fλ

σkuy)
∣∣ ∣∣∣

min
{∣∣( d fλ

)
(fλ

k x)
∣∣ , ∣∣( d fλ

)
(fλ

k y)
∣∣}
k=1 dx uk σ u k=1 dx uk σ u dx uk σ u
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≤ 1
γ1

n∑
k=1

∣∣∣∣( d

dx
fλ
uk

)
(fλ

σkux) −
(

d

dx
fλ
uk

)
(fλ

σkuy)
∣∣∣∣ ≤ M1

γ1

n∑
k=1

∣∣fλ
σkux− fλ

σkuy
∣∣

≤ M1

γ1

n∑
k=1

γn−k
2 |x− y| ≤ M1diam(X)

γ1(1 − γ2)
< ∞. (4.4)

Therefore, (4.3) holds for λ1 = λ2 with some constant C62 > 1. Fix now λ1, λ2 ∈ U . By 
the mean value theorem we have

log
∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ d
dxf

λ2
u (x)

∣∣∣ ≤
∣∣∣∣log

∣∣∣∣ ddxfλ1
u (x)

∣∣∣∣− log
∣∣∣∣ ddxfλ2

u (x)
∣∣∣∣∣∣∣∣ =

∣∣∣ d2

dλdxf
ξ
u(x)

∣∣∣∣∣∣ d
dxf

ξ
u(x)

∣∣∣ |λ1 − λ2|

for some ξ between λ1 and λ2. Applying (4.2) we obtain

log
∣∣ d
dxf

λ1
u (x)

∣∣∣∣∣ d
dxf

λ2
u (x)

∣∣∣ ≤ C62|u||λ1 − λ2|. (4.5)

Combining (4.4) with (4.5) finishes the proof. �
The following proposition implies that, in the language of [29, Section 4.2], the natural 

projection Πλ belongs to the class C1,δ(U).

Proposition 4.3. There exists a constant Cδ > 0 such that∣∣∣∣ ddλΠλ1(u) − d

dλ
Πλ2(u)

∣∣∣∣ ≤ Cδ|λ1 − λ2|δ

holds for all λ1, λ2 ∈ U and u ∈ Ω.

Proof. Fix u = (u1, u2, . . .) ∈ Ω, y ∈ X and let Fn(λ) = fλ
u1

◦ · · · ◦ fλ
un

(y) for λ ∈ U . It is 
clear from (A4) that Fn(λ) converge to Πλ uniformly on U . Therefore, by Lemma B.1, 
it is enough to show that d

dλFn is uniformly convergent. It is sufficient to show

∞∑
n=1

∥∥∥∥ d

dλ
Fn+1 −

d

dλ
Fn

∥∥∥∥
∞

< ∞. (4.6)

We have

d

dλ
Fn+1(λ) =

(
d

dx
fλ
u1...un

(fλ
un+1

(y))
)
·
(

d

dλ
fλ
un+1

(y)
)

+
(

d

dλ
fλ
u1...un

)(
fλ
un+1

(y)
)
.

Consequently, by (A4) and (4.2)
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∣∣∣∣ ddλFn+1 −
d

dλ
Fn

∣∣∣∣ ≤ ∣∣∣∣( d

dx
fλ
u1...un

(fλ
un+1

(y))
)
·
(

d

dλ
fλ
un+1

(y)
)∣∣∣∣+∣∣∣∣( d

dλ
fλ
u1...un

)(
fλ
un+1

(y)
)
−
(

d

dλ
fλ
u1...un

)
(y)

∣∣∣∣
≤ γn

2 sup
λ∈U

∣∣∣∣ ddλfλ
un+1

(y)
∣∣∣∣ + sup

λ∈U

∥∥∥∥ d2

dxdλ
fλ
u1...un

∥∥∥∥
∞

|fλ
un+1

(y) − y|

≤ γn
2 sup

λ∈U

∣∣∣∣ ddλfλ
un+1

(y)
∣∣∣∣ + 2C52n sup

λ∈U

∥∥∥∥ d

dx
fλ
u1...un

∥∥∥∥
∞

≤
(

sup
λ∈U

∣∣∣∣ ddλfλ
un+1

(y)
∣∣∣∣ + 2C52

)
nγn

2 .

As sup
λ∈U

∣∣∣ d
dλf

λ
un+1

(y)
∣∣∣ < ∞ by (A2), we have proved (4.6). �

Lemma 4.4. For every β > 0 and λ0 there exist constants ξ > 0 and 0 < c1 < 1 such that

c1dλ0(u, v)1+β/4 ≤
∣∣∣∣ ddxfλ

u∧v(x)
∣∣∣∣ ≤ 1

c1
dλ0(u, v)1−β/4

holds for all x ∈ X, u, v ∈ Ω and λ ∈ U with |λ − λ0| < ξ.

Proof. Let n = |u ∧ v|. Note that by the mean value theorem dλ0(u, v) = | d
dxf

λ0
u∧v(y)| for 

some y ∈ X (recall that we assume diam(X) = 1). Therefore, Lemma 4.2 implies

1
C62

e−c62|λ−λ0|n ≤
∣∣∣∣∣ d
dxf

λ
u∧v(x)

dλ0(u, v)

∣∣∣∣∣ ≤ C62e
c62|λ−λ0|n. (4.7)

On the other hand, by (A4),

dλ0(u, v) ≤ γn
2 ,

hence

c1dλ0(u, v)β/4 ≤ c1γ
nβ/4
2 ≤ 1

C62
e−c62|λ−λ0|n,

where the second inequality holds for all n ∈ N provided that c1 and |λ − λ0| are small 
enough. Combining this with (4.7) finishes the proof. �

The following proposition implies that the natural projection Πλ is 1, δ-regular, as 
defined in [29, Section 4.2].

Proposition 4.5. For every β > 0 and λ0 there exist constants Cβ,1, Cβ,1,δ > 0 such that 
inequalities
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∣∣∣∣ ddλ (
Πλ(u) − Πλ(v)

)∣∣∣∣ ≤ Cβ,1dλ0(u, v)1−β (4.8)

and∣∣∣∣ ddλ (
Πλ1(u) − Πλ1(v)

)
− d

dλ

(
Πλ2(u) − Πλ2(v)

)∣∣∣∣ ≤ Cβ,1,δ|λ1 − λ2|δdλ0(u, v)1−β (4.9)

hold for all u, v ∈ Ω and λ, λ1, λ2 ∈ U close enough to λ0.

Proof. See Appendix C. �
5. Proof of Theorem 3.1

The argument follows closely the proof of [7, Theorem 4.2] (note that we do not 
assume measures μλ to be quasi-Bernoulli), extending the method of [44] to the case of 
parameter dependent measures.

The key step in the proof of Theorem 3.1 is the following proposition.

Proposition 5.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . Let {μλ}λ∈U be a collection 
of finite ergodic shift-invariant Borel measures on Ω satisfying (M0), such that hμλ

and 
χμλ

are continuous in λ. Then for every λ0 ∈ U and every ε > 0 there exists an open 
neighborhood U ′ of λ0 such that

dimH((Πλ)∗μλ) ≥ min
{

1,
hμλ0

χμλ0

}
− ε

holds for Lebesgue almost every λ ∈ U ′.

Proof. Fix λ0 ∈ U, ε > 0 and ε′ > 0. By the Shannon-McMillan-Breiman theorem and 
Birkhoff’s ergodic theorem applied to the function Ω � ω �→ − log

∣∣f ′
ω1

(Πλ(σω))
∣∣, we 

have that

1
n

logμλ([ω|n]) → −hμλ
for μλ-a.e. ω ∈ Ω

and

1
n

log
∣∣∣∣(fλ

ω|n

)′
(Πλ(σnω))

∣∣∣∣ → −χμλ
for μλ-a.e. ω ∈ Ω,

hold for every λ ∈ U . By Egorov’s theorem, for every λ ∈ U there exists Cλ > 0 and a 
Borel set Aλ ⊂ Ω with μλ(Aλ) > 1 − ε′, such that

C−1
λ e−n(hμλ

+ε) ≤ μλ([ω|n]) ≤ Cλe
−n(hμλ

−ε) (5.1)
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and

C−1
λ e−n(χμλ

+ε) ≤
∣∣∣∣(fλ

ω|n

)′
(Πλ(σnω))

∣∣∣∣ ≤ Cλe
−n(χμλ

−ε) (5.2)

hold for every ω ∈ Aλ and n ≥ 1. Let ξ > 0 be such that (M0) holds and |hμλ
−hμλ0

| < ε, 
|χμλ

− χμλ0
| < ε, c62|λ − λ0| < ε for |λ − λ0| < ξ (c62 is the constant from Lemma 4.2), 

and set U ′ = B(λ0, ξ) ∩ U . By Lusin’s theorem, there exists C̃ > 0 and a Borel set 
Uε′ ⊂ U ′ containing λ0 such that

Leb(U ′ \ Uε′) < ε′ and Cλ ≤ C̃ for λ ∈ Uε′ .

Now let

A =
{
ω ∈ Ω : ∀

n≥1
C−1C̃−1e

−n(hμλ0
+2ε) ≤ μλ0([ω|n]) ≤ CC̃e

−n(hμλ0
−2ε) and

C−1
62 C̃−1e

−n(χμλ0
+2ε) ≤

∣∣∣∣(fλ0
ω|n

)′
(Πλ0(σnω))

∣∣∣∣ ≤ C62C̃e
−n(χμλ0

−2ε)
}
.

It follows from (5.1), (5.2), the choice of ξ and Lemma 4.2 that for each λ ∈ Uε′ we have 
Aλ ⊂ A, hence μλ(A) > 1 − ε′. Let μ̃λ = μλ|A. Note that the set A does not depend on 
λ. Define

An = {u ∈ An : there exists ω ∈ A with u = ω|n}.

Note that if u /∈ An, then [u] ∩A = ∅, hence μ̃λ([u]) = 0. If u ∈ An, then

C−1C̃−1e
−n(hμλ0

+2ε) ≤ μλ0([u]) ≤ CC̃e
−n(hμλ0

−2ε) (5.3)

and

C̃−1C−2
62 e

−n(χμλ0
+3ε) ≤

∣∣∣(fλ
u

)′ (x)
∣∣∣ ≤ C̃C2

62e
−n(χμλ0

−3ε) (5.4)

hold for any x ∈ X by Lemma 4.2. Fix 0 < s < 1 and consider the integral

I =
ˆ

Uε′

ˆ

Ω

ˆ

Ω

∣∣Πλ(ω1) − Πλ(ω2)
∣∣−s

dμ̃λ(ω1) dμ̃λ(ω2) dλ.

If I < ∞, then by Frostman’s lemma [11, Theorem 4.13] we have dimH((Πλ)∗μλ) ≥
dimH((Πλ)∗μ̃λ) ≥ s for Lebesgue almost every λ ∈ Uε′ . By (5.4),
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I =
ˆ

Uε′

∞∑
n=0

∑
u∈An

∑
a,b∈A
a�=b

¨

[ua]×[ub]

∣∣fλ
u

(
Πλ(σnω1)

)
− fλ

u

(
Πλ(σnω2)

)∣∣−s
dμ̃λ(ω1) dμ̃λ(ω2) dλ

≤ C̃sC2s
62

ˆ

Uε′

∞∑
n=0

e
ns(χμλ0

+3ε) ∑
u∈An

∑
a,b∈A
a�=b

¨

[ua]×[ub]

∣∣Πλ(σnω1) − Πλ(σnω2)
∣∣−s

dμ̃λ(ω1) dμ̃λ(ω2) dλ.

For m ≥ 0 set

Bλ
m = {(ω1, ω2) ∈ Ω × Ω :

∣∣Πλ(ω1) − Πλ(ω2)
∣∣ ≤ 2−m}

and note that

∣∣Πλ(ω1) − Πλ(ω2)
∣∣−s ≤

∞∑
m=0

2s(m+1)1Bλ
m

(ω1, ω2). (5.5)

Indeed, if Πλ(ω1) = Πλ(ω2), then the right-hand side is divergent. Otherwise, there exists 
m ≥ 0 such that 2−(m+1) <

∣∣Πλ(ω1) − Πλ(ω2)
∣∣ ≤ 2−m, hence 

∣∣Πλ(ω1) − Πλ(ω2)
∣∣−s ≤

2s(m+1)1Bλ
m

(ω1, ω2). For m ≥ 0 let k = k(m) be minimal such that γk
2 ≤ 2−(m+1), so 

k ≤ Q(m + 1) for a constant Q = � log 2
− log γ2

�. Let

Dλ
m = {(ω1, ω2) ∈ Ω × Ω :

∣∣Πλ(ω1|k1∞) − Πλ(ω2|k1∞)
∣∣ ≤ 2−(m−1)},

where 1∞ denotes the infinite sequence in Ω formed by the symbol 1 ∈ A. Note that by 
(A4) and the choice of k, we have Bλ

m ⊂ Dλ
m. Moreover, Dλ

m is a union of cylinders of 
length k. Applying this together with (5.5) and (M0) for λ ∈ Uε′ yields

¨

[ua]×[ub]

∣∣Πλ(σnω1) − Πλ(σnω2)
∣∣−s

dμ̃λ(ω1) dμ̃λ(ω2)

≤
∞∑

m=0
2(m+1)s

¨

[ua]×[ub]

1Bλ
m

(σnω1, σ
nω2) dμ̃λ(ω1) dμ̃λ(ω2)

≤ 2s
∞∑

m=0
2ms

¨

[ua]×[ub]

1Dλ
m

(σnω1, σ
nω2) dμ̃λ(ω1) dμ̃λ(ω2)

= 2s
∞∑

m=0
2ms

∑
l,p∈Ak−1

μ̃λ ([ual]) μ̃λ ([ubp])1Dλ
m

(al1∞, bp1∞)

≤ C22s
∞∑

m=0
2mse2ε(n+Q(m+1))

∑
l,p∈Ak−1

μλ0 ([ual])μλ0 ([ubp])1Dλ
m

(al1∞, bp1∞)

= C22se2εQ
∞∑

m=0
2mse2ε(n+Qm)

¨
1Dλ

m
(σnω1, σ

nω2) dμλ0(ω1) dμλ0(ω2).

[ua]×[ub]
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Moreover, transversality condition (T) implies that for (ω1, ω2) ∈ [ua] × [ub] with a �= b

we have (we use here an equivalent condition (10.8), see Lemma 10.7)
ˆ

Uε′

1Dλ
m

(σnω1, σ
nω2) dλ ≤ L1

{
λ ∈ U : |Πλ(σnω1) − Πλ(σnω2)| ≤ 2−(m−1)

}
≤ CT 2−(m−1)

for some constant CT (depending only on the IFS). Applying both of the above calcu-
lations to I, changing the order of integration, and applying (5.3), we obtain, setting 
C70 = C̃sC2s

62C
2CT 2s+1 and C71 = C̃CC70,

I ≤ C70e
2εQ

∞∑
n=0

e
n
(
s(χμλ0

+3ε)+2ε
) ∑
u∈An

∑
a,b∈A
a	=b

∞∑
m=0

2m(s−1)e2εQmμλ0 ([ua])μλ0 ([ub])

≤ C70e
2εQ

∞∑
n=0

e
n
(
s(χμλ0

+3ε)+2ε
) ∑
u∈An

μλ0 ([u])2
∞∑

m=0
2m(s−1)e2εQm

≤ C71e
2εQ

∞∑
n=0

e
n
(
s(χμλ0

+3ε)−hμλ0
+4ε

) ∑
u∈An

μλ0 ([u])
∞∑

m=0
2m(s+Q′ε−1)

≤ C71e
2εQ

∞∑
n=0

e
n
(
s(χμλ0

+3ε)−hμλ0
+4ε

) ∞∑
m=0

2m(s+Q′ε−1),

where Q′ = 2Q log2 e. Therefore, I < ∞ provided s + Q′ε < 1 and s <
hμλ0

−4ε
χμλ0

+3ε . Conse-
quently,

dimH((Πλ)∗μλ) ≥ dimH((Πλ)∗μ̃λ) ≥ min
{

1 −Q′ε,
hμλ0

− 4ε
χμλ0

+ 3ε

}
for Leb -a.e. λ ∈ Uε′ .

As ε′ can be taken arbitrary small, the proof is finished. �
We can now finish the proof of Theorem 3.1. As dimH((Πλ)∗μλ) ≤ min

{
1, hμλ

χμλ

}
(see [47, Theorem 3.1 and Remark 3.2]), it is enough to prove that dimH((Πλ)∗μλ) ≥
min

{
1, hμλ

χμλ

}
holds almost surely. Assume that this is not the case. Then, there exists 

ε > 0 such that the set

A =
{
λ ∈ U : dimH((Πλ)∗μλ) < min

{
1, hμλ

χμλ

}
− ε

}
has positive Lebesgue measure. Let λ0 be a density point of A. By the continuity of 
λ �→ hμλ

, λ �→ χμλ
and χμλ

> 0 (following from (A4)), we obtain that λ �→ min
{

1, hμλ

χμλ

}
is continuous as well. Therefore, there exists an open neighborhood U ′ of λ0 such that
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min
{

1, hμλ

χμλ

}
≤ min

{
1,

hμλ0

χμλ0

}
+ ε

2 for λ ∈ U ′.

By Proposition 5.1 we can also assume that

dimH((Πλ)∗μλ) ≥ min
{

1,
hμλ0

χμλ0

}
− ε

2 for Leb -a.e. λ ∈ U ′,

hence

dimH((Πλ)∗μλ) ≥ min
{

1, hμλ

χμλ

}
− ε for Leb -a.e. λ ∈ U ′.

This however means that λ0 cannot be a density point of A, a contradiction. Theorem 3.1
is proved.

6. Transversality of degree β

In this section we prove that an IFS satisfying the transversality condition (T), sat-
isfies also the transversality of degree β, as defined in [29], with arbitrary small β > 0. 
This will be useful later, as the proof of 3.2 follows the approach of Peres and Schlag 
[29], where the transversality of degree β is a key concept. In fact, [29] uses the term 
“transversality of order β”, but the term “transversality of degree β,” as in Mattila, 
seems more appropriate.

Proposition 6.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . For every λ0 ∈ U and β > 0
there exists cβ > 0 and an open neighborhood J of λ0 such that∣∣Πλ(u) − Πλ(v)

∣∣ < cβ ·dλ0(u, v)1+β =⇒
∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ cβ ·dλ0(u, v)1+β . (6.1)

holds for all u, v ∈ Ω and λ ∈ J .

