
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 375, Number 9, September 2022, Pages 6747–6767
https://doi.org/10.1090/tran/8749

Article electronically published on July 13, 2022

POLAR EXPLORATION OF COMPLEX SURFACE GERMS

ANDRÉ BELOTTO DA SILVA, LORENZO FANTINI, ANDRÁS NÉMETHI,
AND ANNE PICHON

Abstract. We prove that the topological type of a normal surface singular-

ity (X, 0) provides finite bounds for the multiplicity and polar multiplicity of
(X, 0), as well as for the combinatorics of the families of generic hyperplane
sections and of polar curves of the generic plane projections of (X, 0). A key
ingredient in our proof is a topological bound of the growth of the Mather
discrepancies of (X, 0), which allows us to bound the number of point blowups
necessary to achieve factorization of any resolution of (X, 0) through its Nash
transform. This fits in the program of polar explorations, the quest to deter-
mine the generic polar variety of a singular surface germ, to which the final
part of the paper is devoted.

A ranger walked from his tent 10 km southwards, turned east,
walked straight eastwards 10 km more, met his bear friend,
turned north and after another 10 km found himself by his tent.
What colour was the bear and where did all this happen?

V. I. Arnold’s (Odessa, 12 June 1937 – Paris, 3 June 2010)
selection of problems for children from 5 to 15

1. Introduction

A normal complex surface singularity (X, 0) can be resolved either by a sequence
of normalized point blowups, following seminal work of Zariski [Zar39] from the
late nineteen thirties, or by a sequence of normalized Nash transforms, as was
done half a century later by Spivakovsky [Spi90]. The main goal of this paper is
to shed some light on the relationship between these two resolution algorithms,
which despite their importance and their centrality in modern mathematics is still
quite mysterious, providing some evidence of a duality between the two which was
initially observed by Lê [Lê00, §4.3].

While the blowup Bl0X of the maximal ideal of (X, 0) is the minimal modifi-
cation which resolves the family of generic hyperplane sections of (X, 0), the Nash
transform ν of (X, 0) is the minimal modification that resolves the family of the
polar curves associated with the generic plane projections of (X, 0). Therefore, the
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study of the duality of resolution algorithms translates into the study of the relative
positions on (X, 0) of those two families of curves. This is the viewpoint we adopt
in this paper. Our main theorem roughly states that fixed the topology of (X, 0),
that is the homeomorphism class of its link, there are, up to homeomorphism, only
a finite number of possible relative positions between these families of curves.

In order to give a precise statement of our result we need to introduce some
additional notation. Let π : Xπ → X be a good resolution of (X, 0), by which we
mean a proper bimeromorphic morphism from a smooth surface Xπ to X which
is an isomorphism outside of a simple normal crossing divisor E = π−1(0), and
denote by V (Γπ) the set of vertices of the dual graph Γπ of π, so that every element
v of V (Γπ) corresponds to an irreducible component Ev of E. We weight Γπ by
attaching to each vertex v the genus g(v) ≥ 0 of the complex curve Ev and the
self-intersection e(v) < 0 of Ev.

For each v in V (Γπ), we denote by lv the intersection multiplicity of Ev with
the strict transform of the zero locus of a generic hyperplane section h : (X, 0) →
(C, 0), and we say that the L-vector of (X, 0) is the vector Lπ = (lv)v∈V (Γπ) ∈
Z
V (Γπ)
≥0 . Whenever π : Xπ → X factors through Bl0X, the strict transform of such

a generic hyperplane section via π consists of a disjoint union of smooth curves that
intersect transversely E at smooth points of E, and lv is the number of such curves
passing through the component Ev. Similarly, we denote by pv the intersection
multiplicity of the strict transform of the polar curve of a generic plane projection
� : (X, 0) → (C2, 0) with Ev and we say that the P-vector of (X, 0) is the vector

Pπ = (pv)v∈V (Γπ) ∈ Z
V (Γπ)
≥0 . Whenever π : Xπ → X factors through ν, such a strict

transform consists of smooth curves intersecting E transversely at smooth points,
and pv equals the number of such curves through Ev. We can now give a precise
statement of our main result:

Theorem A. Let M be an oriented real 3-manifold. There exists finitely many
triplets (Γ, L, P ), where Γ is a weighted graph and L and P are vectors in (Z≥0)

V (Γ),
such that there exists a normal surface singularity (X, 0) satisfying the following
conditions:

(i) The link of (X, 0) is homeomorphic to M .
(ii) (Γ, L, P ) = (Γπ, Lπ, Pπ), where π : Xπ → X is the minimal good resolution

of (X, 0) which factors through the blowup of the maximal ideal and the
Nash transform of (X, 0).

Recall that the link of a normal surface singularity (X, 0), which is defined by
embedding (X, 0) in a suitable smooth germ (CN , 0) and intersecting it with a small
euclidean sphere centered at 0, is, up to homeomorphism, a well defined oriented
real 3-manifold which determines and is determined by the orientation preserving
homeomorphism class of the germ (X, 0) thanks to the Conical Structure Theorem
[Mil68, Theorem 2.10]. Equivalently, the oriented topological type of (X, 0) can be
completely described in terms of the weighted dual graph Γπ of any good resolution
π of (X, 0), since Γπ is a plumbing graph of the link of (X, 0). Conversely, Neumann
[Neu81] proved that the weighted dual graph of the minimal good resolution of
(X, 0) is determined by the oriented topology of the surface germ. Adopting this
point of view, the datum of the oriented 3-manifold M of Theorem A is equivalent
to the one of a weighted dual graph Γ, and as a consequence of the theorem we
obtain Corollary B:
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POLAR EXPLORATION OF COMPLEX SURFACE GERMS 6749

Corollary B. Let Γ be a weighted graph. Then there are finitely many pairs (L, P )
of elements of (Z≥0)

V (Γ) such that there exist a normal surface singularity (X, 0)
and a good resolution π of (X, 0) satisfying

(Γ, L, P ) = (Γπ, Lπ, Pπ).

One of the ingredients of the proof of Theorem A is the fact that the topological
type of a normal surface singularity determines an upper bound of the multiplicities
of the germs realizing it. We believe this statement to be of independent interest:

Proposition C. Let M be an oriented real 3-manifold. Then there exists a natural
number nM that only depends on the oriented homeomorphism type of M such that,
if (X, 0) is a normal surface singularity whose link is homeomorphic to M , the
multiplicity m(X, 0) of (X, 0) is at most nM .

Moreover, an explicit value for the bound nM can be computed in terms of the
topology of M . Our proof of this result makes use of a construction of Caubel,
Popescu-Pampu, and the third author [CNPP06].

Given a weighted graph Γ, Proposition C would then be sufficient to prove the
finiteness of the set of the L-vectors L such that the pair (Γ, L) can be realized by
a surface singularity (X, 0). By a procedure that we call gardening, we then obtain
the finiteness of pairs (Γ, L) such that Γ is the graph of the minimal good resolution
factoring through the blowup of the maximal ideal. In order to obtain the finiteness
of the P -vector, we then use the well-known Lê–Greuel–Teissier formula [LT81] to
deduce from Proposition C a bound on the multiplicity of the polar curve of (X, 0)
in terms of nM and of the Euler characteristic of the Milnor–Lê fiber of a generic
linear form on (X, 0), which can be computed in terms of the graph Γ.

While the argument above would suffice to deduce Corollary B, in order to
prove Theorem A we also need to prove that the topological type of (X, 0) provides
a bound of the number of point blowups necessary to go from any good resolution
of (X, 0) to one factoring through the Nash transform of (X, 0). We do this by
considering a set of invariants, the so-called Mather discrepancies introduced by de
Fernex, Ein, and Ishii [dFEI08], and proving that they are bounded from above by
another vector invariant (νv) which only depends on the topological type of (X, 0).
We conclude by showing that the Mather discrepancies grow faster than (νv) does
when we perform any blowup necessary to achieve factorization through the Nash
transform, which permits us to set up an inductive argument. The key technical
result allowing us to do this is Theorem 5.1, which proves the existence of a suitable
sheaf of Kähler 2-forms that only depends on the topological type of (X, 0), leading
to the definition of the invariant (νv).

�
While Theorem A provides a finite list of possibly realizable pairs of L- and

P-vectors L and P , the list outputted by its proof could still be fairly long. In
the final section of the paper we discuss how to sharpen this bound by studying
additional restrictions on the relative positions of generic hyperplane sections and
polar curves.

We recast this problem in the framework of polar exploration, which is the quest
of determining the P-vectors P which can be realized by a normal surface singularity
which realizes a fixed pair (Γ, L).

In order to approach this question, we build on the so-called Laplacian formula
of a normal surface singularity. This result, proven by three of the authors of
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the present paper in [BdSFP22], can be thought of as a local version of the Lê–
Greuel–Teissier formula referred to above. It describes the behavior of an infinite
family of metric invariants of a normal surface singularity (X, 0), called its inner
rates, that appeared naturally in the study of the Lipschitz geometry of (X, 0) in
the foundational work [BNP14]. This tool has been used in the previous work
[BdSFP20, Theorem 1.1] to prove that the problem of polar exploration admits a
unique solution for a specific class of surface singularities, those that are Lipschitz
Normally Embedded, extending a result of Bondil on minimal surface singularities
[Bon16].

Additional restrictions on the relative hyperplane and polar positions can be
derived from the topology of Milnor–Lê fibers; this is discussed in Lemma 7.1.

We conclude the paper by discussing in detail an example from [MM20], for
which by combining the Laplacian formula with the topological constraints from
Lemma 7.1 we obtain a unique solution to the problem of polar exploration (see
Example 8.1).

2. Preliminaries on Lipman cones

In this section we begin by recalling the notion of Lipman cone, and then prove
an adaptation of a result of Caubel, Popescu-Pampu, and the third author from
[CNPP06] which will be useful in the remaining part of the paper. A more thorough
discussion of the basic objects described in this section can be found in [Ném99].

Let Γ be a finite connected graph without loops and such that each vertex
v ∈ V (Γ) is weighted by two integers g(v) ≥ 0, called genus, and e(v) ≤ −1,
called self-intersection. We assume that the incidence matrix induced by the self-
intersections of the vertices of Γ, that is the matrix IΓ ∈ ZV (Γ) whose (v, v′)-th
entry is e(v) if v = v′, and the number of edges of Γ connecting v to v′ otherwise,
is negative definite. Let E =

⋃
v∈V (Γ)Ev be a configuration of curves whose dual

graph is Γ, so that IΓ = (Ev ·Ev′), and consider the free additive group G generated
by the irreducible components of E, that is

G =

{
D =

∑
v∈V (Γ)

dvEv

∣∣∣∣ dv ∈ Z

}
.

By a slight abuse of notation, we refer to the elements of G as divisors on Γ. On
G there is a natural intersection pairing D ·D′, described by the incidence matrix
IΓ, and a natural partial ordering given by setting

∑
dvEv ≤

∑
d′vEv if and only

if dv ≤ d′v for every v ∈ V (Γ).
The Lipman cone of Γ is the sub-semi-group E+ of G defined as

E+ =
{
D ∈ G

∣∣D · Ev ≤ 0 for all v ∈ V (Γ)
}
.

Remark 2.1. By looking at the coefficients of a divisor we can identify G with the
additive group ZV (Γ). Then the Lipman cone E+ of Γ is naturally identified with

the cone Z
V (Γ)
≥0 ∩−I−1

Γ

(
Q

V (Γ)
≥0

)
, since by definition a divisor

∑
dvEv belongs to E+

if and only if the vector IΓ · (dv)v∈V (Γ) belongs to Z
V (Γ)
≤0 .

A cardinal property of the Lipman cone E+, proven in [Art66, Proposition 2], is
that it has a unique nonzero minimal element ZΓ

min, called the fundamental cycle
of Γ, and that moreover ZΓ

min � 0, that is the coefficients of ZΓ
min are all strictly
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POLAR EXPLORATION OF COMPLEX SURFACE GERMS 6751

positive. Observe that the existence of the fundamental cycle and the fact that
ZΓ
min � 0 are equivalent to the fact that D � 0 for every nonzero divisor D in E+.
Assume from now on that Γ is the dual graph of a good resolution π of a normal

surface singularity (X, 0). Notice that the Lipman cone, and therefore its funda-
mental cycle, only depend on the graph Γ, that is on the topology of (X, 0), and
not on the complex analytic type of (X, 0); the fundamental cycle ZΓ

min can be
computed from Γ by using Laufer’s algorithm from [Lau72, Proposition 4.1].