Proof. For short, let us denote the metric dλ0 by d. Let n = |u ∧ v|, so that u ∧ v =
u1 . . . un. We have

d
dλ (Πλ(u) − Πλ(v))

= d
dλ

[
fλ
u1...un

(Πλ(σnu)) − fλ
u1...un

(Πλ(σnv))
]

=
(

d
dλf

λ
u1...un

)
(Πλ(σnu)) −

(
d
dλf

λ
u1...un

)
(Πλ(σnv)) +(

d
dxf

λ
u1...un

)
(Πλ(σnu)) · d

dλΠλ(σnu) −
(

d
dxf

λ
u1...un

)
(Πλ(σnv)) · d

dλΠλ(σnv)

=
(

d fλ
u ...u

)
(Πλ(σnu)) −

(
d fλ

u ...u

)
(Πλ(σnv)) +
dλ 1 n dλ 1 n



B. Bárány et al. / Advances in Mathematics 399 (2022) 108258 19
(
d
dxf

λ
u1...un

)
(Πλ(σnu)) ·

[
d
dλ

(
Πλ(σnu) − Πλ(σnv)

)]
+[(

d
dxf

λ
u1...un

)
(Πλ(σnu)) −

(
d
dxf

λ
u1...un

)
(Πλ(σnv))

]
· d
dλΠλ(σnv)

=: A1 + A2 + A3. (6.2)

On the other hand,∣∣Πλ(u) − Πλ(v)
∣∣ =

∣∣ d
dx fλ

u1,...un
(y)

∣∣ · ∣∣Πλ(σnu) − Πλ(σnv)
∣∣

≥ c1 · d(u, v)1+β/4 ·
∣∣Πλ(σnu) − Πλ(σnv)

∣∣ , (6.3)

for some y ∈ X, c1 > 0, and λ sufficiently close to λ0, by Lemma 4.4. Similarly,

|A2| ≥ c1 · d(u, v)1+β/4 ·
∣∣ d
dλ (Πλ(σnu) − Πλ(σnv))

∣∣ . (6.4)

Further, by Lemmas 4.1, 4.4 and Proposition 4.3 (which implies that d
dλΠλ is bounded) 

we have

|A1| ≤
∣∣Πλ(σnu) − Πλ(σnv)

∣∣C ′
2n · d(u, v)1−β/4 (6.5)

and

|A3| ≤
∣∣Πλ(σnu) − Πλ(σnv)

∣∣C ′
2 · d(u, v)1−β/4 (6.6)

for some constant C ′
2 large enough. Assuming∣∣Πλ(u) − Πλ(v)

∣∣ < cβ · d(u, v)1+β ,

we obtain from (6.3): ∣∣Πλ(σnu) − Πλ(σnv)
∣∣ ≤ cβ

c1
· d(u, v)3β/4, (6.7)

and then, from (6.2), (6.4), (6.5), (6.6):∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ |A2| − |A1| − |A3|

≥ c1 · d(u, v)1+β/4 ·
∣∣ d
dλ (Πλ(σnu) − Πλ(σnv))

∣∣
−C ′

2(n + 1) · d(u, v)1−β/4 ·
∣∣Πλ(σnu) − Πλ(σnv)

∣∣
≥ c1 · d(u, v)1+β/4 ·

∣∣ d
dλ (Πλ(σnu) − Πλ(σnv))

∣∣
−C ′

2cβ · (n + 1) · d(u, v)1+β/2.

c1



20 B. Bárány et al. / Advances in Mathematics 399 (2022) 108258
Assuming cβ < c1η, so that we can use transversality Assumption (T) for the pair 
σnu, σnv by (6.7), keeping in mind that d(u, v) ≤ 1, we obtain∣∣ d

dλ (Πλ(σnu) − Πλ(σnv))
∣∣ ≥ η,

hence

∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ c1 · d(u, v)1+β/4 ·
[
η − C ′

2cβ
c21

· (n + 1) · d(u, v)β/4
]
.

Note that d(u, v) ≤ γn
2 , where γ2 < 1 is from (A4), and let

C ′
3 := max{(n + 1)γnβ/4

2 , n ≥ 0}.

Choose

cβ <
ηc21

2C ′
2C

′
3
,

then ∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ c1η

2 · d(u, v)1+β/4 ≥ cβ · d(u, v)1+β ,

if we also make sure that cβ < c1η/2, completing the proof of (6.1). �
7. Energy estimates

The following theorem is the main result of this section and the main ingredient of 
the proof of Theorem 3.2. It is modeled after [29, Theorem 4.9].

Theorem 7.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assump-

tions (A1)-(A4) and the transversality condition (T) on U . Let {μλ}λ∈U be a collection 
of finite Borel measures on Ω satisfying (M). Fix λ0 ∈ U , β > 0, γ > 0, ε > 0 and 
q > 1 such that 1 +2γ+ ε < q < 1 +min{δ, θ}. Then, there exists a (small enough) open 
interval J ⊂ U containing λ0 such that for every smooth function ρ on R with 0 ≤ ρ ≤ 1
and supp(ρ) ⊂ J there exist constants C̃1 > 0, C̃2 > 0 such that

ˆ

J

‖νλ‖2
2,γρ(λ) dλ ≤ C̃1Eq(1+a0β)(μλ0 , dλ0) + C̃2,

where a0 = 8+4δ
1+min{δ,θ} .

The rest of this section is devoted to the proof of the above theorem and we assume 
throughout that all the assumptions of Theorem 7.1 hold. We follow the approach of 
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[29], with suitable modifications coming from the fact that measures μλ depend on the 
parameter.

Throughout the section x � y will mean x ≤ Ay+B, while x � y will mean xA ≤ y ≤
A · x, with positive constants A, B being possibly dependent on all the parameters on 
which constants C̃1, C̃2 depend in Theorem 7.1.

Let ψ be a Littlewood-Paley function on R from [29, Lemma 4.1], that is, ψ is of 
Schwarz class, ψ̂ ≥ 0,

supp(ψ̂) ⊂ {ξ : 1 ≤ |ξ| ≤ 4},
∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ �= 0.

It is known that such a function exists. We will need that ψ decays faster than any 
power, that is, for any q > 0 there is Cq such that

|ψ(ξ)| ≤ Cq(1 + |ξ|)−q. (7.1)

We will also use that
ˆ

R

ψ(ξ) dξ = ψ̂(0) = 0. (7.2)

In fact, all higher moments of ψ also vanish, but this will not be needed for our purposes. 
As ψ has bounded derivative on R, there exists L > 0 such that

|ψ(x) − ψ(y)| ≤ L|x− y| for all x, y ∈ R. (7.3)

We have (see [29, Lemma 4.1]):

ˆ

R

‖νλ‖2
2,γρ(λ)dλ �

ˆ

R

∞∑
j=−∞

22jγ
ˆ

R

(ψ2−j ∗ νλ)(x)dνλ(x)ρ(λ)dλ, (7.4)

where ψ2−j (x) = 2jψ(2jx). Let κ = − log2 γ1, Q = log2 e and choose ξ > 0 small enough 
to have 2(4 + Qc)ξ < ε and

0 <
4 + 2γ
κ−Qξ

<
ε

2(4 + Qc)ξ . (7.5)

Choose an open interval J containing λ0 so small that 2c|J |θ ≤ ξ (with c, θ as in (M)) 
and (6.1) hold. In order to prove Theorem 7.1, it is enough to consider in (7.4) the sum 
over j ≥ 0, as (ψ2−j ∗ νλ)(x) is bounded by 2j‖ψ‖∞, hence the sum over j < 0 converges 
to a bounded function. We now calculate for λ ∈ B(λ0, ξ), j ≥ 0 and n ∈ N (we will set 
later n = n(j) = c̃j for suitable c̃):
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ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x)

= 2j
ˆ

R

ˆ

R

ψ(2j(x− y)) dνλ(y) dνλ(x)

= 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
dμλ(ω1) dμλ(ω2)

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1|n1∞) − Πλ(ω2|n1∞))

)
dμλ(ω1) dμλ(ω2) +

+ 2j
ˆ

Ω

ˆ

Ω

∣∣ψ(2j(Πλ(ω1) − Πλ(ω2))
)
− ψ

(
2j(Πλ(ω1|n1∞)

− Πλ(ω2|n1∞))
)∣∣ dμλ(ω1) dμλ(ω2) ≤

Using (7.3) we get that the last expression is

≤ 2j
∑
i∈An

∑
k∈An

ψ
(
2j(Πλ(i1∞) − Πλ(k1∞))

)
μλ([i])μλ([k]) +

+ 2j
ˆ

Ω

ˆ

Ω

L2j
(
|Πλ(ω1) − Πλ(ω1|n1∞)| + |Πλ(ω2) − Πλ(ω2|n1∞)|

)
dμλ(ω1) dμλ(ω2) ≤

Applying (A4) to the integral, we obtain (recall that we assume diam(X) = 1):

≤ 2j
∑
i∈An

∑
k∈An

ψ
(
2j(Πλ(i1∞) − Πλ(k1∞))

)
μλ([i])μλ([k]) + 2L22j−κn = (∗)

Choose c̃ ≥ 1 such that

4 + 2γ
κ−Qξ

≤ c̃ ≤ ε

2Q(2 + c)ξ (7.6)

(it exists due to (7.5)) and set n = c̃j. Let us define a map ej : Ω × Ω × J �→ R by

ej(ω1, ω2, λ) :=

⎧⎨⎩
μλ([ω1|n])μλ([ω2|n])

μλ0 ([ω1|n])μλ0 ([ω2|n]) , if μλ0([ω1|n])μλ0([ω2|n]) �= 0,

1, otherwise.
(7.7)

By (7.6), (M) and the choice of J ,

ej(ω1, ω2, λ) ≤ e2c|λ−λ0|θn ≤ eξc̃j = 2Qξc̃j for all ω1, ω2 and λ ∈ B(λ0, ξ). (7.8)

Note also that by (M), if i ∈ Ω∗ is a fixed finite word, then μλ0([i]) = 0 if and only if 
μλ([i]) = 0 for all λ ∈ U (in other words: supp(μλ0) = supp(μλ)). Denote Ãn := {i ∈
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An : μλ0([i]) �= 0}. We have, therefore, (note that now the integral is with respect to 
μλ0),

(∗) = 2j
∑
i∈Ãn

∑
k∈Ãn

ψ
(
2j(Πλ(i1∞) − Πλ(k1∞))

) μλ([i])μλ([k])
μλ0([i])μλ0([k]) μλ0([i])μλ0([k])

+ 2L22j−κc̃j

= 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1|n1∞) − Πλ(ω2|n1∞))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2)

+ 2L22j−κc̃j

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2)

+ 2j
ˆ

Ω

ˆ

Ω

∣∣ψ(2j(Πλ(ω1) − Πλ(ω2))
)
− ψ

(
2j(Πλ(ω1|n1∞) − Πλ(ω2|n1∞))

)∣∣ ×
× ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2) + 2L22j−κc̃j = (∗∗)

Estimating the second integral, similarly as before, by 2L2j−κc̃j2Qξc̃j we get

(∗∗) ≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2)

+2L22j−κc̃j(1 + 2Qξc̃j).

Finally,

ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x) ≤

≤ 2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2) + 4L2(2+Qc̃ξ−c̃κ)j .

(7.9)

For j large enough, we have, in view of (7.6),

22jγ4L22j+(Qξ−κ)c̃j = 4L2j(2+2γ+c̃(Qξ−κ)) ≤ 2j(3+2γ+c̃(Qξ−κ))

= 2−j2j(4+2γ+c̃(Qξ−κ)) ≤ 2−j .
(7.10)

Combining (7.9), and (7.10) we obtain, recalling that the sum over j < 0 in (7.4) con-
verges:
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ˆ

J

‖νλ‖2
2,γρ(λ) dλ �

ˆ

R

∞∑
j=0

22jγ
ˆ

R

(ψ2−j ∗ νλ)(x) dνλ(x) ρ(λ) dλ

≤
ˆ

R

∞∑
j=0

22jγ
(
2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2)

+ 4L2(2+Qc̃ξ−c̃κ)j
)
ρ(λ) dλ

≤
ˆ

R

∞∑
j=0

22jγ2j
ˆ

Ω

ˆ

Ω

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) dμλ0(ω1) dμλ0(ω2) ρ(λ) dλ

+
ˆ

R

∞∑
j=0

4L2−jρ(λ) dλ

�
∞∑
j=0

2j(2γ+1)
ˆ

Ω

ˆ

Ω

ˆ

R

ψ
(
2j(Πλ(ω1)−Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ dμλ0(ω1) dμλ0(ω2).

To finish the proof of Theorem 7.1, it is enough to show the following proposition (with 
notation as in Theorem 7.1). Recall that ξ is chosen by requiring (7.5) and J is an open 
interval containing λ0 so small that 2c|J |θ ≤ ξ (with c, θ as in (M)) and (6.1) hold.

Proposition 7.2. There exists C7 > 0 such that for any distinct ω1, ω2 ∈ Ω, any j ∈ N

we have
ˆ

R

ψ
(
2j(Πλ(ω1) − Πλ(ω2))

)
ej(ω1, ω2, λ) ρ(λ) dλ

≤ C7 · c̃j2Q(2+c)ξc̃j (1 + 2jd(ω1, ω2)1+a0β
)−q

, (7.11)

where C7 depends only on q, ρ, and β, and a0 = 8+4δ
1+min{δ,θ} , and d(ω1, ω2) = dλ0(ω1, ω2)

is the metric defined in (2.2).

Indeed, if (7.11) holds, then, recalling the definition of energy (2.1), in view of (7.6),

ˆ

J

‖νλ‖2
2,γ ρ(λ) dλ

�
∞∑
j=0

2j(2γ+1)
ˆ

Ω

ˆ

Ω

ˆ

R

ψ
(
2j(Πλ(ω1)

− Πλ(ω2))
)
ej(ω1, ω2, λ) ρ(λ) dλ dμλ0(ω1) dμλ0(ω2)

≤ C7 · c̃
∞∑
j=0

2j(2γ+1)j2Q(2+c)ξc̃j
ˆ ˆ (

1 + 2jd(ω1, ω2)1+a0β
)−q

dμλ0(ω1) dμλ0(ω2)

Ω Ω
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≤ C7 · c̃
∞∑
j=0

j2j(2γ+Q(2+c)ξc̃+1−q)Eq(1+a0β)(μλ0 , dλ0)

≤ C7 · c̃
∞∑
j=0

j2j(1+2γ+ ε
2−q)Eq(1+a0β)(μλ0 , dλ0) ≤ C7 · c̃

∞∑
j=0

j2− ε
2 jEq(1+a0β)(μλ0 , dλ0),

and Theorem 7.1 is proved.

Proof of Proposition 7.2. The proof is similar to that of [29, Lemma 4.6] in the case of 
limited regularity; however, some technical issues are treated here differently and in more 
detail, especially, since [29] leaves much to the reader.

Fix distinct ω1, ω2 ∈ Ω and denote r = d(ω1, ω2). For short, let ej(λ) := ej(ω1, ω2, λ). 
Let I = supp(ρ) ⊂ J . Since J is open, there exists K = K(ρ) ≥ 1 such that the 
(2K−1)-neighborhood of I is contained in J .

We can assume without loss of generality that 2jr > 1, and later that 2jr1+a0β > 1
for a fixed a0, which is stronger, since r ≤ 1. Indeed, the integral in (7.11) is bounded 
above by |J | · ‖ψ‖∞ · 2Qξc̃j , in view of (7.8), hence if 2jr1+a0β ≤ 1, then the inequality 
(7.11) holds with C7 = |J | · ‖ψ‖∞ · 2q.

Let

φ ∈ C∞(R), 0 ≤ φ ≤ 1, φ ≡ 1 on [−1/2, 1/2], supp(φ) ⊂ (−1, 1),

and denote

Φλ = Φλ(ω1, ω2) := Πλ(ω1) − Πλ(ω2)
d(ω1, ω2)

= Πλ(ω1) − Πλ(ω2)
r

.

The idea, roughly speaking, is to separate the contribution of the zeros of Φλ, which are 
simple by transversality. Outside of a neighborhood of these zeros, we get an estimate 
using the rapid decay of ψ at infinity, and near the zeros we linearize and use the fact 
that ψ has zero mean. The details are quite technical, however. We have

ˆ

R

ρ(λ)ψ
(
2j [Πλ(ω1) − Πλ(ω2)]

)
ej(λ)dλ

=
ˆ

ρ(λ)ψ
(
2jrΦλ

)
ej(λ)φ(Kc−1

β r−βΦλ) dλ

+
ˆ

ρ(λ)ψ
(
2jrΦλ

)
ej(λ)

[
1 − φ(Kc−1

β r−βΦλ)
]
dλ

=: A1 + A2,

where cβ is the constant from (6.1). The integrand in A2 is constant zero when 
|Kc−1

β r−βΦλ| ≤ 1 , hence by the rapid decay of ψ (see (7.1)) and (7.8),
2
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|A2| ≤ Cq

ˆ
|ρ(λ)||ej(λ)|

(
1 + 2jr · 1

2K
−1cβr

β)−q dλ ≤ const·2Qξc̃j
(
1 + 2jr1+β

)−q
,

for some constant depending on q, ρ and β, as desired. Thus it remains to estimate A1.
Next comes the classical “transversality lemma”. It is a variant of [29, Lemma 4.3]

and similar to [24, Lemma 18.12]. Let cβ be the constant from Proposition 6.1.

Lemma 7.3. Under the assumptions and notation above, let

J :=
{
λ ∈ J : |Φλ| < K−1cβr

β
}
,

which is a union of open disjoint intervals. Let I1, . . . , INβ
be the intervals of J inter-

secting I = supp(ρ), enumerated in the order of R. Then each Ik contains a unique zero 
λk of Φλ and

[λk − dβr
2β , λk + dβr

2β ] ⊂ Ik, where dβ = K−1C−1
β,1 · cβ , (7.12)

with Cβ,1 from (4.8). For all intervals,

2dβ · r2β ≤ |Ik| ≤ 2K−1, (7.13)

hence

Nβ ≤ 2 + 1
2d

−1
β |J | · r−2β . (7.14)

Moreover,

|Φλ| ≤ 1
2K

−1cβr
β for all λ ∈ [λk − 1

2dβr
2β , λk + 1

2dβr
2β ]. (7.15)

Proof Lemma 7.3. Since Φλ is continuous, the intervals Ik are well-defined. Since K ≥ 1, 
on each of the intervals we have | d

dλΦλ| ≥ cβr
β by the transversality condition (6.1) of 

degree β. Thus Φλ is strictly monotonic on each of the intervals. Let λ ∈ Ik∩I, where 
I = supp(ρ). Then |Φλ| < K−1cβr

β , and using the lower bound on the derivative we 
obtain that there exists unique λk ∈ Ik, such that Φλk

= 0, and it satisfies |λ −λk| ≤ K−1. 
The same argument then shows that Ik ⊆ [λk −K−1, λk + K−1], since the K−1 change 
in λ results in at least K−1cβr

β change in Φλ. Note that even for k = 1 and k = Nβ we 
have this inclusion, because λ ∈ I and the 2K−1-neighborhood of I is contained in J by 
construction. This proves the upper bound in (7.13).

On the other hand, for any λ ∈ J we have | d
dλΦλ| ≤ Cβ,1r

−β by (4.8). Therefore, at 
least a distance of C−1

β,1r
βt is required for the graph of Φλ to reach the level of t from zero. 

This implies (7.12), (7.15) and the lower bound in (7.13). Then (7.14) is immediate. �
Now let χ ∈ C∞(R) be such that supp(χ) ⊂ (−1

2dβ , 
1
2dβ), 0 ≤ χ ≤ 1, and χ ≡ 1 on 

[−1dβ , 1dβ ]. We apply Lemma 7.3 and write
4 4
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A1 =
ˆ

ρ(λ)ψ
(
2jrΦλ

)
ej(λ)φ(Kc−1

β r−βΦλ) dλ

=
Nβ∑
k=1

ˆ
ρ(λ)χ

(
r−2β(λ− λk)

)
ψ(2jrΦλ)ej(λ)φ(Kc−1

β r−βΦλ) dλ

+
ˆ

ρ(λ)

⎡⎣1 −
Nβ∑
k=1

χ
(
r−2β(λ− λk)

)⎤⎦ ej(λ)ψ(2jrΦλ)φ(Kc−1
β r−βΦλ) dλ

=
Nβ∑
k=1

A
(k)
1 + B.

Let us first estimate B. Notice that 
∑Nβ

k=1 χ
(
r−2β(λ − λk)

)
≡ 1 on the 1

4dβ r
2β-

neighborhood of every λk, as by (7.12), functions χ
(
r−2β(λ −λk)

)
have disjoint supports 

for distinct k. On the other hand, φ(Kc−1
β r−βΦλ) is supported on J , so by the transver-

sality condition we have | d
dλΦλ| ≥ cβr

β on the support of the integrand. Combining 
these two claims, we obtain that |Φλ| ≥ 1

4dβcβr
3β on the support of the integrand in B. 

It follows that on this support,

|ψ(2jrΦλ)| ≤ Cq

(
1 + (dβcβ/4) · 2jr1+3β)−q

, (7.16)

by the rapid decay of ψ, and using (7.8) we obtain |B| ≤ const · 2Qξc̃j
(
1 + 2jr1+3β)−q

for some constant depending on q and β.
Now we turn to estimating the integrals A(k)

1 . For simplicity, we assume k = 1 and let 
λ = λ1. In view of the bound (7.14) on the number of intervals, the desired inequality 
will follow from this. Observe that

χ
(
r−2β(λ− λ)

)
= χ

(
r−2β(λ− λ)

)
φ(Kc−1

β r−βΦλ). (7.17)

We are using here that φ ≡ 1 on [−1
2 , 

1
2 ], so

φ(Kc−1
β r−βΦλ) ≡ 1 on

{
λ ∈ J : |Φλ| ≤ 1

2K
−1cβr

β
}
,

which holds on the support of χ
(
r−2β(λ − λ)

)
by construction and (7.15).

By (7.17) we have

A
(1)
1 =

ˆ
ρ(λ)χ

(
r−2β(λ− λ)

)
ej(λ)ψ(2jrΦλ) dλ.

It will be convenient to make a change of variable, so we define a function H via

Φλ = u ⇐⇒ λ = λ + H(u), provided χ
(
r−2β(λ− λ)

)
�= 0. (7.18)

Note that χ
(
r−2β(λ − λ)

)
�= 0 implies |λ − λ| < 1

2dβr
2β , so λ ∈ I1 by (7.12), and by 

transversality,
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∣∣∣ d
dλ

Φλ

∣∣∣ ≥ cβr
β if χ

(
r−2β(λ− λ)

)
�= 0. (7.19)

Therefore, H is well defined. We have

A
(1)
1 =

ˆ
ρ
(
λ + H(u)

)
χ
(
r−2βH(u)

)
ej(λ + H(u))ψ(2jru)H ′(u) du

=
ˆ

F (u)ψ(2jru) du,

where

F (u) = ρ
(
λ + H(u)

)
χ
(
r−2βH(u)

)
ej(λ + H(u))H ′(u). (7.20)

Observe that H ′(u) = [ d
dλΦλ]−1, hence (7.19) gives |H ′(u)| ≤ c−1

β r−β on the domain of 
F . Since ρ and χ are bounded by one, we obtain by (7.8)

‖F‖∞ ≤ c−1
β · r−β2Qξc̃j . (7.21)

Recall that Φλ = 0, so that H(0) = 0. Since 
´
R ψ(ξ) dξ = 0 by (7.2), we can subtract 

F (0) from F (u) under the integral sign; we then split the integral as follows:

A
(1)
1 =

ˆ
[F (u) − F (0)]ψ(2jru) du

=
ˆ

|u|<(2jr)−1+ε′

[F (u) − F (0)]ψ(2jru) du

+
ˆ

|u|≥(2jr)−1+ε′

[F (u) − F (0)]ψ(2jru) du (7.22)

=: B1 + B2,

where ε′ ∈ (0, 12 ) is a small fixed number. Recall that our goal is to show

|A(1)
1 | ≤ C ′

7 · c̃j2Q(2+c)ξc̃j ·
(
1 + 2jr1+a0β

)−q
,

for some constants a0 ≥ 1 and C ′
7 depending only on q, ρ, and β. We can assume that 

2jr1+a0β ≥ 1, otherwise, the estimate is trivial by increasing the constant. To estimate 
B2, note that for any M > 0 we have by the rapid decay of ψ:

|ψ(2jru)| ≤ CM

(
1 + 2jr|u|

)−M
,

hence, by (7.21),
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|B2| ≤ Cβ,M · r−β · 2Qξc̃j(2jr)−1
ˆ

|x|≥(2jr)ε′

(1 + |x|)−M dx

≤ C ′
β,M · r−β · 2Qξc̃j(2jr)−1(2jr)−ε′(M−1)

≤ C ′′
β,M · 2Qξc̃j · (2jr1+2β)−q,

for M = M(q, ε′) sufficiently large, as desired. Here we used that 2jr ≥ 2jr1+2β ≥ 1.
In order to estimate B1, we show that the function F from (7.20) is δ-Hölder by our 

assumptions; we also need to estimate the constant in the Hölder bound. We write

F (u) = ρ
(
λ + H(u)

)
χ
(
r−2βH(u)

)
ej(λ + H(u))H ′(u) =: F1(u)F2(u)F3(u)H ′(u),

and then

F (u) − F (0) =
(
F1(u) − F1(0)

)
F2(u)F3(u)H ′(u) + F1(0)

(
F2(u) − F2(0)

)
F3(u)H ′(u)

+ F1(0)F2(0)
(
F3(u) − F3(0)

)
H ′(u) + F1(0)F2(0)F3(0)

(
H ′(u) −H ′(0)

)
.

We have

|F1(u) − F1(0)| = |ρ
(
λ + H(u)

)
− ρ

(
λ + H(0)

)
| ≤ ‖ρ′‖∞ · |H(u) −H(0)|.

Observe that

|H(u)−H(0)| = |H(u)| = |λ−λ| ≤ c−1
β r−β |Φλ−Φλ| = c−1

β r−β |Φλ| = c−1
β r−β |u|, (7.23)

by transversality, which applies since supp(F ) ⊂ I1. Then, of course,

|F2(u) − F2(0)| ≤ ‖χ′‖∞ · r−2β |H(u) −H(0)| ≤ C−1
β ‖χ′‖∞ · r−3β |u|. (7.24)

For F3 it is enough to assume that μλ0([ω1|c̃j ])μλ0([ω2|c̃j ]) �= 0 (hence the same is true 
for μλ by (M)), as otherwise ej ≡ 1 and then (7.25), which is the goal of the calculation 
below, holds trivially. In this case we have

|F3(u) − F3(0)| =
μλ([ω1|c̃j ])μλ([ω2|c̃j ])

∣∣∣μλ+H(u)([ω1|c̃j ])μλ+H(u)([ω2|c̃j ])
μλ([ω1|c̃j ])μλ([ω2|c̃j ]) − 1

∣∣∣
μλ0([ω1|c̃j ])μλ0([ω2|c̃j ])

≤ 2Qξc̃j

∣∣∣∣∣μλ+H(u)([ω1|c̃j ])μλ+H(u)([ω2|c̃j ])
μλ([ω1|c̃j ])μλ([ω2|c̃j ])

− 1

∣∣∣∣∣
≤ 2Qξc̃j

μλ+H(u)([ω1|c̃j ])
μ ([ω1|c̃j ])

∣∣∣∣∣μλ+H(u)([ω2|c̃j ])
μ ([ω2|c̃j ])

− 1

∣∣∣∣∣
λ λ
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+ 2Qξc̃j

∣∣∣∣∣μλ+H(u)([ω1|c̃j ])
μλ([ω1|c̃j ])

− 1

∣∣∣∣∣
≤ 22Qξc̃j

∣∣∣∣∣μλ+H(u)([ω2|c̃j ])
μλ([ω2|c̃j ])

− 1

∣∣∣∣∣+ 2Qξc̃j

∣∣∣∣∣μλ+H(u)([ω1|c̃j ])
μλ([ω1|c̃j ])

− 1

∣∣∣∣∣
But for both ω1|c̃j and ω2|c̃j , setting c3 = Qcc̃, we obtain∣∣∣∣∣μλ+H(u)([ω|c̃j ])

μλ([ω|c̃j ])
− 1

∣∣∣∣∣ ≤ max{2c3j|H(u)|θ − 1, 1 − 2−c3j|H(u)|θ}

= max{c3j2c3jy1 , c3j2−c3jy2}|H(u)|θ,
with y1 ∈ (0, |H(u)|), y2 ∈ (−|H(u)|, 0)

≤ c3j2c3jξ|H(u) −H(0)|θ.

Thus, for c4 = Q(2 + c)c̃ξ

|F3(u) − F3(0)| ≤ 2c3j2c4jc−θ
β r−θβ |u|θ. (7.25)

Finally, we need to estimate the term |H ′(u) − H ′(0)|. We have H ′(u) = [ d
dλΦλ]−1, 

hence

|H ′(u) −H ′(0)| =

∣∣∣∣∣ 1
d
dλΦλ

− 1
d
dλΦλ

∣∣∣∣∣
≤

| d
dλΦλ − d

dλΦλ|
(cβrβ)2 by β-transversality (6.1)

≤ Cβ,1|λ− λ|δr−β(1+δ)

(cβrβ)2 by (4.9)

≤ c̃βr
−β(3+2δ)|u|δ by (7.23).

Below, writing “const” means constants depending on q, ρ, and β, which may be different 
from line to line. Using all of the above and ‖H ′‖∞ ≤ c−1

β · r−β yields

|F (u) − F (0)| ≤ const · c3j2c4j ·
(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
,

hence by (7.22) and recalling that (2jr) ≥ 1 and r ≤ 1,

|B1| ≤ const · c3j2c4j
ˆ

j −1+ε′

(
|u|δr−β(3+2δ) + |u|r−4β + |u|θr−β(1+θ)

)
du
|u|<(2 r)
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≤ const · c3j2c4j
(
r−β(3+2δ)(2jr)−(1−ε′)(1+δ) + (2jr)−2(1−ε′)r−4β

+(2jr)−(1−ε′)(1+θ)r−β(1+θ)
)

≤ const · c3j2c4jr−β(4+2δ)
(
(2jr)−(1−ε′)(1+δ) + (2jr)−2(1−ε′) + (2jr)−(1−ε′)(1+θ)

)
≤ const · c3j2c4jr−β(4+2δ)(2jr)−(1−ε′)(1+min{δ,θ}),

as min{δ, θ} ≤ 1. We therefore obtain

|B1| ≤ const · c3j2c4j
(
2jr1+a0β

)−(1−ε′)(1+min{δ,θ})
,

for appropriate a0 = 8+4δ
1+min{δ,θ} ≥ 4+2δ

(1−ε′)(1+min{δ,θ}) .
Since ε′ > 0 can be chosen arbitrarily small, we obtain

|B1| ≤ const · c3j2c4j
(
1 + 2jr1+a0β

)−q for any q < 1 + min{δ, θ},

since as already mentioned, we can assume 2jr1+a0β ≥ 1 without loss of generality. �
8. The case of Gibbs measures

In this section we deal with case of Gibbs measures and develop tools for the derivation 
of Theorem 3.3 from Theorem 3.2. Throughout this section, we assume that {μλ}λ∈U is 
a family of shift-invariant Gibbs measures on Ω corresponding to a family of continuous 
potentials φλ : Ω �→ R satisfying (3.1) and (3.2); α, b, c0 and θ denote constants from 
(3.1) and (3.2).

8.1. Proving (M) for Gibbs measures

Let Lλ be the Perron operator on the Banach space C(Ω) of continuous functions on 
Ω, defined as

(Lλh)(ω) =
∑
i∈A

eφ
λ(iω)h(iω).

Let Cr be the set of functions which are constant over cylinder sets of length r, that is,

Cr(Ω) = {f ∈ C(Ω) : varr(f) = 0}.

Let ω ∈ Ω be arbitrary but fixed and denote the pressure by

Pλ = lim
n→∞

1
n

log
∑

exp
(
Snφ

λ(iω)
)
,

|i|=n
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where Snφ(ω) = φ(ω) +φ(σω) + · · ·+φ(σn−1ω). Note that the value of Pλ is independent 
of the choice of ω ∈ Ω.

Theorem 8.1. There exists c2 > 0 such that for every λ ∈ U there is a unique hλ ∈ C(Ω)
with hλ > c2 > 0 and νλ ∈ P(Ω) such that

Lλhλ = γλhλ, (Lλ)∗νλ = γλνλ, and
ˆ

hλdνλ = 1,

where γλ = exp(Pλ). Moreover, for every ω1, ω2 ∈ Ω and λ ∈ U ,

hλ(ω1) ≤ Bω1∧ω2hλ(ω2),

where Bm = exp
(∑∞

k=m+1 2bαk
)
.

Furthermore, there exist A > 0 and 0 < β < 1 such that for every f ∈ Cr(Ω),∥∥∥γ−n−r
λ Ln+r

λ f −
ˆ

fdνλ · hλ

∥∥∥ ≤ Aβn

ˆ
fdνλ for every λ ∈ U and n ≥ 1.

Proof. See [6, Theorem 1.7, Lemmas 1.8 and 1.12] and their proofs. �
The measure dμλ = hλdνλ is a left-shift invariant ergodic Gibbs measure with respect 

to the potential φλ, see [6, Theorem 1.16, Proposition 1.14].
We will show that γλ, hλ and νλ depend uniformly continuously on the parameters in 

the following sense:

Lemma 8.2. For every 0 < θ′ < θ, there exists cθ′ > 0 such that for every λ, τ ∈ U ,

γλ
γτ

,
hλ(ω)
hτ (ω) ≤ ecθ′ |λ−τ |θ′ for every ω ∈ Ω.

For every i ∈ Ω∗,

νλ([i])
ντ ([i])

≤ ecθ′ |λ−τ |θ′ |i|.

Moreover, the constant CG in the definition of the Gibbs measure can be chosen uniformly 
for λ ∈ U .

Proof. Simple calculations show that |Pλ−Pτ | ≤ c0|λ − τ |θ by (3.2), hence the claim on 
γλ. Now let us turn to the claim on the eigenfunctions hλ. Denote by 1Ω the constant 1
map over Ω.

If λ = τ , then there is nothing to prove. Suppose that λ �= τ . Then by Theorem 8.1,∥∥∥∥γ−n
λ Ln

λ1Ω − 1
∥∥∥∥ ≤ c−1

2
∥∥γ−n

λ Ln
λ1Ω − hλ

∥∥ ≤ c−1
2 Aβn =: A′βn. (8.1)
hλ
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Note that Ln
λ1Ω(ω) =

∑
i1,...,in∈A

eφ
λ(i1...inω), hence (3.2) gives

Ln
λ1Ω(ω)

Ln
τ1Ω(ω) ≤ ec0|λ−τ |θ .

Combining this with (8.1) gives for every n ≥ 1,

hλ(ω)
hτ (ω) = hλ(ω)

γ−n
λ (Ln

λ1Ω)(ω)
· γ

−n
τ (Ln

τ 1Ω)(ω)
hτ (ω) · γ

−n
λ (Ln

λ1Ω)(ω)
γ−n
τ (Ln

τ 1Ω)(ω)

≤ 1 + A′βn

1 −A′βn
· γ

n
τ

γn
λ

· (Ln
λ1Ω)(ω)

(Ln
τ 1Ω)(ω)

≤ 1 + A′βn

1 −A′βn
e2c0|λ−τ |θn.

Let n be minimal such that 1+A′βn

1−A′βn ≤ e2c0|λ−τ |θ , that is, let

n =

⎡⎢⎢⎢
log

(
1 − 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β

⎤⎥⎥⎥ . (8.2)

It is easy to see that for any 0 < θ′ < θ,

lim
x→0+

xθ−θ′
log

(
1 − 2

e2c0xθ + 1

)
= 0, (8.3)

thus, there exists cθ′ > 0 such that

2c0|λ− τ |θ
⎛⎝ log

(
1 − 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β + 2

⎞⎠ ≤ cθ′ |λ− τ |θ′

for every λ, τ ∈ U . Hence,

hλ(ω)
hτ (ω) ≤ 1 + A′βn

1 −A′βn
e2c0|λ−τ |θn

≤ exp
(
2c0|λ− τ |θ(n + 1)

)
≤ exp

⎛⎝2c0|λ− τ |θ
⎛⎝ log

(
1 − 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β + 2

⎞⎠⎞⎠
≤ exp

(
cθ′ |λ− τ |θ′

)
.

The proof for the measure is similar. In fact, suppose that λ �= τ . Using Theorem 8.1, 
we get for every n ≥ 1 and every ω ∈ Ω,
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νλ([i])
ντ ([i])

= νλ([i])hλ(ω)
γ
−(n+|i|)
λ (Ln+|i|

λ 1[i])(ω)
·
γ
−(n+|i|)
λ (Ln+|i|

λ 1[i])(ω)
γ
−(n+|i|)
τ (Ln+|i|

τ 1[i])(ω)
·
γ
−(n+|i|)
τ (Ln+|i|

τ 1[i])(ω)
ντ ([i])hτ (ω)

· hτ (ω)
hλ(ω)

≤ 1 + A′βn

1 −A′βn
· exp

(
2c0|λ− τ |θ(n + |i|) + cθ′ |λ− τ |θ′

)
.