Consider now a germ of analytic function f : (X, 0) → (C, 0). The total transform
of f by π is the divisor (f) = (f)Γ + f∗ on Xπ, where f∗ is the strict transform of
f and (f)Γ =

∑
v∈V (Γ) mv(f)Ev is the divisor supported on E such that mv(f) is

the multiplicity of f ◦ π along Ev. By [Lau71, Theorem 2.6], we have

(1) (f) · Ev = 0 for all v ∈ V (Γ).

In particular, (f)Γ belongs to the Lipman cone E+ of Γ, and therefore the semi-
group A+

X = {(f)Γ | f ∈ OX,0} of G is contained in E+; it has a unique nonzero
minimal element ZΓ

max(X, 0) =
∑

v∈V (Γ) mvEv, which is called the maximal ideal

divisor of (X, 0). Observe that ZΓ
max(X, 0) coincides with the cycle (h)Γ of a generic

linear form h : (X, 0) → (C, 0), so that lv = −ZΓ
max(X, 0) ·Ev for all v in V (Γ), the

integer mv is the multiplicity of the generic linear form h along Ev, and, by the
definition of the fundamental cycle, ZΓ

min ≤ ZΓ
max(X, 0).

In general the inclusion A+
X ⊂ E+ is strict and thus we may have ZΓ

min �=
ZΓ
max(X, 0). However, given a weighted graph Γ with negative definite intersec-

tion matrix, for all D ∈ E+, there exists a normal complex surface singularity
(X, 0) and a resolution π : Xπ → X such that Γπ = Γ and D ∈ A+

X ([Pic01, The-
orem 5.4] or [NP07, Theorem 2.1]). So in particular, there exists (X, 0) such that
ZΓ
min = ZΓ

max(X, 0). However, when D is sufficiently big, it can be obtained as cy-
cle (f)Γ of an analytic function f on any surface singularity realizing the weighted
graph Γ, as showed in [CNPP06, Theorem 4.1]. Proposition 2.2 is an adaptation of
that result.

Proposition 2.2. Let Γ be a weighted graph and let D ≥ 0 be a nonzero effective
divisor on Γ. Then

(i) Assume that for every vertex v of Γ we have

(2) D · Ev + valΓ(v) + 2g(v) ≤ 0,

where valΓ(v) denotes the valency of v in Γ. Then, for every normal surface
singularity (X, 0) and every good resolution π : (Xπ, E) → (X, 0) of (X, 0)
whose weighted dual graph is Γ, there exists a function f ∈ MX,0 with an
isolated singularity at 0 such that (f) = (f)Γ + f∗ is a normal crossing
divisor on Xπ and (f)Γ = D. Moreover, the line bundle OXπ

(−D) has
no basepoints (that is, for every point a ∈ E there exists a global section
s ∈ H0

(
Xπ,OXπ

(−D)
)
such that s(a) �= 0).

(ii) If moreover the stronger inequality

(3) D · Ev + valΓ(v) + 2g(v) + 2 ≤ 0

holds for every vertex v of Γ, then for every free point a in E (that is, a is
not a double point of E) we can find a function f ∈ MX,0 with an isolated
singularity at 0 such that (f) = (f)Γ + f∗ is a normal crossing divisor on
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Xπ and (f)Γ = D and such that the strict transform f∗ of f via π passes
through a.

We remark that the reason why the second part requires a stronger inequality is
because we want the inequality of the first part to hold also after blowing up a free
point of E.

Proof. What is missing from [CNPP06, Theorem 4.1] with respect to the first part
of our statement is the basepoint-freeness ofOXπ

(−D). To see this, we recall the fol-
lowing two facts which are obtained in the proof [CNPP06, Theorem 4.1]: first, the
natural application H0

(
OXπ

(−D)
)
→ H0

(
OE(−D)

)
is surjective [CNPP06, Page

685, second to last paragraph]; second, for every point a ∈ E, there exists a global
section of OE(−D) which is nonzero at a [CNPP06, Page 685, last paragraph]. Now
fix a point a ∈ E and consider the set

Ha =
{
s ∈ H0(E,OE(−D))

∣∣ s(a) = 0
}
,

which is the kernel of the linear map H0
(
E,OE(−D)

)
→ C given by the evaluation

of the sections at a. By the second fact, it is a proper subspace of H0
(
E,OE(−D)

)
of codimension at least one. Finally, the function f of the statement of the theorem
is taken as a global section of OXπ

(−D) whose projection to OE(−D) is generic
[CNPP06, Page 686, second paragraph]. We conclude that we can suppose the
strict transforms of f does not pass through a. This proves (i).

In order to prove part (ii), let D be an effective cycle satisfying inequality (3)
for every vertex v ∈ V (Γ). Fix a free point a ∈ E and consider the blowup
σ : (Xπ′ , E′) → (Xπ, E) with center a. We denote by π′ = π ◦ σ, and by E′

w the
irreducible component of the exceptional divisor created by σ. Consider the cycle
D′ = σ∗(D) + E′

w. Note that D′ · E′
w = −1 = − valΓπ′ (w) − 2g(w) and, if v �= w

then v is also a vertex of Γπ, which implies that

D′ · E′
v = D · Ev + E′

w · E′
v ≤ D · Ev + 1,

and we conclude that D′ satisfies inequality (2) for every vertex v ∈ Γπ′ . It follows
from part (i) that there exists a function f ∈ MX,0 with an isolated singularity at
0 such that (f) = (f)Γπ′ + f∗

π′ is a normal crossing divisor on X ′
π, (f)Γπ′ = D′ and

f∗
π′ · Ew = valΓπ′ (w) + 2g(w) = 1. We conclude that (f) = (f)Γπ

+ f∗
π is such that

(f)Γπ
= D, and (f) is a normal crossing divisor on Xπ outside a neighborhood of

a. At the point a, we know that the order of f∗
π must be one, implying that it is

smooth (since, after the blowup, (f)Γπ′ = D′ = σ∗(D) + E′
w). Furthermore, f∗

π

must be transverse to the exceptional divisor, since its strict transform is transverse
to a free point of Ew. We therefore conclude that (f) is a normal crossing divisor
on Xπ and that f∗

π contains the free point a. This proves (ii). �

3. Bound on multiplicities

In this section we prove Proposition C using the construction of Proposition 2.2
and some basic commutative algebra.