Now, choose again n ≥ 1 as in (8.2). Then

νλ([i])
ντ ([i])

≤ exp
(

2c0|λ− τ |θ|i| + cθ′ |λ− τ |θ′

+ 2c|λ− τ |

⎛⎝ log
(
1 − 2(e2c0|λ−τ |θ + 1)−1

)
− logA′

log β + 2

⎞⎠)

≤ exp
(
2c0|λ− τ |θ|i| + 2cθ′ |λ− τ |θ′

)
≤ exp

(
m̃(2c + 2cθ′)|λ− τ |θ′ |i|

)
for some constant m̃ = m̃(θ, θ′).

The claim on the Gibbs constant CG follows from the proof of [6, Theorem 1.16], 
combined with uniform bounds on hλ and γλ. �

The following proposition concludes the proof of the property (M) for Gibbs measures 
satisfying assumptions of Theorem 3.3.

Proposition 8.3. For every 0 < θ′ < θ there exists c > 0 such that for every λ, τ ∈ U and 
for every i ∈ Ω∗,

μλ([i])
μτ ([i])

≤ ec|λ−τ |θ′ |i|.

Proof. Fix θ′′ ∈ (θ′, θ). By the definition of μλ, Theorem 8.1 and Lemma 8.2,

μλ([i])
μτ ([i])

=

´
[i] hλ(ω)dνλ(ω)´
[i] hτ (ω)dντ (ω)

≤ B2
n+|i|

∑
j:|j|=n hλ(ijω)νλ([ij])∑
j:|j|=n hτ (ijω)ντ ([ij])

≤ B2
n+|i| exp

(
cθ′′ |λ− τ |θ′′

+ cθ′′(n + |i|)|λ− τ |θ′′
)
.

Choose n ≥ 1 minimal such that

B2
n+|i| ≤ B2

n ≤ ecθ′′ |λ−τ |θ′′ ,
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that is,

n =
⌈
θ′′

log |λ− τ |
logα + (1 − α)cθ′′(4b)−1

logα

⌉
.

Then

μλ([i])
μτ ([i])

≤ exp
(
2cθ′′ |λ− τ |θ′′

+cθ′′(θ′′ log |λ− τ |
logα + (1 − α)cθ′′(4b)−1

logα + |i| + 1)|λ− τ |θ′′
)
.

Since for every θ′ < θ′′ < 1 the map (λ, τ) �→ |λ − τ |θ′′−θ′ log |λ − τ | is bounded, the 
claim follows. �
8.2. Large submeasures

The goal of this subsection is to prove the following proposition, required to deduce 
Theorem 3.3 from Theorem 3.2.

Proposition 8.4. Let {fλ
j }j∈A be a parametrized IFS satisfying the smoothness Assump-

tions (A1)-(A4). Let {μλ}λ∈U be a family of shift-invariant Gibbs measures on Ω cor-
responding to a family of continuous potentials φλ : Ω �→ R satisfying (3.1) and (3.2). 
Then for every λ0 ∈ U, ε > 0, ε′ > 0 and θ′ ∈ (0, θ) there exist ξ > 0, c > 0, and a 
set A ⊂ Ω such that for every λ ∈ Bξ(λ0) we have μλ(A) ≥ 1 − ε′ and the measures 
μ̃λ = μλ|A satisfy

dimcor(μ̃λ, dλ) ≥ hμλ

χμλ

− ε (8.4)

and

e−c|λ−λ0|θ
′ |ω|μ̃λ([ω]) ≤ μ̃λ0([ω]) ≤ ec|λ−λ0|θ

′ |ω|μ̃λ([ω]) (8.5)

for all ω ∈ Ω∗.

A standard approach for proving (8.4) is applying Egorov’s theorem, similarly as in 
the proof of Proposition 5.1. In our case the difficulty is to obtain (8.5) simultaneously. 
This requires a more quantitative approach in constructing “Egorov-like” set. For this 
purpose we need certain large deviations results, uniform with respect to the parameter, 
which we state in a slightly more general setting.

We assume now that {μλ}λ∈U is a family of measures satisfying assumptions of Propo-
sition 8.4 and {gλ� : Ω �→ R}λ∈U , � = 1, . . . , p, is a finite collection of families of potentials, 
each of them satisfying properties (3.1) and (3.2).

Proposition 8.5. Let λ0 ∈ U be arbitrary but fixed. Then for every ε > 0 there exists 
ξD > 0, CD > 0 and s > 0 such that for every λ ∈ BξD(λ0) and every n ≥ 1, � = 1, . . . , p,
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μλ

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ > ε

})
≤ CDe−sn.

The proof is based on two lemmas.

Lemma 8.6. For every θ′ ∈ (0, θ) and λ0 ∈ U there exist ξ21 > 0 and Cg =
Cg(g1, . . . , gl, θ′) > 0 such that∣∣∣∣ˆ gλ� dμλ −

ˆ
gτ� dμτ

∣∣∣∣ ≤ Cg|λ− τ |θ′
.

holds for every � = 1, . . . , p and λ ∈ Bξ21(λ0).

Proof. Fix θ′′ ∈ (θ′, θ) and let c be the constant from Proposition 8.3 corresponding to 

θ′′. Let λ ∈ U be arbitrary, and let τ ∈ Bξ21(λ) where ξ21 is chosen such that αecξθ
′′

21 < 1. 
Choose n ≥ 1 minimal such that (αec|λ−τ |θ′′ )n ≤ |λ − τ |. Then

ˆ
gλ� dμλ ≤ bαn +

∑
|i|=n

gλ� (iω)μλ([i])

≤ bαn + c0|λ− τ |θ +
∑
|i|=n

gτ� (iω)μλ([i])

≤ bαn + c0|λ− τ |θ + ecn|λ−τ |θ′′
∑
|i|=n

gτ� (iω)μτ ([i])

≤ bαn + c0|λ− τ |θ + ecn|λ−τ |θ′′
(ˆ

gτ� dμτ + bαn

)
.

Thus,∣∣∣∣ˆ gλ� dμλ −
ˆ

gτ� dμτ

∣∣∣∣ ≤ (
ecn|λ−τ |θ′′ − 1

)
M + bαn

(
ecn|λ−τ |θ′′ + 1

)
+ c0|λ− τ |θ.

where M = maxλ∈U,ω∈Ω |gλ� (ω)|. Hence, by the choice of n,∣∣∣∣ˆ gλ� dμλ −
ˆ

gτ� dμτ

∣∣∣∣ ≤ (
exp

(
c|λ− τ |θ′′

log |λ− τ |/(logα + c|λ− τ |θ′′
)
)
− 1

)
M

+ (c0 + 2)|λ− τ |θ.

The map x �→ xθ′′−θ′ log x

logα+cxθ′′ is continuous, hence bounded, on [0, ξ21], say, by B. Further, 
there exists a constant C̃1 > 0 such that |ex − 1| ≤ C̃1|x| for every |x| ≤ Bξθ

′
21. Hence,∣∣∣∣ˆ gλ� dμλ −

ˆ
gτ� dμτ

∣∣∣∣ ≤ (C̃1M + c0 + 2)|λ− τ |θ′
,

as desired. �
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Lemma 8.7. Fix λ0 ∈ U and θ′ ∈ (0, θ). For every ε > 0 there exist ξ22 > 0 and C22 > 0
such that for every λ ∈ Bξ22(λ0) and every n ≥ 1, � = 1, . . . , p,

μλ

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ > ε

})
≤ C22e

cn|λ−λ0|θ
′

μλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ0
� (ω) −

ˆ
gλ0
� dμλ0

∣∣∣∣ > ε

5

})
,

with c = c(θ′) as in Lemma 8.6.

Proof. Fix λ0 ∈ U and ε > 0. Fix k ∈ N large enough to have bαk ≤ ε
5 . For a given n ∈ N, 

let ϕλ
� (ω) = gλ� (ω|n+k1∞). Note that by (3.1) for gλ� we have 

∥∥ 1
nSng

λ
� − 1

nSnϕ
λ
�

∥∥
∞ ≤

ε
5 , whereas (3.2) for gλ� yields 

∥∥∥ 1
nSnϕ

λ
� − 1

nSnϕ
λ0
�

∥∥∥
∞

≤ ε
5 if λ is close enough to λ0. 

Moreover, functions ω �→ Snϕ
λ
� (ω) are constant on cylinders of length n + k. Therefore, 

applying Proposition 8.3 and Lemma 8.6 gives for λ ∈ B(λ0, ξ22) with ξ22 small enough:

μλ

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ > ε

})
≤ μλ

({
ω ∈ Ω :

∣∣∣∣ 1nSnϕ
λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ > 4ε
5

})
=

∑
|i|=n+k

μλ ([i])1{∣∣ 1
nSnϕλ

� (i1∞)−
´
gλ
� dμλ

∣∣> 4ε
5
}(i)

≤ ec(n+k)|λ−λ0|θ
′ ∑
|i|=n+k

μλ0 ([i])1{∣∣ 1
nSnϕλ

� (i1∞)−
´
gλ
� dμλ

∣∣> 4ε
5
}(i)

≤ C22e
cn|λ−λ0|θ

′ ∑
|i|=n+k

μλ0 ([i])1{∣∣∣ 1
nSnϕ

λ0
� (i1∞)−

´
g
λ0
� dμλ0

∣∣∣> 2ε
5

}(i)

≤ C22e
cn|λ−λ0|θ

′

μλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ0
� (ω) −

ˆ
gλ0
� dμλ0

∣∣∣∣ > ε

5

})
,

where C22 = exp(ckξθ′

22). �
Proof of Proposition 8.5. Fix λ0 ∈ U and ε > 0. By [49, Theorem 6], there exist CD > 0
and s > 0 such that

μλ0

({
ω ∈ Ω :

∣∣∣∣ 1nSng
λ0
� (ω) −

ˆ
gλ0
� dμλ0

∣∣∣∣ > ε

5

})
≤ CDe−2sn

for every n ∈ N. Combining this with Lemma 8.7 finishes the proof. �
Fix θ′ ∈ (0, θ), λ0 ∈ U and ε > 0. For every n ≥ log(B0)/ε let
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Ωc
n :=

{
i ∈ An : there exist ω ∈ [i] and � ∈ [1, p] such that∣∣∣∣ 1nSng

λ0
� (ω) −

ˆ
gλ0
� dμλ0

∣∣∣∣ > 4ε
}
.

We define Ωn := An \ Ωc
n. Choose

ξ ≤ min{ξD, ξ21}

such that c0|λ − λ0|θ < ε and Cg|λ − λ0|θ
′
< ε for λ ∈ Bξ21(λ0). Then, for such λ, 

Lemma 8.6 gives that for every i ∈ Ωc
n, ω ∈ [i], � = 1, . . . , p∣∣∣∣ 1nSng

λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ > ε. (8.6)

Let us define two sequences nk = �(1 + ε)k� and mk = �1 + (1 + ε) + · · ·+ (1 + ε)k�. For 
every K ≥ 1 with mK ≥ log(B0)/ε we let

ΞK := ΩmK
× ΩnK+1 × ΩnK+2 × · · · ⊂ Ω. (8.7)

For k ≥ K, denote Γmk
:= ΩmK

× ΩnK+1 × · · · × Ωnk
. By Proposition 8.5,

μλ(Ξc
K) =

∑
j∈Ωc

mK

μλ([j])

+
∞∑
k=1

∑
i0∈ΩmK

∑
i1∈ΩnK+1

· · ·
∑

ik−1∈ΩnK+k−1

∑
j∈Ωc

nK+k

μλ([i0i1 . . . ik−1j])

≤ CDpe−smK +
∞∑
k=1

CDpe−snK+k → 0 as K → ∞. (8.8)

Proposition 8.8. For every K with nK ≥ log(B0)/ε there exists c′ = c′(ε, K) > 0 such 
that the inequality

μλ([i] ∩ ΞK) ≤ ec
′|λ−τ |θ′ |i|μτ ([i] ∩ ΞK) (8.9)

holds for every i ∈ Ω∗ and every λ, τ ∈ Bξ(λ0) (with ξ defined above).

Proof. First, we shall prove (8.9) for i ∈ Ω∗ with |i| = mL for L ≥ K. Note that if 
i /∈ ΓmL

, then [i] ∩ ΞK = ∅, hence it suffices to prove the inequality for i ∈ ΓmL
. By 

definition,

μλ([i] ∩ ΞK) = μλ([i]) −
∑

j∈Ωc

μλ([ij])

nL+1
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−
∞∑
k=1

∑
i1∈ΩnL+1

· · ·
∑

ik∈ΩnL+k

∑
j∈Ωc

nL+k+1

μλ([ii1 . . . ikj]).

For short, denote

bL+1(λ) := 1
μλ([i])

∑
j∈Ωc

nL+1

μλ([ij]);

bL+k+1(λ) := 1
μλ([i])

∑
i1∈ΩnL+1

· · ·
∑

ik∈ΩnL+k

∑
j∈Ωc

nL+k+1

μλ([ii1 . . . ikj]), k ≥ 1.

Hence, by Proposition 8.3,

μλ([i] ∩ ΞK)
μτ ([i] ∩ ΞK) ≤ μλ([i])

μτ ([i])
· 1 −

∑∞
k=1 e

−c|λ−τ |θ′ (mL+k+|i|)bL+k(τ)
1 −

∑∞
k=1 bL+k(τ)

. (8.10)

By the Mean Value Theorem, there exists ρ ∈ (e−c|λ−τ |θ′ , 1) such that

log
(

1 −
∞∑
k=1

e−c|λ−τ |θ(mL+k+|i|)bL+k(τ)
)

− log
(

1 −
∞∑
k=1

bL+k(τ)
)

=
∑∞

k=1(mL+k + |i|)ρmL+k+|i|−1bL+k(τ)
1 −

∑∞
k=1 ρ

mL+k+|i|bL+k(τ)

(
1 − ec|λ−τ |θ′

)
≤

∑∞
k=1(mL+k + |i|)bL+k(τ)

1 −
∑∞

k=1 bL+k(τ)
c|λ− τ |θ′

.

By the Gibbs property of μτ we have

bL+k(τ) ≤ CGμτ

⎛⎜⎝ ⋃
i∈Ωc

nL+k

[j]

⎞⎟⎠ ≤ CGμτ

({
∃

1≤�≤p

∣∣∣∣ 1
nL+k

SnL+k
gτ� −

ˆ
gτ� dμτ

∣∣∣∣ > ε

})

≤ pCGCDe−snL+k ,

where in the last two inequalities we used (8.6) and Proposition 8.5. Hence,

∑∞
k=1(mL+k + |i|)bL+k(τ)

1 −
∑∞

k=1 bL+k(τ)
≤ pCGCD

∑∞
k=1(mL+k + |i|)e−snL+k

1 − pCGCD

∑∞
k=1 e

−snL+k

≤ 2pCGCD

∑∞
k=1 mL+ke

−snL+k

1 − pCGCD

∑∞
k=1 e

−snL+k
,

which is a uniform constant. Combining this with (8.10) and Proposition 8.3, we get
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μλ([i] ∩ ΞK)
μτ ([i] ∩ ΞK) ≤ ec|λ−τ |θ′ (|i|+1).

Now let us extend (8.9) to all i ∈ Ω∗ with |i| ≥ mK . Let mL ≤ |i| < mL+1 for L ≥ K. 
Then

μλ([i] ∩ ΞK) =
∑

j∈AmL+1−|i|

μλ([ij] ∩ Ξk) ≤
∑

j∈AmL+1−|i|

ec|λ−τ |θ′mL+1μτ ([ij] ∩ Ξk)

≤ ec|λ−τ |θ′mL+1μτ ([i] ∩ ΞK) ≤ e
c|λ−τ |θ′ |i|mL+1

mL μτ ([i] ∩ ΞK)

≤ e(3+ε)c|λ−τ |θ′ |i|μτ ([i] ∩ ΞK).

Finally, for i ∈ Ω∗ with |i| < mK , the same calculation as above shows

μλ([i] ∩ ΞK) ≤ ecmK |λ−τ |θ′ |i|μτ ([i] ∩ ΞK). �
Lemma 8.9. For every � = 1, . . . p, K ≥ log(B0)/ε, n ≥ mK , and every i ∈ Ω∗ with 
|i| = n and [i] ∩ ΞK �= ∅, every ω ∈ [i] and every λ ∈ Bξ(λ0), the following holds:∣∣∣∣ 1nSng

λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ < (6 + 4M)ε,

where M = maxλ∈U,ω∈Ω,1≤�≤p |gλ� (ω)|.

Proof. Let L ≥ K be such that mL ≤ n < mL+1. Then∣∣∣∣ 1nSng
λ
� (ω) −

ˆ
gλ� dμλ

∣∣∣∣
≤ mL

n

∣∣∣∣ 1
mL

SmL
gλ� (ω) −

ˆ
gλ� dμλ

∣∣∣∣ +
∣∣∣∣ 1n (Sng

λ
� (ω) − SmL

gλ� (ω)) − n−mL

n

ˆ
gλ� dμλ

∣∣∣∣
≤ mL

n
6ε + n−mL

n
2M ≤ 6ε + nL+1

mL
· 2M ≤ 6ε + (1 + ε)L+1

(1 + ε)L − 1ε · 2M.

Since K is large, the claim follows. �
Now we are ready to prove Proposition 8.4.

Proof of Proposition 8.4. Let gλ1 (ω) = Pλ − φλ(ω) and gλ2 (ω) = − log
∣∣∣(fλ

ω1

)′ (Πλ(σω))
∣∣∣. 

Then hμλ
=
´
gλ1 dμλ and χμλ

=
´
gλ2 dμλ. Fix ε > 0, ε′ > 0, and θ′ ∈ [0, θ). Let ξ > 0

be small enough, so that Proposition 8.8 and Lemma 8.9 hold. Let A = ΞK be defined 
as in (8.7) for fixed K ≥ log(B0)/ε, large enough to have μλ(A) ≥ 1 − ε′ for λ ∈ Bξ(λ0)
by (8.8). Then μ̃λ = μλ|A satisfies (8.5) by Proposition 8.8. By the Gibbs property and 
Lemma 8.9, for u ∈ Ω∗ satisfying [u] ∩ A �= ∅ with |u| = n ≥ mK and any ω ∈ [u], we 
have
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μ̃λ([u]) ≤ μλ([u]) ≤ CG exp(−Pλn + Snφ
λ(ω))

= CG exp(−Sng
λ
1 (ω)) ≤ CGe

−n(hμλ
−(6+4M)ε)

and

∣∣∣(fλ
u

)′ (Πλ(σnω))
∣∣∣ ≥ e−n(χμλ

+(6+4M)ε).

Therefore, setting An = {u ∈ An : [u] ∩ A �= ∅} and applying Lemma 4.2, we obtain for 
α > 0,

Eα(μ̃λ, dλ) =
∞∑

n=0

∑
u∈An

∑
i,j∈A
i	=j

∣∣fλ
u (X)

∣∣−α
μ̃λ([ui])μ̃λ([uj])

≤ Cα
61CG

∞∑
n=0

∑
u∈An

∑
i,j∈A
i	=j

e−n(hμλ
−(6+4M)ε−α(χμλ

+(6+4M)ε))μ̃λ([uj])

≤ Cα
61CG#A

∞∑
n=0

e−n(hμλ
−(6+4M)ε−α(χμλ

+(6+4M)ε)) < ∞,

provided α <
hμλ

−(6+4M)ε
χμλ

+(6+4M)ε . This shows dimcor(μ̃λ, dλ) ≥ hμλ
−(6+4M)ε

χμλ
+(6+4M)ε . �

9. Proofs of Theorems 3.2 and 3.3

Lemma 9.1. Let {fλ
j }j∈A be a parametrized IFS satisfying smoothness Assumptions 

(A1)-(A4). Let {μλ}λ∈U be a collection of finite Borel measures on Ω satisfying (M). 
Then the map

U � λ �→ dimcor(μλ, dλ)

is continuous.

Proof. Fix arbitrary α > 0, ε > 0. It is enough to prove that there exists a constant 
Ĉ > 0 such that inequality

Eα(μλ, dλ) ≤ ĈEα+ε(μλ′ , dλ′)

holds provided λ and λ′ are close enough. By (M) and the parametric bounded distortion 
property (Lemma 4.2),
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Eα(μλ, dλ) =
∞∑

n=0

∑
u∈An

∑
i,j∈A
i	=j

∣∣fλ
u (X)

∣∣−α
μλ([ui])μλ([uj])

≤ C62

∞∑
n=0

∑
u∈An

∑
i,j∈A
i	=j

e(c+c62)n|λ−λ′|θ
∣∣∣fλ′

u (X)
∣∣∣−α

μλ′([ui])μλ′([uj])

≤ C62

∞∑
n=0

∑
u∈An

∑
i,j∈A
i	=j

∣∣∣fλ′

u (X)
∣∣∣−(α+ε)

μλ′([ui])μλ′([uj])

= C62Eα+ε(μλ′ , dλ′),

where the last inequality holds provided |λ − λ′| is small enough, as 
∣∣∣fλ′

u (X)
∣∣∣−ε

≥ γ−εn
2

by (A4). �
9.1. Proof of Theorem 3.2

Fix λ0 ∈ U with dimcor(μλ0 , dλ0) > 1. Let ε > 0 be small enough to have

γ := min {dimcor(μλ0 , dλ0), 1 + min{δ, θ}} − 4ε− 1
2 > 0.

Let q = 1 + 2γ + 2ε. Then

1 + 2γ + ε < q ≤ min {dimcor(μλ0 , dλ0), 1 + min{δ, θ}} − 2ε.

Let β > 0 be small enough to have

q(1 + a0β) ≤ min {dimcor(μλ0 , dλ0), 1 + min{δ, θ}} − ε,

where a0 is as in Theorem 7.1. By Theorem 7.1, there exists an neighborhood J of λ0 in 
U , interval I containing λ0 and compactly supported in J and smooth function ρ with 
0 ≤ ρ ≤ 1, supp(ρ) ⊂ J and ρ ≡ 1 on I, such that

ˆ

I

‖νλ‖2
2,γdλ ≤

ˆ

J

‖νλ‖2
2,γρ(λ)dλ ≤ C̃1Eq(1+a0β)(μλ0 , dλ0) + C̃2 < ∞

as q(1 + a0β) ≤ dimcor(μλ0 , dλ0) − ε. Therefore, ‖νλ‖2
2,γ < ∞ for Lebesgue almost every 

λ ∈ I, hence

dimS((Πλ)∗μλ) ≥ 1 + 2γ ≥ min {dimcor(μλ0 , dλ0), 1 + min{δ, θ}} − 4ε

holds almost surely on I. As ε can be taken arbitrary small and the function λ �→
dimcor(μλ, dλ) is continuous by Lemma 9.1, we can conclude the result in the same way 
as in the proof of Theorem 3.1 (see the last paragraph of Section 5).
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Fig. 10.1. The map f acting on the rectangle [−1, 1] × [0, 1].

9.2. Proof of Theorem 3.3

As Proposition 8.3 implies that measures {μλ}λ∈U satisfy (M) with θ′ arbitrarily 
close to θ, the first assertion of Theorem 3.3 follows from Theorem 3.2. For the absolute 
continuity part, fix ε > 0 and ε′ > 0 and let μ̃λ be as in Proposition 8.4. By Theorem 3.2
we have dimS((Πλ)∗μ̃λ) > 1 for Lebesgue almost every λ with 

hμλ

χμλ
> 1 + ε. As any 

measure on R with Sobolev dimension greater than 1 is absolutely continuous (with L2

density), passing with ε′ and ε to zero finishes the proof.

10. Applications

10.1. Place-dependent Bernoulli convolutions

Our first application is the place-dependent Bernoulli convolution studied in [1]. Let 
0 < ρ < 1

2 and 0.5 < λ < 1 and let us consider the following dynamical system f :
[−1, 1] × [0, 1] �→ [−1, 1] × [0, 1], where

f(x, y) =

⎧⎨⎩
(
λx− (1 − λ), 2y

1+2ρx

)
if 0 ≤ y < 1

2 + ρx(
λx + (1 − λ), 2y−2ρx−1

1−2ρx

)
if 1

2 + ρx ≤ y ≤ 1.

For the action of f on the rectangle [−1, 1] × [0, 1] see Fig. 10.1.
Let νλ,ρ be the place-dependent invariant measure of the IFS on [−1, 1]

Ψλ =
{
ψλ

0 (x) = λx− (1 − λ), ψλ
1 (x) = λx + (1 − λ)

}
with probabilities 

{
p0(x) = 1

2 + ρx, p1(x) = 1
2 − ρx

}
. That is, νλ,ρ is the unique proba-

bility measure of the dual operator L∗, where

Lg(x) =
(

1
2 + ρx

)
g(λx− (1 − λ)) +

(
1
2 − ρx

)
g(λx + (1 − λ)),

for any continuous test function g : [0, 1] �→ R. In fact, by [12, Theorem 1.1],
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lim
n→∞

Lng(x) =
ˆ

gdνλ,ρ uniformly on [0, 1]. (10.1)

Applying (10.1) and the bounded convergence theorem, simple calculations show that

1
n

n−1∑
k=0

L2 ◦ f−k → νλ,ρ × L1 weakly,

where L2 is the normalized Lebesgue measure on the rectangle. Hence, by the results of 
Schmeling and Troubetzkoy [38, Section 2, 3], the measure νλ,ρ ×L1 is the unique SBR-
measure of the map f . Therefore, the property νSBR � L2 is equivalent to νλ,ρ � L1
and moreover dimH νSBR = 1 + dimH νλ,ρ.

Clearly, the IFS Ψλ satisfies the conditions (A1)-(A4) for λ in an arbitrary compact 
subinterval of (0, 1). Moreover, it is easy to see that νλ,ρ is a push-forward measure of a 
parameter-dependent Gibbs measure μλ,ρ. More precisely, let Ω = {−1, 1}N and

Πλ(ω) =
∞∑
k=1

ωkλ
k−1,

and let φλ(ω) = log
(
pω1(Πλ(σω))

)
. It is easy to see that φλ satisfies (3.1) and (3.2) for 

every fixed ρ ∈ [0, 1/2). Moreover,

χμλ,ρ
= − log λ;

hμλ,ρ
= −

´
R

( 1
2 + ρx

)
log

( 1
2 + ρx

)
+
( 1

2 − ρx
)
log

( 1
2 − ρx

)
dνλ,ρ(x).

Shmerkin and Solomyak [41, Theorem 2.6] showed that Ψλ satisfies the transversality 
condition (T) on the interval λ ∈ (0, 0.6684755). Hence we can apply Theorem 3.3 and 
verify the claim [1, Theorem 4.1].

Theorem 10.1. For every 0 ≤ ρ < 0.5 and Lebesgue almost every λ ∈ (0.5, 0.6684755),

dimH νλ,ρ = min
{

1,
hμλ,ρ

− log λ

}
Moreover, νλ,ρ is absolutely continuous for Lebesgue almost every

λ ∈
{
λ ∈ (0.5, 0.6684755) : hμλ,ρ

> − log λ
}
.

In particular, the region contains the quadrilateral formed by the points (0, 0.5), 
(0.45, 0.55), (0.45, 0.668), (0, 0.668).

It follows from the calculations in [1], that for every N ≥ 1,

log 2 −
N∑ (2ρ)2n

2n(2n− 1)Fn − (2ρ)N+1

(2N + 2)(2N + 1)(1 − (2ρ)2)

n=1
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Fig. 10.2. The singularity and absolute continuity region of the measure μλ,ρ.

≤ hμλ,ρ
≤ log 2 −

N∑
n=1

(2ρ)2n

2n(2n− 1)Fn. (10.2)

where Fn =
´
x2ndμλ,ρ(x). The quantities Fn can be expressed inductively by

Fn = (1 − λ)2n

1 + λ2n−1(4nρ(1 − λ) − λ)+

n−1∑
m=1

2m(1 − λ)2n−2mλ2m−1

1 + λ2n−1(4nρ(1 − λ) − λ)

(
2n
2m

)(
λ

2m − 2ρ(1 − λ)
2n− 2m + 1

)
Fm.

Using the estimates (10.2), we can approximate the region in Theorem 10.1, see Fig. 10.2.

10.2. Blackwell measure for binary channel

Our second application is the absolute continuity of the Blackwell measure for a binary 
symmetric channel with a noise. Let us first introduce the basic notations, following 
Bárány, Pollicott and Simon [3] and Bárány and Kolossváry [2]. Let X := {Xi}∞i=−∞
be a binary, symmetric, stationary, ergodic Markov chain source Xi ∈ {0, 1}, with a 
probability transition matrix

Π :=
[

p 1 − p

1 − p p

]
.

By adding to X a binary independent and identically distributed (i.i.d.) noise E =
{Ei}∞i=−∞ independent of X with



46 B. Bárány et al. / Advances in Mathematics 399 (2022) 108258
P (Ei = 0) = 1 − ε, P (Ei = 1) = ε,

we get a Markov chain Y :={Yi}∞i=−∞, Yi=(Xi, Ei) with states {(0, 0), (0, 1), (1, 0), (1, 1)}
and transition probabilities:

M :=

⎡⎢⎢⎢⎣
p(1 − ε) pε (1 − p)(1 − ε) (1 − p)ε
p(1 − ε) pε (1 − p)(1 − ε) (1 − p)ε

(1 − p)(1 − ε) (1 − p)ε p(1 − ε) pε

(1 − p)(1 − ε) (1 − p)ε p(1 − ε) pε

⎤⎥⎥⎥⎦ .

Let Ψ : {(0, 0), (0, 1), (1, 0), (1, 1)} �→ {0, 1} be a surjective map such that

Ψ(0, 0) = Ψ(1, 1) = 0 and Ψ(0, 1) = Ψ(1, 0) = 1.

We consider the ergodic stationary process Z = {Zi = Ψ(Yi)}∞i=−∞, which is the cor-
rupted output of the channel. Equivalently, Z is the stationary stochastic process 
Zi = Xi

⊕
Ei, where 

⊕
denotes the binary addition.

According to [14, Example 4.1] and [3, Example 1], the entropy of Z can be expressed 
as follows. Consider the 3-dimensional simplex

W :=
{
w ∈ R4 : wi ≥ 0,

∑
1≤i≤4

wi = 1
}

and define W0, W1 ⊂ W by

W0 := {w ∈ W : w2 = w3 = 0} , W1 := {w ∈ W : w1 = w4 = 0} .

Consider two matrices

M0 :=

⎡⎢⎢⎢⎣
p(1 − ε) 0 0 (1 − p)ε
p(1 − ε) 0 0 (1 − p)ε

(1 − p)(1 − ε) 0 0 pε

(1 − p)(1 − ε) 0 0 pε

⎤⎥⎥⎥⎦ and

M1 :=

⎡⎢⎢⎢⎣
0 pε (1 − p)(1 − ε) 0
0 pε (1 − p)(1 − ε) 0
0 (1 − p)ε p(1 − ε) 0
0 (1 − p)ε p(1 − ε) 0

⎤⎥⎥⎥⎦ ,

and let (r0(w), r1(w)) be the place-dependent probability vector of the form

ri(w) = ‖wTMi‖1,

where ‖.‖1 denotes the l1 norm and w ∈ W . Introduce two functions f0 : W �→ W0 and 
f1 : W �→ W1 such that
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fi(w) = wTMi

‖wTMi‖1
.

Then the entropy of Z can be expressed as follows:

H(Z) = −
ˆ

W0∪W1

[
r0(w) log r0(w) + r1(w) log r1(w)

]
dQ(w),

where the Blackwell measure Q is the unique measure with supp(Q) ⊆ W0 ∪W1, such 
that for every continuous function h : W0 ∪W1 �→ R,

ˆ
h(w)dQ(w) =

ˆ
r0(w)h(f0(w)) + r1(w)h(f1(w))dQ(w).

It was shown in [3, Section 3.1, 3.2] that for the binary symmetric channel, the measure 
Q on W0 ∪W1 is conjugated to the place-dependent invariant probability measure νε,p
on [0, 1] for the IFS Ψε,p = {Sε,p

0 , Sε,p
1 }:

Sε,p
0 (x) := x · p · (1 − ε) + (1 − x) · (1 − p) · (1 − ε)

x · [p(1 − ε) + (1 − p) · ε] + (1 − x) · [(1 − p)(1 − ε) + p · ε] ,

Sε,p
1 (x) := x · p · ε + (1 − x) · (1 − p) · ε

x · [pε + (1 − p) · (1 − ε)] + (1 − x) · [(1 − p)ε + p · (1 − ε)] .

and the place-dependent probability vector (pε,p0 (x), pε,p1 (x)):

pε,p0 (x) := x · [p(1 − ε) + (1 − p) · ε] + (1 − x) · [(1 − p)(1 − ε) + p · ε] ,
pε,p1 (x) := x · [pε + (1 − p) · (1 − ε)] + (1 − x) · [(1 − p)ε + p · (1 − ε)] .

In particular, Q � L1|W0∪W1 if and only if νε,p � L1.
Observe that for ε = 1/2, Sε,p

0 (x) = Sε,p
1 (x) = (2p − 1)x + 1 − p and so νε,p is the 

Dirac mass on the point 1/2. Hence, we may assume that ε �= 1/2.
For every fixed ε ∈ (0, 1) \ {1/2}, the IFS Ψε,p satisfies the conditions (A1)-(A4)

for p in an arbitrary compact subinterval of (0, 1); and νε,p is a push-forward measure 
of the Gibbs measure με,p with respect to the potential φε,p(ω) = log

(
pε,pω1

(Πε,p(σω))
)

satisfying (3.1) and (3.2), where Πε,p is the natural projection of the IFS Ψε,p.
Bárány and Kolossváry [2] showed that for every fixed ε �= 1/2 the IFS Ψε,p satisfies 

the transversality condition (T) with respect to the parameter p and has hμε,p

χμε,p
> 1 on 

every interval I for which {ε} × I is contained in the red region in Fig. 10.3. Thus, the 
main theorem of the present paper applies and [2, Theorem 1.1] remains correct:

Theorem 10.2. For every fixed ε ∈ (0, 1) \{1/2} and for Lebesgue-almost every p such that 
(ε, p) ∈ R is in the red region of Fig. 10.3, the measure νε,p is absolutely continuous. For 
instance, the red region contains two quadrilaterals formed by (0.5, 0.75), (0.37, 0.775), 
(0.5, 0.795), (0.63, 0.775) and (0.5, 0.25), (0.37, 0.225), (0.5, 0.205), (0.63, 0.225).
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Fig. 10.3. The singularity (blue) and transversality region with hμε,p

χμε,p
> 1 (red) of the measure νε,p, [2, 

Figure 1].

It was shown by Bárány, Pollicott and Simon [3] that με,p is singular in the blue region 
of Fig. 10.3.

10.3. Absolute continuity of equilibrium measures for hyperbolic IFS with overlaps

First we recall briefly the notion of equilibrium measure in the setting of IFS. Let 
A = {1, . . . , m} and suppose we have an IFS Ψ = {fj}j∈A of the class C1+θ on a 
compact interval X ⊂ R. We assume that the system {fj}j∈A is uniformly hyperbolic 
and contractive:

0 < γ1 ≤ |f ′
j(x)| ≤ γ2 < 1 for all j ∈ A, x ∈ X. (10.3)

As before, Ω = AN and σ denotes the left shift on Ω. We write Π : Ω → R for the natural 
projection map associated with the IFS. Consider the pressure function, defined by
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PA(t) = PΨ(t) = lim
n→∞

n−1 log
∑

u∈An

‖f ′
u‖t. (10.4)

It is well-known that this limit exists, t �→ PA(t) is continuous and strictly decreasing. 
According to the general theory of thermodynamical formalism (see e.g., [35]),

PΨ(t) = P (σ, tφ),

where φ(ω) = log |f ′
ω1

(Π(σω))| is the potential associated with the IFS and P (σ, ·) is 
the topological pressure. The equilibrium state for the potential tφ is a Borel probability 
measure μ on Ω satisfying

PΨ(t) = hμ + t

ˆ
φdμ,

where hμ = hμ(σ), see [35, 3.5]. Observe that 
´
φ dμ = −χμ by the definition of the 

Lyapunov exponent. Denote by s = s(Ψ) the solution of the Bowen’s equation:

s = s(Ψ) : PΨ(s) = 0. (10.5)

It is well-known that s(Ψ) is the upper bound for the Hausdorff dimension of the attrac-
tor. We say that μ is an equilibrium measure for the IFS Ψ if it is the equilibrium state 
for the potential s(Ψ) · φ. Thus, by definition,

μ is an equilibrium measure =⇒ s(Ψ) = hμ

χμ
.

The equilibrium measure is the dimension-maximizing measure for the IFS in the sym-
bolic space. Under our assumptions, the equilibrium measure μ is the unique Gibbs 
measure for the potential sφ = s(Ψ) · φ, which implies that

μ([u]) � diam([u])s,

for any cylinder set [u] in Ω. Here diam([u]) is the diameter in the metric associated with 
the IFS: d(ω, τ) = |Xω∧τ |. It follows that μ has local dimension s at every point in Ω; in 
particular, the correlation dimension dimcor(μ) = s.