As mentioned in the introduction, thanks to [Neu81] the datum of an orienta-
tion preserving homeomorphism class of an oriented real 3-manifold M that can be
realized as the link of a normal surface singularity is equivalent to the datum of a
weighted connected graph Γ with negative-definite self-intersection matrix. More-
over, for a given M , there is an unique such graph Γ that is minimal in the sense
that it has no vertex of genus 0, valency at most two, and self-intersection -1. Let
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us therefore fix such a minimal graph Γ, let (X, 0) be a normal surface singularity,
and let π : (Xπ, E) → (X, 0) be the minimal good resolution of (X, 0), and assume
that the weighted dual graph of π is Γ. Let D be an integral effective divisor satis-
fying the inequality (2) of Proposition 2.2 for every vertex v of Γ, so that the line
bundle OXπ

(−D) is basepoint-free. Since (X, 0) is normal, reasoning like at the
beginning of the proof of Proposition 2.2 this implies the existence of two functions
f, g ∈ MX,0, with an isolated singularity at 0, whose total transforms by π are
given by

(f) = (f)Γ + f∗ = D + f∗, (g) = (g)Γ + g∗ = D + g∗,

where the strict transforms f∗ and g∗ are smooth disjoint curves. Consider the
map Ψ = (f, g) : (X, 0) → (C2, 0), which is a finite flat morphism since (X, 0) is a
normal surface singularity. Then the degree deg(Ψ) of Ψ can be computed as the
number of points in a general fiber of Ψ, that is the number dim

(
OX,0/(f, g)

)
of

intersection points (f = ε)∩ (g = δ) for sufficiently small ε and δ in a neighborhood
of 0 in C. Since f∗ · g∗ = 0, we conclude that this intersection multiplicity is equal
to D · g∗. By [Lau71, Theorem 2.6] we have (g) · D =

(
(g)Γ + g∗

)
· D = 0, and

so deg(Ψ) = g∗ ·D = −D2, which implies that dim
(
OX,0/(f, g)

)
= −D2. It now

follows from [Mat89, Theorem 14.10] that dim
(
OX,0/(f, g)

)
≥ m

(
(f, g),OX,0

)
,

and from [Mat89, Formula 14.4] that m
(
(f, g),OX,0

)
≥ m(MX,0,OX,0) = m(X, 0);

where we refer the reader to Section 14 of loc. cit. for the definition of the multiplic-
itym(a,OX,0) of anMX,0-primary ideal a ofOX,0. We deduce thatm(X, 0) ≤ −D2,
which concludes the proof of Proposition C. �

4. Bounding the number of L-vectors
The results of the previous sections are sufficient to prove the following weaker

version of Theorem A.

Proposition 4.1. Let M be an oriented real 3-manifold. There exists finitely many
pairs (Γ, L), where Γ is a weighted graph and L is a vector in (Z≥0)

V (Γ), such that
there exists a normal surface singularity (X, 0) satisfying the following conditions:

(i) The link of (X, 0) is homeomorphic to M .
(ii) (Γ, L) = (Γπ, Lπ), where π : Xπ → X is the minimal good resolution of

(X, 0) which factors through the blowup of the maximal ideal of (X, 0).

Proof. As discussed at the beginning of Section 3, the orientation preserving home-
omorphism class of M determines a minimal weighted graph Γ0. Let (X, 0) be a
normal surface singularity whose minimal good resolution π : Xπ → X has weighted
dual graph Γ0 and denote by L = (lv)v∈V (Γ0) the corresponding L-vector and by

(mv)v∈V (Γ0) the corresponding multiplicities, that is ZΓ0
max(X, 0) =

∑
v∈V (Γ0)

mvEv.

Denote now by π′ : Xπ′ → X the minimal good resolution of (X, 0) that factors
through the blowup of its maximal ideal. We claim that there are finitely many
possibilities for the weighted dual graph Γπ′ of π′. Indeed, the map π′ factors
through π, and the resulting map α : Xπ′ → Xπ is a sequence of point blowups,
each of which is centered at a basepoint of the family of generic hyperplane sections
of (X, 0). In particular, under each such blowup, the sum

∑
v mvlv increases. Since

we have
∑

v∈V (Γ) mvlv = −ZΓ
max(X, 0)2 ≤ m(X, 0) by [Wag70, Theorem 2.7] (see

also [Ném99, Theorem 2.18]), and the latter is bounded by the integer nM from
Proposition C, this implies that α consists of at most nM point blowups, which is
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6754 A. BELOTTO DA SILVA, L. FANTINI, A. NÉMETHI, AND A. PICHON

sufficient to describe a finite list of graphs to which Γπ′ belongs. Moreover, since
mv ≥ 1 for all vertices v of Γπ′ , we deduce that lv ≤ nM for all v, which proves that
finitely many vectors in ZV (Γπ′ ) can be realized as L-vectors of a normal surface
singularity. �
Remark 4.2. While we have striven to make the proof above as simple as possible,
more optimal bounds on the number of realizable vectors L can be found via a more
careful approach. For instance, not all vectors L outputted by the proof above can
be obtained as solution of a linear system of the form L = ZΓ

max(X, 0) · E, since
I−1
Γ ·L needs not have integer coordinates in general. One can obtain a shorter list
of possibly realizable L-vectors by considering the smallest possible integral divisor
D to which Theorem 2.2 applies (this divisor can be found very easily using the
dual basis of the Lipman cone with respect to the intersection matrix of Γ), so that
ZΓ
max(X, 0) ≤ D, which gives us a finite list of candidates for the maximal ideal

divisor of any normal surface singularity realizing Γ, and therefore a much shorter
list of possibilities for the vector L. We can then also reduce the list of possibilities
for the graph Γπ′ by only considering the possible maximal ideal divisors and L-
vectors above, which greatly reduces the number and combinatorics of the blowups
in the morphism α appearing in our proof.

5. Kähler differentials and valuative invariants

In this section we introduce two valuative invariants associated with the sheaf
of 2-forms on a normal surface singularity and prove some results that will allow
us to use them to prove Theorem A in Section 6.

Given a normal surface singularity (X, 0), we consider the sheaf of Kähler 2-forms
Ω2

X on X. We refer the reader to [Eis95, §16] or [Gro60] for the general definition; in
this paper it is enough to work with the following local description of its pullback to
a resolution, proven in §20.2 of loc. cit.: given a local embedding i : (X, 0) ↪→ (CN , 0)
and a good resolution π : (Xπ, E) → (X, 0), we have π∗Ω2

X = (i ◦ π)∗Ω2
CN , where

Ω2
CN is the sheaf of differential 2-forms on CN .

Now, since Xπ is smooth, the sheaf of 2-forms Ω2
Xπ

is locally free of rank one.

Consider the OXπ
-subsheaf generated by the image of π∗ : Ω2

X → Ω2
Xπ

. This sheaf

is of the form F0(π) Ω
2
Xπ

, where F0(π) is an ideal sheaf called the 0-Fitting ideal
sheaf associated with π (see [Eis95, § 20.2] or [BdSBGM17, §2.3]).

We now recall the definition of a natural invariant associated with the sheaf Ω2
X ,

introduced in [dFEI08, Definition 1.9] (see also [IR13, Page 1259] or [dFD14, § 2.1]
for a point of view closer to the one we adopt here). Given a vertex v of V (Γπ),

the Mather discrepancy k̂v of (X, 0) along v is defined as

k̂v = ordv
(
π∗(Ω2

X)
)
= ordv

(
F0(π)

)
.

We also consider the residual ideal sheaf R0(π) of F0(π) [BdSBGM17, Defini-
tion 4.1], which is defined stalk-wise by setting

(4) F0(π)a = R0(π)a
∏

v∈V (Γ) s.t. a∈Ev

xv,a
k̂v

for every closed point a of E, where xv,a is a reduced local equation for Ev at a.
Note that the order of vanishing orda(R0(π)) of the ideal sheaf R0(π) at a closed
point a of E is zero except at finitely many points a; in particular its order along
Ev is zero for each v ∈ V (Γπ). Moreover, R0(π) is trivial if and only if F0(π) is
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principal, which is equivalent to the fact that π factors through the Nash transform
of (X, 0) (this result can be found in [BdSBGM17, Theorem 2.5], but also seems
to be implicit in other references, such as [dFEI08]). In our context, it can also be
seen from [Spi90, III, Theorem 1.2] that π factors through the Nash transform of
(X, 0) if and only if the family of the polar curves of the generic plane projections
of (X, 0) has no basepoints on Xπ.

The relation between the 0-Fitting ideal sheaf and generic polar curves can be
seen explicitly as follows. Let (ΠD)D∈Ω be the family of polar curves associated
with the generic plane projections �D : (X, 0) → (C2, 0) of (X, 0) (with the notations
of [BdSFP22, Section 2.2], so that in particular it is an equisingular family in the
sense of strong simultaneous resolution). Consider a closed point a of E. For all D
in Ω, denote by (ΠD,a, 0) the union of the irreducible components of (ΠD, 0) whose
strict transforms pass through a, and let Ωa be the maximal Zariski open and dense
subset of Ω such that the family (ΠD,a)D∈Ωa

is equisingular. Note that the latter
condition is equivalent to ask that the number of irreducible components of ΠD,a is
constant for every D in Ωa and that, by definition, ΠD,a is nonempty if and only if a
is a basepoint of the family of polar curves (ΠD)D∈Ω. Then the ideal sheaf R0(π)a
defines exactly the family consisting of the strict transforms via π of the curves ΠD,a,
for D in Ωa. Indeed, suppose that a is a free point of E (the case when a is a double
point is completely analogous) belonging to the component Ev and that (x, y) are
local coordinates for Xπ at a such that Ev is locally defined by the equation x = 0.
If locally at a we write φD(x, y) = (�D◦π)(x, y) =

(
z1(x, y), z2(x, y)

)
, then F0(π)a is

generated by the forms φ∗
D(dz1 ∧ dz2)a, where D varies in Ωa, �D : (X, 0) → (C2, 0)

is the associated plane projection, and dz1 ∧ dz2 is the standard volume form on
(C2, 0). Observe that we can write

φ∗
D(dz1 ∧ dz2)a = Jac

(
φ(x, y)

)
(dx ∧ dy) = xk̂vfD(x, y)(dx ∧ dy)

for some fD in OXπ,a. Since π is an isomorphism outside of E, it follows that
fD(x, y) = 0 is the local equation at a of the strict transform via π of the critical
locus of �D, which is by definition the polar curve of �D. In other words, fD(x, y) = 0
is the local equation of the curve (ΠD,a, 0) defined above. We refer to [Spi90,
Chapter 3, Section 1] for further details.

Although the Mather discrepancies k̂v depend on the analytic structure of (X, 0),
we will show that the weighted dual graph Γπ of a good resolution of singularities
π : (Xπ, E) → (X, 0) is enough to bound their growth under blowups. We start by
proving Theorem 5.1.

Theorem 5.1. Let Γ be a weighted graph. Then there exists a divisor D on Γ
such that, for every normal surface singularity (X, 0) and every good resolution
π : (Xπ, E) → (X, 0) of (X, 0) whose weighted dual graph is Γ, the line bundle
OXπ

(−D) is basepoint-free and there exists a subsheaf Ω ⊂ Ω2
X of the sheaf of

Kähler differentials of X, such that the pullback π∗(Ω) generates a OXπ
-subsheaf of

Ω2
Xπ

of the form J (π)Ω2
Xπ

, where J (π) is a principal ideal sheaf equal to OXπ
(−D).