Given a family of hyperbolic IFS Ψλ (with overlaps) depending on a parameter λ ∈ U , 
with equilibrium measure μλ, we expect that typically, in the sense of almost every 
parameter, the projection of the equilibrium measure (Πλ)∗μλ has Hausdorff dimension 
min{1, s(Ψλ)}, and is absolutely continuous when s(Ψλ) > 1. This is what we prove 
under the assumptions of regularity and transversality. It is a simple consequence of 
Theorem 3.3, but we state it as a theorem because of its importance.
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Theorem 10.3. Let Ψλ = {fλ
j }j∈A be a parametrized IFS satisfying smoothness As-

sumptions (A1)-(A4) and the transversality condition (T) on U . Let μλ be the equi-
librium measure for Ψλ and s(Ψλ) the solution of the Bowen’s equation (10.5). Then 
dimH((Πλ)∗μλ) = min{1, s(Ψλ)} for a.e. λ ∈ U and (Πλ)∗μλ is absolutely continuous 
with a density in L2 for Lebesgue almost every λ in the set {λ ∈ U : s(Ψλ) > 1}.

Proof. As noted above, the equilibrium measure μλ satisfies dimcor(μλ) = s(Ψλ). By 
Theorem 3.1 and Theorem 3.2, it is enough to show that the equilibrium measure 
μλ satisfies (M). By Proposition 8.3, it is enough to show that potential φλ(ω) =
s(Ψλ) log

∣∣(fλ
ω1

)′(Πλ(σω))
∣∣ satisfies (3.1) and (3.2).

The condition (3.1) is straightforward, since by assumption γ1 <
∣∣(fλ

ω1
)′(Πλ(σω))

∣∣ <
γ2 on U and trivially s(Ψλ) ≤ logm

− log γ2
. On the other hand,

|φλ(ω) − φτ (ω)|

=
∣∣∣s(Ψλ) log

∣∣(fλ
ω1

)′(Πλ(σω))
∣∣ log

∣∣(fλ
ω1

)′(Πλ(σω))
∣∣− s(Ψτ ) log

∣∣(fτ
ω1

)′(Πτ (σω))
∣∣ ∣∣∣

≤ − log γ1|s(Ψλ) − s(Ψτ )| + logm
− log γ2

∣∣∣ log |(fλ
ω1

)′(Πλ(σω))| − log
∣∣(fτ

ω1
)′(Πτ (σω))

∣∣ ∣∣∣
≤ − log γ1|s(Ψλ) − s(Ψτ )| + logm

−γ1 log γ2

∣∣∣(fλ
ω1

)′(Πλ(σω)) − (fτ
ω1

)′(Πτ (σω))
∣∣∣.

By the Assumptions (A1)-(A4), simple manipulation shows that λ �→ (fλ
ω1

)′(Πλ(σω)) is 
a Lipschitz map with Lipschitz constant independent of ω. Hence, it is enough to show 
that λ �→ s(Ψλ) is Lipschitz. But clearly,

− log γ2|s− t| ≤ |PΦλ(t) − PΦλ(s)| ≤ − log γ1|s− t|,

and so

|s(Ψλ) − s(Ψτ )| ≤ (− log γ2)−1|PΦλ(s(Ψλ)) − PΦλ(s(Ψτ ))|
= (− log γ2)−1|PΦλ(s(Ψτ )) − PΦτ (s(Ψτ ))|
≤ (− log γ2)−1c|λ− τ |,

where the last inequality follows by Lemma 8.2 since λ �→ s(Ψτ ) log
∣∣(fλ

ω1
)′(Πλ(σω))

∣∣
satisfies (3.2). �
10.4. Natural measures for non-homogeneous self-similar IFS

Consider a self-similar IFS on the line F = {fj(x) = rjx + aj}j∈A, where rj ∈ (0, 1)
and aj ∈ R. Recall that the similarity dimension is the number s = s(F), such that ∑

j∈A rsj = 1. Assume that the IFS is non-degenerate, in the sense that the fixed points 
of fj are all distinct. In this case the equilibrium measure is the Bernoulli product 
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measure (pN) on Ω, where p = (rs1, . . . , rsm) is the vector of probability weights associated 
with the similarity dimension. We focus on the question of absolute continuity for the 
natural self-similar measure νF = Π∗(pN). (For the Hausdorff dimension dimH(νF )
Hochman [15] obtained results that are much sharper than what we get with our method, 
so we don’t discuss the latter.) For non-homogeneous self-similar measures results on 
absolute continuity for a typical parameter in a “transversality region” were obtained by 
Neunhäuserer [26] and Ngai and Wang [27] independently. However, in their results the 
probabilities in the definition of self-similar measure are fixed, and so nothing can be 
claimed for the natural measure for a.e. parameter. More recently, Saglietti, Shmerkin, 
and Solomyak [37] proved absolute continuity for a.e. parameter in the entire “super-
critical region” (i.e., where hμ/χμ > 1), however, there also, probabilities are fixed, and 
an application of Fubini’s Theorem doesn’t yield anything for the natural measure. The 
following is an immediate consequence of Theorem 10.3.

Corollary 10.4. Let Fλ = {rj(λ)x + aj(λ)}j∈A be a family of non-degenerate self-similar 
IFS satisfying smoothness Assumptions (A1)-(A4) and the transversality condition (T)
on U . Then the natural self-similar measure νλ is absolutely continuous with a density 
in L2 for a.e. λ ∈ U such that the similarity dimension is strictly greater than 1.

Specific regions where the transversality condition holds were found in [26,27]. In 
particular, we have the following for the family of the IFS {λ1x, λ2 + x}, where the 
1-parameter family is obtained by assuming λ = λ1, λ2 = cλ for a fixed c > 0.

Corollary 10.5. Let νλ1,λ2 be the natural self-similar measure for the IFS {λ1x, λ2x +1}. 
Then νλ1,λ2 is absolutely continuous with a density in L2 for a.e. (λ1, λ2) such that 
λ1 + λ2 > 1 and max{λ1, λ2} ≤ 0.668.

10.5. Some random continued fractions

Consider the IFS Fα,β = {f1, f2} =: { x+α
x+α+1 , 

x+β
x+β+1} on the real line, for 0 ≤ α <

β. Applying the maps randomly (not necessarily independently), we obtain a random 
continued fraction [1, Y1, 1, Y2, 1, Y3, . . .] where Yi ∈ {α, β} and we are using the notation

[a1, a2, a3, . . .] := 1

a1 + 1

a2 + 1
a3 + . . .

In the case α = 0 the IFS is parabolic; it was first studied by Lyons [23], motivated 
by a problem from the theory of Galton-Watson trees. In [44] it was shown that the 
invariant measure for the IFS corresponding to Yi applied i.i.d., with probabilities (1

2 , 
1
2 )

is absolutely continuous for a.e. β ∈ (0.215, βc), where βc ∈ (0.2688, 0.2689) is the 
“critical value”, such that
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log 2
χβc

= 1,

where χβc
is the Lyapunov exponent of the measure (1

2 , 
1
2 )N . Note that the IFS F0,β is 

overlapping, i.e., its two cylinder intervals have non-trivial intersection, for β ∈ (0, 0.5).

In this paper we restrict ourselves to smooth hyperbolic IFS, so we need to take α > 0. 
However, we can take a very small positive α and expect somewhat similar behavior. 
The convex hull of the attractor for Fα,β is the closed interval having the attracting fixed 

points of f1, f2 as its endpoints; it is Xα,β =
[√

α2+4α−α
2 , 

√
β2+4β−β

2

]
. It is easy to check 

that the condition for the IFS to be overlapping, i.e., L1(f1(Xα,β) ∩ f2(Xα,β)
)
> 0 is

β + α + 4 > 3
(√

β2 + 4β +
√

α2 + 4α
)
.

It is satisfied, e.g., when α ∈ (0, 10−4] and β ∈ (α, 0.485).

Example 10.6. Denote by Πα,β the natural projection from Ω = {1, 2}N to the attractor 
and consider the equilibrium Gibbs measure μα,β for the IFS. Fix α ∈ (0, 10−4] and 
β =

√
2−1 = 0.41421 . . . Denote ηα,β := Πα,β

∗ μα,β . Then ηα,β+λ is absolutely continuous 
with a density in L2 for a.e. λ ∈ U = (0, 0.485 − β) ≈ (0, 0.077). �

In order to derive this claim from Theorem 10.3 we need to check transversality and 
that hμα,β

/χμα,β
> 1 holds. (The regularity assumptions are obviously satisfied.) It is 

well-known that as soon as there is an overlap, the condition s(Ψα,β) = hμα,β
/χμα,β

> 1
is satisfied, but for the reader’s convenience we provide a short proof in Appendix D, see 
Corollary D.3. Checking transversality is non-trivial; we indicate it in the next subsection. 
(In fact, we could get a larger interval of transversality (≈ 0.215, 0.485) for α ∈ (0, 10−4]
with the method of [44, Section 6], which is more delicate.)

10.6. Checking transversality

Sometimes slightly different forms of the transversality conditions are used. Here they 
are:

∃ η > 0 : ∀u, v ∈ Ω, u1 �= v1, λ ∈ U∣∣Πλ(u) − Πλ(v)
∣∣ ≤ η =⇒

∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ η;
(10.6)

∃ η > 0 : ∀u, v ∈ Ω, u1 �= v1, λ ∈ U

Πλ(u) = Πλ(v) =⇒
∣∣ d
dλ (Πλ(u) − Πλ(v))

∣∣ ≥ η;
(10.7)

∃CT > 0 : ∀u, v ∈ Ω, u1 �= v1, r > 0

L1 {λ ∈ U : |Πλ(u) − Πλ(v)| ≤ r
}
≤ C · r.

(10.8)

T
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Lemma 10.7. Under regularity Assumptions (A1)-(A4), all three conditions (10.6) -
(10.8) are equivalent.

Proof. The implication (10.6) =⇒ (10.7) is trivial.
The implication (10.6) =⇒ (10.8) is the usual transversality argument, see [43, 

Lemma 7.3].
Let us prove (10.8) =⇒ (10.7). We argue by contradiction. If (10.7) does not hold, we 

can use compactness of Ω and U and find u, v ∈ Ω with u1 �= v1, and λ0 ∈ U such that 
F (λ) = Πλ(u) − Πλ(v) satisfies

F (λ0) = d

dλ
F (λ0) = 0.

Using that Πλ ∈ C1,δ (Proposition 4.3), we can write

|F (λ0 + t)| = |F (λ0 + t) − F (λ0) − F ′(λ0)t|

= |F ′(λ0 + τ)t− F ′(λ0)t| for some τ ∈ (0, t) by the Lagrange Theorem

= |t| · |F ′(λ0 + τ) − F ′(λ0)| ≤ |t| · Cδ|τ |δ < Cδ|t|1+δ,

which clearly contradicts (10.8) for r sufficiently small.
It remains to show (10.7) =⇒ (10.6), but this again follows by compactness of Ω and 

U and continuity of λ �→ Πλ and λ �→ d
dλΠλ. �

Next we consider two 1-parameter families of IFS for which it is possible to verify the 
transversality condition, under appropriate assumptions. They are variants and modifi-
cations of the parametrized families of IFS from [43,44].

Proof of transversality in Example 10.6. Let f(x) = x
x+1 , so that Fλ = {f(x +α), f(x +

β + λ)}, and let Πλ be the corresponding natural projection map. We can consider this 
IFS on X = [0, 0.5] for all these parameters. Here it is more convenient to verify the 
transversality condition in the form (10.7). Let u, v ∈ Ω with u1 �= v1. Without loss 
of generality we can assume that u1 = 2 and v1 = 1. Then we have by the Lagrange 
Theorem,

Πλ(u) − Πλ(v) = f
(
β + λ + Πλ(σu)

)
− f

(
α + Πλ(σv)

)
= f ′(c) ·

[
β − α + λ + Πλ(σu) − Πλ(σv)

]
=: f ′(c) · Ψλ(u, v).

Since f ′(c) ≥ γ1 > 0, we obtain that

{
λ ∈ U : |Πλ(u) − Πλ(v)| ≤ r

}
⊂
{
λ ∈ U : |Ψλ(u, v)| ≤ r/γ1

}
.
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In order to verify (10.8), it suffices to show that d
dλΨλ(u, v) ≥ δ > 0. We have

d
dλΨλ(u, v) = 1 + d

dλΠλ(σu) − d
dλΠλ(σv) ≥ 1 − d

dλΠλ(σv), (10.9)

using monotonicity. We can write

Πλ(σv) = f i0
1 fλ

2 f
i1
1 fλ

2 f
i2
1 fλ

2 . . .

for some in ≥ 0, where we write f1 ≡ fλ
1 = f(x + α) and fλ

2 = f(x + β + λ), so that

Πλ(σv) = f i0
1 f

(
β + λ + f i1

1 f(β + λ + f i2
1 . . .)

)
.

Then simply using that ‖f ′
1‖∞ < 1 and the maximum of the derivative is attained at 

the left endpoint by concavity, yields

d
dλΠλ(σv) < f ′(β + λ)

(
1 + f ′(β + λ)

(
1 + f ′(β + λ)(1 + · · · )

))
= f ′(β + λ)

1 − f ′(β + λ) .

It remains to note that f ′(β+λ) < f ′(β) = 1/2, hence d
dλΠλ(σv) < 1, which implies the 

desired claim, in view of (10.9). �
10.7. “Vertical” translation family

Next we consider a class of 1-parameter families of IFS for which it is possible to verify 
the transversality condition, under appropriate assumptions. This is also a modification 
of the parametrized families of IFS from [43,44].

Let {fj}j∈A be a C1+δ IFS on X and consider a “translation perturbation” {fλ
j }j∈A, 

satisfying (A4), of the following form: assume that

{fλ
j (x) = fj(x) + aj(λ)}j∈A,

and assume that it is well-defined on X for λ ∈ U . We call it “vertical” because the graphs 
are translated vertically. Sometimes it is useful to consider IFS consisting of “horizontal” 
shifts of the same function, that is, IFS of the form {f(x + cj)}mj=1, like Example 10.6. 
Such families may be treated in a way similar to the “vertical” translation families with 
a few modifications, see [43, Section 7] and [44, Section 6]. Instead of treating this case 
in full generality, we focused on a specific example of random continued fractions above.

Denote for i �= j in A:

Xij :=
{
x ∈ X : ∃λ ∈ U, ∃ y ∈ X such that fλ

i (x) = fλ
j (y)

}
. (10.10)

Note that Xij is empty if the corresponding 1st order cylinders never overlap. We further 
define, for i �= j in A such that Xij �= ∅:
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‖f ′
i‖Xij

:= ‖f ′
i |Xij

‖∞, ηij := min
∣∣∣ d
dλ

[
ai(λ) − aj(λ)

]∣∣∣. (10.11)

Let

Dmax := max
i

( ‖ d
dλai‖∞

1 − ‖f ′
i‖∞

)
. (10.12)

Proposition 10.8. (i) If

ηij −
(
‖f ′

i‖Xij
+ ‖f ′

j‖Xji

)
·Dmax > 0 for all i �= j such that Xij �= ∅, (10.13)

then the transversality condition holds on U .
(ii) Assume, in addition, that f ′

j(x) > 0 and d
dλaj ≥ 0 for all j ∈ A. If

ηij − ‖f ′
j‖Xji

·Dmax > 0 for all i �= j such that Xij �= ∅, (10.14)

then the transversality condition holds on U .

Before the proof we present a more familiar special case. Let {fλ
j }j∈A be a C1+δ IFS 

on X, satisfying (A4). Consider the translation family

{fλ
1 (x) = f1(x) + λ, fλ

j (x) = fj(x), j > 1},

and assume that it is well-defined on X for λ ∈ U . Note that only fλ
1 changes with 

λ. Moreover, we assume that only the cylinder fλ
1 (X) can intersect other 1-st order 

cylinders, that is

i �= j, fi(X) ∩ fj(X) �= ∅ =⇒ 1 ∈ {i, j}.

Corollary 10.9. (i) If

2‖f ′
1‖∞ + ‖f ′

j‖Xj1
< 1 for all 1 < j ≤ m,

then the transversality condition holds on U .
(ii) Assume, in addition, that f ′

j(x) > 0 for all j ∈ A. If

‖f ′
1‖∞ + ‖f ′

j‖Xj1
< 1 for all 1 < j ≤ m,

then the transversality condition holds on U .

The derivation of the corollary from the proposition is immediate, since in this case 
we have η1j = 1 for j > 1 and Dmax = (1 − ‖f ′

1‖∞)−1.
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Proof of Proposition 10.8. Consider the symbolic cylinder sets [i] ⊂ Ω and let

M∞ := max
u∈Ω

∥∥∥ d
dλΠλ(u)

∥∥∥
∞
, Mi := maxu∈[i]

∥∥∥ d
dλΠλ(u)

∥∥∥
∞
, i ∈ A.