Observe that if we had only been interested in the existence of a basepoint-free
subsheaf of Ω2

Xπ
we could have obtained it from [Lau83, Theorem 3.1]. However,

for our applications, and namely to prove Lemma 5.3, it is important to require
that this subsheaf is the pullback of a subsheaf of Ω2

X .
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Proof. Let D1 =
∑

v∈V (Γ) αvEv and D2 =
∑

v∈V (Γ) βvEv be two integral effective

divisors satisfying inequality (3) for every vertex v ∈ V (Γ), and which verify the
following open condition in the Lipman cone: αvβw − βvαw �= 0, for all vertices v
and w of V (Γ) which are connected by an edge. We set D = D1 +D2 − E.

Note that by Proposition 2.2(i), both line bundles OXπ
(−D1) and OXπ

(−D2)
have no basepoints. This fact together with the normality of (X, 0) implies the exis-
tence of two ideals I1 and I2 of MX,0 whose pullbacks by π are equal to OXπ

(−D1)
and OXπ

(−D2) respectively. By considering a local embedding i : (X, 0) ↪→ (CN , 0),
we may assume without loss of generality that I1 and I2 are ideals of M(CN ,0).

Consider the O(CN ,0) submodule of 2-forms Ωa ⊂ Ω2
CN generated by all 2-forms

df1 ∧ df2 with f1 in I1 and f2 in I2. We claim that the sheaf Ω = i∗Ωa has the
desired properties.

Indeed, since Xπ is a smooth surface, the sheaf Ω2
Xπ

is everywhere an OXπ

free module of rank 1, and the pullback (π ◦ i)∗Ωa generates a sheaf of the form
J (π)ΩXπ

, where J (π) is an ideal sheaf. We now verify that J (π) is a principal
ideal sheaf equal to OXπ

(−D); note that it is enough to verify this statement at
each point a ∈ E. We divide the proof in two parts depending on the nature of a
as follows.

Suppose first that a is a free point of Ev. There exists a local coordinate system
(x, y) centered at a such that Ev is locally equal to (x = 0). By Proposition 2.2,
there are two functions f1 in I1 and f2 in I2 such that, apart from a change of
coordinates, (f1 ◦ π)(x, y) = xαvy and (f2 ◦ π)(x, y) = xβv . It follows that

π∗(df1 ∧ df2) = βvx
αv+βv−1dx ∧ dy,

which implies that J (π)a ⊃ (xαv+βv−1). The other inclusion follows from the fact
that π∗(I1) = OXπ

(−D1) and π∗(I2) = OXπ
(−D2); indeed, note that this property

implies that for every two functions g1 in I1 and g2 in I2, we can write g1 = xαv g̃1
and g2 = xβv g̃2, where g̃1 and g̃2 ∈ Oa. It follows that

π∗(dg1 ∧ dg2) = xαv+βv−1g̃1,2 dx ∧ dy,

for some function g̃1,2 ∈ Oa, so that J (π)a ⊂ (xαv+βv−1). We conclude that
J (π)a = (xαv+βv−1).

Suppose now that a ∈ Ev ∩ Ew is a double point of E. There exists a local
coordinate system (x, y) centered at a such that Ev = (x = 0) and Ew = (y =
0). By Proposition 2.2, there are two functions f1 ∈ I1 and f2 ∈ I2 such that
(f1◦π)(x, y) = xαvyαwU1(x, y) and (f2◦π)(x, y) = xβvyβwU2(x, y) where U1(0) �= 0
and U2(0) �= 0. Since αvβw − αwβv �= 0, up to a change of coordinates we may
suppose that U1 ≡ U2 ≡ 1, so that

π∗(df1 ∧ df2) = (αvβw − αwβv) x
αv+βv−1yαw+βw−1dx ∧ dy,

which implies that J (π)a ⊃ (xαv+βv−1yαv+βv−1); the other inclusion follows easily
from the fact that π∗(I1) = OXπ

(−D1) and π∗(I2) = OXπ
(−D2), as explained

in the previous case, so that J (π)a = (xαv+βv−1yαv+βv−1). This concludes the
proof. �

Fix a graph Γ, let us fix once and for all a divisor D on Γ satisfying the properties
stated in Theorem 5.1, and write

(5) D =
∑

v∈V (Γ)

νvEv.
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Note that, if (X, 0) is a normal surface singularity, π : (Xπ, E) → (X, 0) is a good
resolution of (X, 0) whose weighted dual graph is Γ, and Ω is the subsheaf of Ω2

X

given by Theorem 5.1, (so that the pullback π∗(Ω) generates a sheaf of the form
J (π) Ω2

Xπ
, where J (π) is a principal ideal sheaf equivalent to the basepoint-free

line bundle OXπ
(−D)), we also have νv = ordv(π

∗(Ω)) = ordv(J (π)). This leads
to a natural extension of the definition of these invariants to a vertex v of the dual
graph Γπ of any good resolution π′ of (X, 0) that factors through π, by setting
νv = ordv(π

′∗(Ω)) = ordv(J (π′)). Note that this definition only depends on the
combinatorics of the sequence of blowups required to pass from π to π’. This is
made clear by Lemma 5.2, and also explains how the Mather discrepancies behave
after blowups.

Lemma 5.2. Let Γ and D be as above. Let (X, 0) be a normal surface singularity,
let π be a good resolution of (X, 0) whose weighted dual graph is Γ, let π′ be another
good resolution that factors through π, and let π′′ = π′ ◦ σ be the composition of π′

with a blowup σ : (Xπ′′ , E′′) → (Xπ′ , E′) centered at a closed point a of E′. Write
σ−1(a) = Ew. Then we have:

(i) if a is a smooth point of E′ contained in the component Ev we have

νw = νv + 1 and k̂w = k̂v + 1 + orda
(
R0(π

′)
)
;

(ii) if a is a double point of E′ lying at the intersection of two components Ev

and Ev′ we have

νw = νv + νv′ + 1 and k̂w = k̂v + k̂v′ + 1 + orda
(
R0(π

′)
)
.

Proof. We divide the proof in two cases depending on the nature of a ∈ E′ and
perform two computations similar to the ones of [BdSBGM17, §2.4].