We have

u ∈ [i] =⇒ Πλ(u) = ai(λ) + fi(Πλ(σu)),

hence

d

dλ
Πλ(u) = d

dλ
ai(λ) + f ′

i(Πλ(σu)) · d

dλ
Πλ(σu) for u ∈ [i]. (10.15)

It follows that

Mi ≤
∥∥∥ d
dλai(λ)

∥∥∥
∞

+ ‖f ′
i‖∞ ·M∞,

and since M∞ = maxi Mi, we obtain from (10.12) that

M∞ ≤ Dmax. (10.16)

Now we verify the transversality condition in the form (10.7). If Πλ(u) = Πλ(v) and 
u1 �= v1, then u ∈ [i] and v ∈ [j] for some i �= j such that Xij �= ∅. Without loss of 
generality we can assume that d

dλ

[
ai(λ) − aj(λ)

]
> 0 in the definition of ηij, otherwise, 

exchange i and j. Then (10.15) yields

d

dλ

(
Πλ(u) − Πλ(v)

)
= d

dλ

[
ai(λ) − aj(λ)

]
+ f ′

i(Πλ(σu)) · d

dλ
Πλ(σu)

− f ′
j(Πλ(σv)) · d

dλ
Πλ(σv). (10.17)

Note that

Πλ(u) = fi(Πλ(σu)) = fj(Πλ(σv)) = Πλ(v),

hence Πλ(σu) ∈ Xij and Πλ(σv) ∈ Xji. Therefore, (10.17) yields∣∣∣∣ ddλ (
Πλ(u) − Πλ(v)

)∣∣∣∣ ≥ ηij −
(
‖f ′

i‖Xij
+ ‖f ′

j‖Xji

)
·Dmax > 0,

assuming (10.13). This proves part (i) of the proposition.
In order to verify part (ii), note that if all fj and λ �→ aj(λ) are monotone increasing, 

we also get that d
dλΠλ(u) ≥ 0 for all u ∈ Ω, hence (10.17) implies∣∣∣∣ d (

Πλ(u) − Πλ(v)
)∣∣∣∣ ≥ ηij − ‖f ′

j‖Xji
·Dmax > 0,
dλ
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which is bounded away from zero under the assumption (10.13). This concludes the proof 
of (10.7) �
Example 10.10. Let Ψ := {fi}mi=1 be a C1+δ IFS on X. We assume that there exists a 
partition A = I−1 ∪ I1 such that for very i, j ∈ Ik, we have

fi(X) ∩ fj(X) = ∅, i �= j, i, j ∈ Ik, k = −1, 1 (10.18)

Recall the definition of γ2 from (A4). Besides (10.18), our second assumption is as follows:

γ2 <
1
2 . (10.19)

We define κ(i) = k if i ∈ Ik, k = −1, 1. Then we introduce the family Ψλ =
{
fλ
i

}m

i=1
with a parameter interval λ ∈ U , where

fλ
i (x) := fi(x) + κ(i) · λ. (10.20)

Together with (10.19), this yields

∣∣∣∣ ddλ (ai(λ) − aj(λ))
∣∣∣∣ ≡

{
2, if κ(i) �= κ(j);
0, if κ(i) = κ(j).

and Dmax ≤ 1
1 − γ2

< 2. (10.21)

The parameter interval U is an open interval centered at 0, and U is so small that

fλ
i (X) ⊂ int(X), and fλ

i (X)∩fλ
j (X) = ∅, i �= j, i, j ∈ Ik, k = −1, 1, λ ∈ U. (10.22)

The (first level) cylinder intervals are Xλ
i := fλ

i (X), i ∈ A and λ ∈ U . Observe that

Xij �= ∅ ⇐⇒ ∃λ ∈ U, Xλ
i ∩Xλ

j �= ∅. (10.23)

Using this and (10.21) we obtain

Xij �= ∅ =⇒ either (i ∈ I−1 & j ∈ I1) or (j ∈ I−1 & i ∈ I1) =⇒ ηij = 2. (10.24)

Putting together this and the second part of (10.21) we obtain that (10.13) holds and 
consequently the transversality condition holds on U . �

Remark 10.11. The partition A = I−1∪I1 satisfying (10.18) exists, for example, if every 
point in X is covered by at most two level-1 cylinder intervals. That is

m∑
1fi(X) ≤ 2. (10.25)
i=1
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In fact, let [aj , bj ] := Xj := fj(X). Without loss of generality, we may assume that the 
cylinder intervals Xj are ordered in such a way that the left endpoints are in increasing 
order. If two level-1 cylinder intervals share the same left endpoint, that is, aj = aj+1, 
then we set |Xj | ≥ |Xj+1|. Define I1 inductively, as follows: 1 ∈ I1. If the set I1 already 
contains 1 = n1 < n2 < · · · < n�, then we let n�+1 := min {j ∈ A : b� < aj}, if such aj
exists; otherwise, we stop and set I−1 := A \ I1. It is easy to see that (10.18) holds.

Remark 10.12. If we consider an IFS like in Example 10.10 but allow that every point is 
covered by at most 2� + 1 cylinder intervals for � ≥ 1 and assume that γ2 < 1

2�+1 , then 
we get that the transversality condition holds in the same way. Namely, we can partition 
A into 2� + 1 families I−�, . . . I� in such a way that there are no intersections between 
distinct cylinder intervals from the same family. For all functions corresponding to the 
family Ik the translation is defined to be k · λ. Then the minimal value of ηij is equal to 
1 and Dmax ≤ �

1−γ2
. This implies that (10.13) holds if γ2 < 1

2�+1 .

Definition 1. We say that A is a transversality-typical property of sufficiently smooth 
IFSs if the following holds: Whenever 

{
Ψλ

}
λ∈U

is a one-parameter family of sufficiently 
smooth IFSs for which the transversality condition holds then for L1 almost all λ ∈ U

the IFS Ψλ has property A.

We use the notation of Example 10.10. In particular, we are given a compact interval 
X ⊂ R and a C1+δ IFS {fi}mi=1 on X such that

Xi := fi(X) ⊂ int(X) for all i ∈ A. (10.26)

Below we consider a translation perturbation family of Ψ. That is,

Ψt :=
{
f t
i

}m

i=1 , f t
i (x) := fi(x) + ti, t ∈ B(0, δ0), (10.27)

where δ0 > 0 is so small that (10.26) holds if we replace fi with f t
i and Xi with Xt

i :=
f t
i (X) for all i ∈ A.

Claim. Assume that

(a) all points of X are covered by at most two of the cylinder intervals Xk and
(b) γ2 < 1/2.

Let A be a transversality-typical property. Then there exists 0 < δ∗ ≤ δ0 such that for 
Lm-a.e. t ∈ B(0, δ∗), the translated IFS 

{
Ψt}m

i=1 (defined in (10.27)) has property A.

Proof. Using Remark 10.11, we can find a partition A = I−1 ∪ I1 such that fi(X) ∩
fj(X) = ∅ for distinct i, j ∈ Ik, k = −1, 1. Let δ1 > 0 be so small that 0 < 4δ1 < δ0 and
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Xi ∩Xj = ∅ =⇒ Xt
i ∩Xt

j = ∅ for all t ∈ B(0, 4δ1) (10.28)

Hence

Xi ∩Xt
j = ∅, i �= j, i, j ∈ Ik, k = −1, 1, t ∈ B(0, 4δ1). (10.29)

Let U := (− 1√
m
δ1, 1√

m
δ1) and for a λ ∈ U we define ã(λ) := (κ(1)λ, . . . , κ(m)λ), where 

we recall that κ(i) = k if i ∈ Ik. Finally, for a t ∈ B(0, δ1) let

at(λ) := t + ã(λ).

Then ‖at(λ)‖ < 2δ1, t ∈ B(0, δ1), λ ∈ U . Hence

X
at(λ)
i ⊂ X and X

at(λ)
i ∩X

at(λ)
j = ∅, i �= j, i, j ∈ Ik, k = −1, 1, λ ∈ U. (10.30)

Example 10.10 shows that

the transversality condition holds for the family
{

Ψat(λ)
}
λ∈U

for all t ∈ B(0, δ1).
(10.31)

Let

H :=
{
τττ ∈ B

(
0, δ1

2
√
m

)
: Ψτττ does not have property A

}
.

We need to prove that Lm(H) = 0. To get a contradiction assume that Lm(H) > 0. Then 

H has a Lebesgue density point τ̂ττ ∈ B(0, δ1
2
√
m

). Let V be the intersection of B
(
0, δ1

2
√
m

)
with the (m −1)-dimensional hyperplane which goes through the origin and is orthogonal 
to the vector (κ(1), . . . , κ(m)). Then by the Fubini theorem there exists a point t ∈ V

such that L1 {λ ∈ U : at(λ) ∈ H} > 0. But this contradicts (10.31) and the fact that A
is a transversality-typical property. �
11. Open questions and further directions

As Theorem 3.2 guarantees more refined properties of (Πλ)∗μλ than mere absolute 
continuity, it is natural to ask whether a weaker condition than (M) is sufficient for an 

almost sure absolute continuity in the supercritical region 
{
λ : hμλ

χμλ
> 1

}
. In particular, 

is (M0) sufficient? In our case, condition (M) is needed to guarantee regularity of the 
error term ej(ω1, ω2, λ) from (7.7), allowing us to follow the approach of Peres and Schlag 
[29].

Another natural direction of further research is to the main result for multivari-
able parameters. Peres and Schlag in [29, Section 7] were handling this case for fixed 
(parameter independent) measures. In the case of parameter-dependent measures with 
one-dimensional family of parameters, we were using in the proof of Proposition 7.2 the 
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Property (M) of the family of measures to provide proper estimates of the energy. The 
main issue in the case of multiparameter-dependent measures comes from the behavior
of the error term ej(ω1, ω2, λ). Namely, is it possible to follow [29, Lemma 7.10] and 
use the Property (M) to deduce similar estimates for the energy or higher regularity 
assumptions shall be made for the measures?

An application of the multiparameter case would be the natural equilibrium measure 
for self-conformal systems with translation parameters. Furthermore, one could study 
the absolute continuity of the Furstenberg measure induced by the Käenmäki measure 
(that is, the natural equilibrium measure for self-affine IFS, see [21]). For self-affine 
systems whose linear parts are strictly positive matrices the Käenmäki measure is a Gibbs 
measure which smoothly depends on the matrix elements, see Bárány and Rams [7] and 
Jurga and Morris [20]. The absolute continuity and the dimension of the Furstenberg 
measure induced by the Käenmäki measure plays a central role in the calculation of the 
dimension of the Käenmäki measure, see [7].

Another possible direction of further research is to study the absolute continuity of 
the SBR-measures of parametrized dynamical systems. Persson [32] considered a class 
of piecewise affine hyperbolic maps on a set K ⊂ R2, with one contracting and one ex-
panding direction, which contains the class of the Belykh maps, as well as the fat baker’s 
transformations. The Belykh map, first introduced by Belykh [4] and later considered 
by Schmeling and Troubetzkoy [38] for a wider range of parameters, which contains the 
fat baker’s transformations as a special case.

For a parametrized family of Belykh maps, to prove the absolute continuity of an 
SBR-measure, one needs to show that the family of conditional measures over the stable 
foliation are absolutely continuous almost surely. Unlike the system defined in Sub-
section 10.1, the SBR-measure does not have a product structure, so the conditional 
measures of the stable directions depend not only on the parameters but also on the 
foliation itself. Persson [32] studied such systems, however, according to a personal com-
munication [33], the proof contains a crucial error, similar to Bárány [1].

Extending our main results to the case of parabolic (and possibly infinite) iterated 
functions systems (as in [43,44,25]) is yet another possible research direction. It seems 
well motivated in the context of continued fractions expansion and would allow extending 
the results of Section 10.5 to their natural generality.

Appendix A. Proof of Lemma 4.1

For u = (u1, . . . , un) ∈ Ω∗ we have

d

dx
fλ
u (x) =

n∏
k=1

(
d

dx
fλ
uk

)
(fλ

σkux), (A.1)

hence
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d2

dx2 f
λ
u (x) =

(
d

dx
fλ
u (x)

) n∑
k=1

(
d2

dx2 f
λ
uk

)
(fλ

σku(x)) · d
dxf

λ
σku(x)(

d
dxf

λ
uk

)
(fλ

σku
(x))

. (A.2)

Applying (A1) and (A4) we obtain∣∣∣∣∣ d2

dx2 f
λ
u (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ M1

γ1

n∑
k=1

∣∣∣∣ ddxfλ
σku(x)

∣∣∣∣ ≤ M1

γ1

n∑
k=1

γn−k
2 ≤ M1

γ1(1 − γ2)
. (A.3)

This proves (4.1). For the proof of (4.2), note first that differentiating (A.1) with respect 
to λ gives

d2

dλdx
fλ
u (x) =

(
d

dx
fλ
u (x)

) n∑
k=1

d
dλ

((
d
dxf

λ
uk

)
(fλ

σku(x))
)(

d
dxf

λ
uk

)
(fλ

σku
(x))

.

Applying (A4) as before we get∣∣∣∣∣ d2

dλdxf
λ
u (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ 1
γ1

n∑
k=1

∣∣∣∣ ddλ
((

d

dx
fλ
uk

)
(fλ

σku(x))
)∣∣∣∣ . (A.4)

By (A1) and (A3) we have∣∣∣∣ ddλ
((

d

dx
fλ
uk

)
(fλ

σku(x))
)∣∣∣∣ ≤ ∣∣∣∣ d2

dλdx
fλ
uk

(fλ
σku(x))

∣∣∣∣
+
∣∣∣∣( d2

dx2 f
λ
uk

)
(fλ

σku(x))
∣∣∣∣ · ∣∣∣∣( d

dλ
fλ
σku

)
(x)

∣∣∣∣
≤ M2 + M1|hk(λ)|, (A.5)

where hk(λ) = d
dλf

λ
σku(x). By (A2) we have L = sup

j∈A
sup
λ∈U

∥∥ d
dλf

λ
j

∥∥
∞ < ∞. Moreover, by 

(A4), we have for 1 ≤ k ≤ n − 1

|hk(λ)| =
∣∣∣∣ ddλ (

fλ
uk+1

(
fλ
σk+1u(x)

))∣∣∣∣
=
∣∣∣∣( d

dλ
fλ
uk+1

)(
fλ
σk+1u(x)

)
+
(

d

dx
fλ
uk+1

)(
fλ
σk+1u(x)

)
·
(

d

dλ
fλ
σk+1u(x)

)∣∣∣∣
≤ L + γ2|hk+1(λ)|, (A.6)

with |hn(λ)| =
∣∣ d
dλ id(x)

∣∣ = 0. Therefore, iterating (A.6) yields

|hk(λ)| ≤ L
n−1−k∑

γj
2 ≤ L

1 − γ2
. (A.7)
j=0
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Combining (A.4), (A.5), (A.6) and (A.7) gives∣∣∣∣∣ d2

dλdxf
λ
u (x)

d
dxf

λ
u (x)

∣∣∣∣∣ ≤ (M2 + M1L
1−γ2

)n
γ1

.

This concludes the proof of Lemma 4.1.

Appendix B. Some more regularity lemmas

Lemma B.1. There exists a constant C71 > 0 such that∣∣∣∣ ddλfλ1
u (x) − d

dλ
fλ2
u (x)

∣∣∣∣ ≤ C71|λ1 − λ2|δ

holds for all λ1, λ2 ∈ U, x ∈ X, u ∈ Ω∗.

Proof. We will prove the claim inductively with respect to n = |u|. More precisely, let 
us assume that

∣∣∣∣ ddλfλ1
u (x) − d

dλ
fλ2
u (x)

∣∣∣∣ ≤ C72

n−1∑
k=0

kγk
2 |λ1 − λ2|δ (B.1)

holds for all u ∈ An, λ1, λ2 ∈ U and x ∈ X with some large enough constant C72
(its value will be specified later). We shall prove that (B.1) holds also for n + 1. Fix 
u = (u1, . . . , un+1) ∈ An+1 and let v = (u1, . . . , un). We have∣∣∣∣ ddλfλ1

u (x) − d

dλ
fλ2
u (x)

∣∣∣∣ ≤ ∣∣∣∣( d

dλ
fλ1
v

)(
fλ1
un+1

(x)
)
−
(

d

dλ
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣+∣∣∣∣ (( d

dx
fλ1
v

)(
fλ1
un+1

(x)
))(

d

dλ
fλ1
un+1

(x)
)
−((

d

dx
fλ2
v

)(
fλ2
un+1

(x)
))(

d

dλ
fλ2
un+1

(x)
) ∣∣∣∣

=: A1 + A2.

Let L = sup
j∈A

sup
λ∈U

‖ d
dλf

λ
j ‖∞. Assumption (A2) implies that L is finite. By (B.1), (A2), 

(A3), (A4) and (4.2) we obtain

A1 ≤
∣∣∣∣( d

dλ
fλ1
v

)(
fλ1
un+1

(x)
)
−
(

d

dλ
fλ2
v

)(
fλ1
un+1

(x)
)∣∣∣∣ +∣∣∣∣( d

fλ2
v

)(
fλ1
un+1

(x)
)
−
(

d
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣
dλ dλ
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≤ C72

n−1∑
k=0

kγk
2 |λ1 − λ2|δ +

∥∥∥∥ d2

dxdλ
fλ2
v

∥∥∥∥
∞

|fλ1
un+1

(x) − fλ2
un+1

(x)|

≤ C72

n−1∑
k=0

kγk
2 |λ1 − λ2|δ + LC52n

∥∥∥∥ d

dx
fλ2
v

∥∥∥∥
∞

|λ1 − λ2|

≤ C72

n−1∑
k=0

kγk
2 |λ1 − λ2|δ + LC52nγ

n
2 |λ1 − λ2|. (B.2)

Therefore, application of (A2) and (A4) gives

A2 ≤
∣∣∣∣( d

dx
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣ · ∣∣∣∣ ddλfλ1

un+1
(x) − d

dλ
fλ2
un+1

(x)
∣∣∣∣+∣∣∣∣ ddλfλ1

un+1
(x)

∣∣∣∣ · ∣∣∣∣( d

dx
fλ1
v

)(
fλ1
un+1

(x)
)
−
(

d

dx
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣

≤ γn
2 C3|λ1 − λ2|δ + L

∣∣∣∣( d

dx
fλ1
v

)(
fλ1
un+1

(x)
)
−
(

d

dx
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣

=: γn
2 C3|λ1 − λ2|δ + LA3 (B.3)

Furthermore, by Lemma 4.1, (A2) and (A4)

A3 ≤
∣∣∣∣( d

dx
fλ1
v

)(
fλ1
un+1

(x)
)
−
(

d

dx
fλ1
v

)(
fλ2
un+1

(x)
)∣∣∣∣+∣∣∣∣( d

dx
fλ1
v

)(
fλ2
un+1

(x)
)
−
(

d

dx
fλ2
v

)(
fλ2
un+1

(x)
)∣∣∣∣

≤
∥∥∥∥ d2

dx2 f
λ1
v

∥∥∥∥
∞

|fλ1
un+1

(x) − fλ2
un+1

(x)| + sup
λ∈U

∥∥∥∥( d2

dλdx
fλ
v

)(
fλ2
un+1

(x)
)∥∥∥∥

∞
|λ1 − λ2|

≤ C51

∥∥∥∥ d

dx
fλ1
v

∥∥∥∥
∞

L|λ1 − λ2| + C52n sup
λ∈U

∥∥∥∥ d

dx
fλ
v

∥∥∥∥
∞

|λ1 − λ2|

≤ (LC51 + C52n) γn
2 |λ1 − λ2|.

Combining the above inequality with (B.2) and (B.3) yields

∣∣∣∣ ddλfλ1
u (x) − d

dλ
fλ1
u (x)

∣∣∣∣ ≤ C72

n∑
k=0

kγk
2 |λ1 − λ2|δ,

provided C72 is large enough. As (B.1) holds for n = 1 by (A2), this concludes the induc-
tive proof of (B.1) for n ≥ 1. As 

∞∑
kγk

2 < ∞, the proof of the lemma is completed. �

k=0
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Lemma B.2. There exist constants C75 > 0, C76 > 0 such that∣∣∣∣ d2

dx2 f
λ1
u (x) − d2

dx2 f
λ2
u (x)

∣∣∣∣ ≤ C75|u||λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u

∥∥∥∥
∞

(B.4)

and ∣∣∣∣ d2

dλdx
fλ1
u (x) − d2

dλdx
fλ2
u (x)

∣∣∣∣ ≤ C76|u|2|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u

∥∥∥∥
∞

(B.5)

hold for all λ1, λ2 ∈ U, x ∈ X, u ∈ Ω∗.