Suppose first that a is a free point of E′. Then there exists a local coordinate
system (x, y) centered at a such that Ev is defined locally by (x = 0). Consider a
2-form germ ω at a, and write ω = xαf(x, y)dx ∧ dy. Note that the order of the
pullback form σ∗(ω) over Ew may be computed at any general point of Ew. We
consider the origin of the x-chart (x, y) = (x̃, x̃ỹ), where we obtain

σ∗(ω) = x̃αf(x̃, x̃ỹ) dx̃ ∧ d(x̃ỹ)

= x̃α+1+orda(f)f̃(x̃, ỹ) dx̃ ∧ dỹ,

where f̃(x̃, ỹ) is such that f̃(0, ỹ) �≡ 0 and Ew = (x̃ = 0). It follows that

ordw
(
σ∗(ω)

)
= α+ 1 + orda(f).

Now, note that J (π′) is a principal ideal, so that J (π′)a = (xνv). In other
words, the differential form ω = xνvdx ∧ dy belongs to the subsheaf generated
by the pullback π∗(Ω), and we easily conclude that νw = νv + 1. Finally, note that

F0(π
′)a = xk̂v(f1, . . . , fk), where f1, . . . , fk are generators of R0(π

′)a. In particu-

lar, the differential forms ωi = xk̂vfi(x, y)dx∧dy belongs to the subsheaf generated

by the pullback π∗(Ω2
X), and we easily conclude that k̂w = k̂v + 1 + orda(R0(π

′)).
Suppose now that a ∈ Ev ∩Ev′ is a double point of E′. Then there exists a local

coordinate system (x, y) centered at a such that Ev = (x = 0) and Ev′ = (y = 0).
Consider a 2-form germ ω at a, and write ω = xαyβf(x, y)dx ∧ dy. Note that the
order of the pullback form σ∗(ω) over Ew may be computed at any generic point
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of Ew. We consider the origin of the x-chart (x, y) = (x̃, x̃ỹ), where we get

σ∗(ω) = x̃α(x̃ỹ)βf(x̃, x̃ỹ) dx̃ ∧ d(x̃ỹ)

= x̃α+β+1+orda(f)ỹβ f̃(x̃, ỹ) dx̃ ∧ dỹ,

where f̃(x̃, ỹ) is such that f̃(0, ỹ) �≡ 0 and Ew = (x̃ = 0). It follows that

ordw
(
σ∗(ω)

)
= α+ β + 1 + orda(f).

Now, note that J (π′) is a principal ideal, so that J (π′)a = (xνvyνv′ ). In other
words, the differential form ω = xνvyνv′dx ∧ dy belongs to the subsheaf generated
by the pullback π∗(Ω), and we easily conclude that νw = νv + νv′ +1. Finally, note

that F0(π
′)a = xk̂vyk̂v′ (f1, . . . , fk), where f1, . . . , fk are generators of R0(π

′)a. In

particular, the differential forms ωi = xk̂vyk̂v′ fi(x, y)dx∧dy belong to the subsheaf

generated by the pullback π∗(Ω2
X), and thus k̂w = k̂v + 1 + orda(R0(π

′)). �

Observe that, while the divisor D that we have chosen, and therefore the integers
νv, only depend on the graph Γ and not on the choice of (X, 0) and π, the sheaf

F0(π), and therefore the integers k̂v, depend on the analytic structure of (X, 0).

However, as a consequence of Theorem 5.1 we deduce that k̂v is bounded from
above by the topological invariant νv defined in equation (5). This is the content
of Lemma 5.3.

Lemma 5.3. Let π′ : (Xπ′ , E′) → (X, 0) be a good resolution of (X, 0) which factors
through π : (Xπ, E) → (X, 0). Then for every vertex v of Γπ′ we have

k̂v ≤ νv.

Moreover, if this inequality is an equality for some vertex v of Γπ′ , then the family
of the polar curves of the generic plane projections of (X, 0) has no basepoint at
a free point of Ev, and if all inequalities for all vertices v are equalities then the
family of the polar curves of the generic plane projections of (X, 0) has no basepoint
at all.

Proof. Let us denote by J (π′) ΩXπ′ and F0(π
′) ΩXπ′ the subsheaves generated by

the pullback of Ω and Ω2
X respectively. Since Ω ⊂ Ω2

X , we conclude that J (π′) ⊂
F0(π

′), which implies the desired inequality. Now, suppose that the inequality is
an equality for a vertex v ∈ Γπ′ . Since π′ factors through π, and J (π) is a principal
ideal sheaf, we conclude that J (π′) is also a principal ideal sheaf (indeed, J (π′) is
the pullback of J (π) multiplied by the Jacobian determinant of a sequence of point
blowups, see Lemma 5.2). It therefore follows that for all free point a ∈ Ev, the
localizations J (π′)a = F0(π

′)a coincide. Moreover, if the inequality is an equality
for two vertices v, v′ ∈ Γπ′ that are connected by an edge, then the localizations
J (π′)a = F0(π

′)a coincide over any point a ∈ Ev ∩ Ev′ . We conclude by the
results [Spi90, III, Theorem 1.2] and [BdSBGM17, Theorem 2.5] already discussed
above. �

6. Proof of Theorem A

The goal of this section is to complete the proof of our main result, Theorem A.
As we can rely on Proposition 4.1, we now turn our attention to the polar

invariants, and we can assume without loss of generality that π : Xπ → X is a
good resolution of the normal surface singularity (X, 0) which factors through the
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blowup of its maximal ideal, and that the L-vector L = {lv}v∈V (Γπ) is given. By
the Lê–Greuel–Teissier formula [LT81, Theorem 5.1.1] (see also [BdSFP22, Propo-
sition 5.1]), the multiplicity m(Π, 0) of the polar curve Π of a generic projection
� : (X, 0) → (C2, 0), is equal to m(X, 0) − χ(Ft), where Ft denotes the Milnor–Lê
fiber of a generic linear form on (X, 0). Now, for each vertex v of V (Γπ), let N(Ev)
be a small tubular neighborhood of the corresponding component Ev of π−1(0)
obtained as the total space of a normal disc bundle on Ev, and set

N (Ev) = N(Ev)�
⋃

Ew �=Ev

N(Ew).