Proof. We shall prove (B.4). The proof of (B.5) is similar and we omit it. Let n = |u|. 
By (A.2) we have∣∣∣∣ d2

dx2 f
λ1
u (x) − d2

dx2 f
λ2
u (x)

∣∣∣∣
≤
∣∣∣∣ ddxfλ1

u (x) − d

dx
fλ2
u (x)

∣∣∣∣ · n∑
k=1

∣∣∣∣∣∣
(

d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) · d

dxf
λ1
σku

(x)(
d
dxf

λ1
uk

)
(fλ1

σku
(x))

∣∣∣∣∣∣
+
∣∣∣∣ ddxfλ2

u (x)
∣∣∣∣ · n∑

k=1

∣∣∣∣∣∣
(

d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) · d

dxf
λ1
σku

(x)(
d
dxf

λ1
uk

)
(fλ1

σku
(x))

−

(
d2

dx2 f
λ2
uk

)
(fλ2

σku
(x)) · d

dxf
λ2
σku

(x)(
d
dxf

λ2
uk

)
(fλ2

σku
(x))

∣∣∣∣∣∣
=: A1 ·A2 +

∣∣∣∣ ddxfλ2
u (x)

∣∣∣∣ · n∑
k=1

hk(x). (B.6)

We will bound now the above terms. First, by (4.2) and the mean value theorem, we 
have

A1 ≤
∣∣∣∣ d2

dλdx
fξ
u(x)

∣∣∣∣ |λ1 − λ2| ≤ C52|u| |λ1 − λ2| sup
λ∈[λ1,λ2]

∣∣∣∣ ddxfλ
u (x)

∣∣∣∣ ,
where ξ ∈ U is a point lying between λ1 and λ2. By (A.3) (recall (A.2))

A2 ≤ M1

γ1(1 − γ2)
.

Reducing the expression defining hk(x) to a common denominator and applying (A4)
gives
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hk(x) ≤ 1
γ2
1

∣∣∣∣ ( d

dx
fλ2
uk

)
(fλ2

σku
(x)) ·

(
d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) · d

dx
fλ1
σku

(x)

−
(

d

dx
fλ1
uk

)
(fλ1

σku
(x)) ·

(
d2

dx2 f
λ2
uk

)
(fλ2

σku
(x)) · d

dx
fλ2
σku

(x)
∣∣∣∣

≤ 1
γ2
1

(∣∣∣∣ ( d

dx
fλ2
uk

)
(fλ2

σku
(x)) −

(
d

dx
fλ1
uk

)
(fλ1

σku
(x))

∣∣∣∣
·
∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) · d

dx
fλ1
σku

(x)
∣∣∣∣ +

∣∣∣∣ ( d

dx
fλ1
uk

)
(fλ1

σku
(x))

∣∣∣∣
·
∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) · d

dx
fλ1
σku

(x) −
(

d2

dx2 f
λ2
uk

)
(fλ2

σku
(x)) · d

dx
fλ2
σku

(x)
∣∣∣∣
)

=: 1
γ2 (A3 ·A4 + A5 ·A6) .

By (A1), (A3), (4.1) we have

A3 ≤
∣∣∣∣ ( d

dx
fλ2
uk

)
(fλ2

σku
(x)) −

(
d

dx
fλ1
uk

)
(fλ2

σku
(x))

∣∣∣∣
+
∣∣∣∣ ( d

dx
fλ1
uk

)
(fλ2

σku
(x)) −

(
d

dx
fλ1
uk

)
(fλ1

σku
(x))

∣∣∣∣
≤ |λ1 − λ2| sup

λ∈[λ1,λ2]

∣∣∣∣( d2

dλdx
fλ
uk

)
(fλ2

σku
(x))

∣∣∣∣+ ∥∥∥∥ d2

dx2 f
λ1
uk

∥∥∥∥
∞

|fλ2
σku

(x) − fλ1
σku

(x)|

≤ M2|λ1 − λ2| + M1|λ1 − λ2| sup
λ∈[λ1,λ2]

∣∣∣∣ ddλfλ
σku(x)

∣∣∣∣ ≤ M11|λ1 − λ2|,

for some constant M11 > 0, as sup
λ∈U

∣∣ d
dλf

λ
σku(x)

∣∣ is bounded uniformly in u ∈ Ω∗, 1 ≤ k ≤ n

and x ∈ X by Lemma B.1. Assumptions (A1) and (A4) imply

A4 ≤ M1γ
n−k
2 and A5 ≤ γ2.

Applying (A1), (A4), (4.2), Lemma B.1 gives

A6 ≤
∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x))

∣∣∣∣ · ∣∣∣∣ ddxfλ1
σku

(x) − d

dx
fλ2
σku

(x)
∣∣∣∣+∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) −

(
d2

dx2 f
λ2
uk

)
(fλ2

σku
(x))

∣∣∣∣ · ∣∣∣∣ ddxfλ2
σku

(x)
∣∣∣∣

≤ M1|λ1 − λ2| sup
λ∈[λ1,λ2]

∣∣∣∣ d2

dxdλ
fλ
σku(x)

∣∣∣∣+
γn−k
2

∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) −

(
d2

dx2 f
λ2
uk

)
(fλ2

σku
(x))

∣∣∣∣
≤ M1|n− k|γn−k

2 |λ1 − λ2| + γn−k
2 A7
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and again by (A1) and Lemma B.1

A7 ≤
∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ1

σku
(x)) −

(
d2

dx2 f
λ1
uk

)
(fλ2

σku
(x))

∣∣∣∣+∣∣∣∣ ( d2

dx2 f
λ1
uk

)
(fλ2

σku
(x)) −

(
d2

dx2 f
λ2
uk

)
(fλ2

σku
(x))

∣∣∣∣
≤ C1|fλ1

σku
(x) − fλ2

σku
(x)|δ + C2|λ1 − λ2|δ

≤ C1|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∣∣∣∣ ddλfλ
σku(x)

∣∣∣∣δ + C2|λ1 − λ2|δ ≤ M12|λ1 − λ2|δ.

Combining the above with (B.6), bound on hk and estimates on A1, . . . , A7 and recalling 

that 
n∑

k=1
|n − k|γn−k

2 ≤
∞∑
k=0

kγk
2 < ∞ finishes the proof of (B.4). �

Appendix C. Proof of Proposition 4.5

We will write d(u, v) for dλ0(u, v). Let n = |u ∧ v|, so that u ∧ v = u1 . . . un. Let us 
begin by proving (4.8). We have

d
dλ (Πλ(u) − Πλ(v)) = d

dλ

[
fλ
u∧v(Πλ(σnu)) − fλ

u∧v(Πλ(σnv))
]

=
(

d
dλf

λ
u∧v

)
(Πλ(σnu)) −

(
d
dλf

λ
u∧v

)
(Πλ(σnv)) +(

d
dxf

λ
u∧v

)
(Πλ(σnu)) · d

dλΠλ(σnu) −(
d
dxf

λ
u∧v

)
(Πλ(σnv)) · d

dλΠλ(σnv)

=
(

d
dλf

λ
u∧v

)
(Πλ(σnu)) −

(
d
dλf

λ
u∧v

)
(Πλ(σnv)) +(

d
dxf

λ
u∧v

)
(Πλ(σnu)) ·

[
d
dλ

(
Πλ(σnu) − Πλ(σnv)

)]
+[(

d
dxf

λ
u∧v

)
(Πλ(σnu)) −

(
d
dxf

λ
u∧v

)
(Πλ(σnv))

]
· d
dλΠλ(σnv)

=: A1 + A2 + A3. (C.1)

Application of (4.2), Lemma 4.4 and (A4) yields

|A1| ≤
∥∥∥∥ d2

dxdλ
fλ
u∧v

∥∥∥∥
∞

|Πλ(σnu) − Πλ(σnv)| ≤ C52n

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

≤ C52

c1
nd(u, v)1−β/4

≤ C52

c1
nγ

3nβ/4
2 d(u, v)1−β ≤ Cβ,1

3 d(u, v)1−β ,

provided Cβ,1 is chosen large enough. Using Lemma 4.4 together with the fact that d
dλΠλ

is bounded on U × Ω (following from Proposition 4.3), one obtains
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|A2| ≤
Cβ,1

3 d(u, v)1−β/4 ≤ Cβ,1

3 d(u, v)1−β ,

if Cβ,1 is large enough. Boundedness of d
dλΠλ, (4.1) and Lemma 4.4 imply

|A3| ≤
∥∥∥∥ d2

dx2 f
λ
u∧v

∥∥∥∥
∞

|Πλ(σnu) − Πλ(σnv)|
∣∣ d
dλΠλ(σnv)

∣∣ ≤ C51

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

∣∣ d
dλΠλ(σnv)

∣∣
≤ Cβ,1

3 d(u, v)1−β ,

once again for Cβ,1 large enough. This finishes the proof of (4.8). For the proof of (4.9), 
let us write a decomposition analogous to (C.1):

d

dλ

(
Πλ1(u) − Πλ1(v)

)
− d

dλ

(
Πλ2(u) − Πλ2(v)

)
=
(
Aλ1

1 −Aλ2
1

)
+
(
Aλ1

2 −Aλ2
2

)
+
(
Aλ1

3 −Aλ2
3

)
.

We have

|Aλ1
1 −Aλ2

1 | =

∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dxdλ
fλ1
u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dxdλ
fλ2
u∧v(y)dy

∣∣∣∣∣∣∣
≤
ˆ

S

∣∣∣∣ d2

dxdλ
fλ1
u∧v(y) −

d2

dxdλ
fλ2
u∧v(y)

∣∣∣∣ dy +
ˆ

S1

∣∣∣∣ d2

dxdλ
fλ1
u∧v(y)

∣∣∣∣ dy
+
ˆ

S2

∣∣∣∣ d2

dxdλ
fλ2
u∧v(y)

∣∣∣∣ dy, (C.2)

where

S = [Πλ1(σnu),Πλ1(σnv)] ∩ [Πλ2(σnu),Πλ2(σnv)],

S1 = [Πλ1(σnu),Πλ1(σnv)] \ [Πλ2(σnu),Πλ2(σnv)],

S2 = [Πλ2(σnu),Πλ2(σnv)] \ [Πλ2(σnu),Πλ2(σnv)].

Set L = sup
λ∈U

sup
u∈Ω

∣∣ d
dλΠλ(u)

∣∣. We have then |Πλ1(σnu) − Πλ2(σnu)| ≤ L|λ1 − λ2| and 

|Πλ1(σnv) − Πλ2(σnv)| ≤ L|λ1 − λ2|, hence

|S1|, |S2| ≤ 2L|λ1 − λ2|. (C.3)

Applying this together with (B.5) and (4.2) to (C.2), followed by Lemma 4.4 and (A4)
as before, yields
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|Aλ1
1 −Aλ2

1 | ≤
(
C76n

2|λ1 − λ2|δ + 4LC52n|λ1 − λ2|
)

sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

≤ Cβ,1,δ

3 |λ1 − λ2|δd(u, v)1−β

if Cβ,1,δ is large enough. Furthermore, applying Proposition 4.3, (4.1), (4.2), Lemma 4.4
and (A4), we obtain

|Aλ1
2 −Aλ2

2 | ≤
∣∣∣( d

dxf
λ1
u∧v

)
(Πλ1(σnu)) −

(
d
dxf

λ2
u∧v

)
(Πλ2(σnu))

∣∣∣ ·∣∣ d
dλ

(
Πλ1(σnu) − Πλ1(σnv)

)∣∣ +∣∣∣( d
dxf

λ2
u∧v

)
(Πλ2(σnu))

∣∣∣ · ∣∣ d
dλ

(
Πλ1(σnu) − Πλ1(σnv)

)
−

d
dλ

(
Πλ2(σnu) − Πλ2(σnv)

)∣∣
≤ 2L

∣∣∣( d
dxf

λ1
u∧v

)
(Πλ1(σnu)) −

(
d
dxf

λ2
u∧v

)
(Πλ1(σnu))

∣∣∣ +

2L
∣∣∣( d

dxf
λ2
u∧v

)
(Πλ1(σnu)) −

(
d
dxf

λ2
u∧v

)
(Πλ2(σnu))

∣∣∣ +

sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

(∣∣ d
dλ

(
Πλ1(σnu) − Πλ2(σnu)

)∣∣+∣∣ d
dλ

(
Πλ1(σnv) − Πλ2(σnv)

)∣∣)
≤ 2L

(
sup

λ∈[λ1,λ2]

∥∥∥∥ d2

dλdx
fλ
u∧v

∥∥∥∥
∞

|λ1 −

λ2| + sup
λ∈[λ1,λ2]

∥∥∥∥ d2

dx2 f
λ
u∧v

∥∥∥∥
∞

|Πλ1(σnu) − Πλ2(σnu)|
)

+

2 sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

Cδ|λ1 − λ2|δ

≤ 2L sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

(C52n|λ1 − λ2| + C51L|λ1 − λ2|) +

2 sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

Cδ|λ1 − λ2|δ ≤ Cβ,1,δ

3 |λ1 − λ2|δd(u, v)1−β

for Cβ,1,δ large enough. By (4.2) and Proposition 4.3, we have

|Aλ1
3 −Aλ2

3 | ≤

∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2 f
λ1
u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2 f
λ2
u∧v(y)dy

∣∣∣∣∣∣∣ ·
∣∣ d
dλΠλ1(σnv)

∣∣ +

⎛⎜⎝ Πλ2 (σnu)ˆ
λ n

∣∣∣∣ d2

dx2 f
λ2
u∧v(y)

∣∣∣∣ dy
⎞⎟⎠ ·

∣∣ d
dλΠλ1(σnv) − d

dλΠλ2(σnv)
∣∣
Π 2 (σ v)
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≤ L

∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2 f
λ1
u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2 f
λ2
u∧v(y)dy

∣∣∣∣∣∣∣ + (C.4)

C52Cδn|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

.

Let intervals S, S1, S2 be defined as before. Then by (B.4), (4.1) and (C.3)∣∣∣∣∣∣∣
Πλ1 (σnu)ˆ

Πλ1 (σnv)

d2

dx2 f
λ1
u∧v(y)dy −

Πλ2 (σnu)ˆ

Πλ2 (σnv)

d2

dx2 f
λ2
u∧v(y)dy

∣∣∣∣∣∣∣
≤
ˆ

S

∣∣∣∣ d2

dx2 f
λ1
u∧v(y) −

d2

dx2 f
λ2
u∧v(y)

∣∣∣∣ dy +
ˆ

S1

∣∣∣∣ d2

dx2 f
λ1
u∧v(y)

∣∣∣∣ dy +
ˆ

S2

∣∣∣∣ d2

dx2 f
λ2
u∧v(y)

∣∣∣∣ dy
≤ C75n|λ1 − λ2|δ sup

λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

+ 4LC51|λ1 − λ2| sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

≤ C86n|λ1 − λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

for some constant C86 > 0. Combining this with (C.4) and applying Lemma 4.4 and 
(A4) gives

|Aλ1
3 −Aλ2

3 | ≤ (C52Cδ+C86)n|λ1−λ2|δ sup
λ∈[λ1,λ2]

∥∥∥∥ d

dx
fλ
u∧v

∥∥∥∥
∞

≤ Cβ,1,δ

3 |λ1−λ2|δd(u, v)1−β

if Cβ,1,δ is large enough. Finally, putting together bounds on |Aλ1
i − Aλ2

i | finishes the 
proof of (4.9).

Appendix D. Drop of the pressure

Let A = {1, . . . , m} and suppose we have an IFS Ψ = {fj}j∈A of the class C1+δ on 
a compact interval X ⊂ R. We assume that the system {fj}j∈A is uniformly hyperbolic 
and contractive:

0 < γ1 ≤ |f ′
j(x)| ≤ γ2 < 1 for all j ∈ A, x ∈ X. (D.1)

Let Ω = AN and let σ denote the left shift on Ω. Let A∗ =
⋃
n≥0

An and let |u| = n for 

u ∈ An. For u = (u1, . . . un) ∈ A∗ denote

fu = fu1...un
:= fu1 ◦ . . . ◦ fun

(with fu = id if u is an empty word).
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Consider the pressure function, defined by

PA(t) = PΨ(t) = lim
n→∞

n−1 log
∑
u∈An

‖f ′
u‖t. (D.2)

It is well-known that this limit exists, t �→ PA(t) is continuous and strictly decreasing 
(it is also convex, but we will not need this).

Lemma D.1. Suppose that B = A \{m}. Then PB(t) < PA(t) for all t ≥ 0. (The functions 
of the IFS are assumed to be the same. The claim can be expressed in words by saying 
that if we drop one of the functions of the IFS, then the pressure drops strictly.)

Proof. For t = 0 the claim is trivial, so let us fix t > 0. Observe that the pressure can 
be expressed in the following alternative way:

PA(t) = lim
n→∞

n−1 log
∑
u∈An

inf
x∈X

|f ′
u(x)|t. (D.3)

Indeed, by the Bounded Distortion Property, there exists K > 1 such that |f ′
u(x)| ≤

K|f ′
u(y)| for all u ∈ A∗ and x, y ∈ X, and (D.3) follows. Denote

Zn(A, t) =
∑
u∈An

inf
x∈X

|f ′
u(x)|t.

We claim that

Zn(A, t) ≥ Zn(B, t) · (1 + δt)n, where δt = γt
1

(m− 1)γt
2
. (D.4)

This will immediately imply that PB(t) < PA(t), as desired. We have

Z1(A, t) = Z1(B, t) + inf
x∈X

|f ′
m(x)|t ≥ Z1(B, t) · (1 + δt),

by (A4). Since infx∈X |f ′
ju(x)|t ≥ infx∈X |f ′

j(x)|t · infx∈X |f ′
u(x)|t, we have

Zn+1(A, t) ≥ Z1(A, t) · Zn(A, t),

and (D.4) follows by induction. �
Consequences. Under the assumptions and notation of Section 10.3, let s(Ψ) be the 

unique zero of the pressure function PΨ(t):

PΨ(s(Ψ)) = 0.

Corollary D.2. Suppose that Φ is a proper subset of Ψ. Then s(Ψ) > s(Φ).
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This is immediate from Lemma D.1.

Corollary D.3. Suppose that the attractor of Ψ is the entire interval X and the IFS is 
overlapping in the sense that∑

j∈A
|Xj | > |X|, where Xj = fj(X). (D.5)

Then s(Ψ) > 1.

Proof. We have X =
⋃

j∈A Xj by assumption. Then (D.5) implies that there exist i �= j

in X such that Xi ∩Xj is a non-empty interval. We can find k ∈ N and w ∈ Ak such 
that Xw ⊂ Xi ∩Xj . It follows easily that⋃

u∈Ak\{w}
Xu = X.

Denote Ψk = {fu : u ∈ Ak}, the IFS of k-th iterates. It follows from the existence of 
the limit in (D.2) that PΨk(t) = kPΨ(t), hence s(Ψk) = s(Ψ). By Corollary D.2, we have 
s(Ψk \{fu}) < s(Ψk). It suffices to show that for an IFS Φ whose attractor is an interval 
X we have s(Φ) ≥ 1. But this follows from the inequality 1 = dimH(ΛΦ) ≤ s(Φ), where 
ΛΦ is the attractor of Φ. �
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