Then by additivity of the Euler characteristic, we can compute χ(Ft) as

χ(Ft) =
∑

v∈V (Γπ)

χ
(
N (Ev) ∩ Ft

)
=

∑
v∈V (Γπ)

mv

(
χ
(
N (Ev) ∩Ev

)
− lv

)
=

∑
v∈V (Γπ)

mv

(
2− 2g(Ev)− valΓπ

(v)− lv
)
,

where the second equality makes use of the fact that π factors through the blowup
of the maximal ideal of (X, 0), and therefore the strict transform via π of a generic
hyperplane section of (X, 0) consists of lv curvettes on each component Ev. This
shows that χ(Ft) only depends on the weighted graph Γπ and on the L-vector L,
so that we obtain an explicit bound for m(Π, 0) as well.

Observe that what we have proven so far suffices to deduce Corollary B, since
m(Π, 0) is equal to the sum

∑
v∈V (Γπ)

mvpv and so the value pv for any vertex v of

Γπ is bounded as well. What is sensibly harder to show, and requires the invariants
introduced in Section 5, is the fact that the topology of (X, 0) determines a finite
family of dual graphs for the minimal resolution factoring through the Nash blowup
of (X.0). In order to do this, we introduce an auxiliary numerical invariant based
on the following local version of the invariants pv. Following the notation of the
previous section, given a closed point a of E, pick D in Ωa, consider the associated
curve germ (ΠD,a, 0), and set pv(a) = Π∗

D,a ·Ev, where
∗ denotes the strict transform

under π. Then, since ΠD,a is nonempty if and only if a is a basepoint of the family
of polar curves (ΠD)D∈Ω, we deduce that pv(a) �= 0 if and only if a is a basepoint
which belongs to Ev.

Definition 6.1. Given a point a ∈ E, consider the quadruple of integers

Aux(a) =
(
m(ΠD,a), ε1(a), ε2(a), β(a)

)
whose last three entries are defined as

ε1(a) =
∑
v

pv(a), ε2(a) = max
v

{
pv(a)

}
, β(a) = max

v

{
νv − k̂v

}
,

where the sum and the two maxima run over the set of vertices v of Γπ such that
a belongs to Ev.

In the rest of the section we consider the invariants Aux(a) as elements of Z4

equipped with the lexicographic order. Note that all the entries of Aux(a) are
positive integers: this is immediate for the first three, and a direct consequence of
Lemma 5.3 for β(a). Moreover, observe that we have

(6) Aux(a) ≤
(
m(Π, 0),m(Π, 0),m(Π, 0),max{νv | v ∈ V (Γ)}

)
,
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that is, the invariant Aux(a) is bounded from above by a quadruple which does not
depend on the choice of (X, 0) and π but only on the topology of (X, 0).

We are now ready to see that, as a consequence of the computations of Lemma 5.2,
the auxiliary invariant always drops after a blowup.

Lemma 6.2. Let π : (Xπ, E) → (X, 0) be a good resolution of (X, 0) that fac-
tors through the blowup of its maximal ideal, let a be a closed point of E such
that m(ΠD,a) �= 0, and let π′ = π ◦ σ be the composition of π with the blowup
σ : (Xπ′ , E′) → (Xπ, E) with center a. Then, for every closed point b of σ−1(a) we
have

Aux(b) < Aux(a).

Proof. Set Ew = σ−1(a). Since π factors through the blowup of the maximal ideal
of (X, 0), the multiplicity m(ΠD,a, 0) of ΠD,a at 0 can be computed as the sum
m(ΠD,a, 0) =

∑
v∈V (Γ) mvpv(a). If b1, . . . , br are the basepoints of (ΠD)D∈Ω on

Ew, then for all i = 1, . . . , r, we have Ωbi
⊂ Ωa and thus (ΠD,bi

, 0) ⊂ (ΠD,a, 0).
Moreover, for all D ∈

⋂r
i=1 Ωbi

and all i, j with i �= j, the curve germs (ΠD,bi
, 0)

and (ΠD,bj
, 0) have no irreducible components in common, which implies that

m(ΠD,a, 0) ≥
∑r

i=1 m(ΠD,bi
, 0). It follows that if r > 1, then m(ΠD,bi

) < m(ΠD,a)
for every i = 1, . . . , r. We may therefore suppose that there is an unique closed
point b of Ew which is a basepoint for the family of polar curves, that is that r = 1.
Moreover, if m(ΠD,b) < m(ΠD,a) then there is nothing to prove, and so we may
further suppose that m(ΠD,b) = m(ΠD,a). We now divide the proof in four parts,
depending on the nature of a and b.

First, suppose that a is a double point belonging to Ev1 ∩ Ev2 and that b is a
free point of Ew. Then we have

mv1pv1(a) +mv2pv2(a) = mwpw(b) = (mv1 +mv2)pw(b).

It easily follows that ε1(b) = pw(b) < pv1(a) + pv2(a) = ε1(a).
Second, suppose that a is a double point belonging to Ev1 ∩Ev2 and that b is a

double point, without loss of generality say that b belongs to Ev1 ∩ Ew, and note
that

mv1pv1(a) +mv2pv2(a) = mv1pv1(b) + (mv1 +mv2)pw(b),

so that we have ε1(b) < ε1(a).
Third, suppose that a is a free point of Ev and that b is a double point, say that

b belongs to Ev ∩ Ew. Then we have

mvpv(a) = mvpv(b) +mwpw(b) = mv

(
pv(b) + pw(b)

)
,

and therefore ε1(a) = ε1(b) and ε2(b) < ε2(a).
Finally, suppose that a is a free point of Ev and that b is a free point of Ew, so

that we have
mvpv(a) = mwpw(b) = mvpw(b),

which implies that ε(a) = ε(b). Now, recall that β(a) > 0 by the hypothesis that
m(ΠD,a) > 0 and by Lemma 5.3. Since a is a basepoint for the family of generic
polar curves, we conclude that it is contained in the zero locus of the residual ideal
sheaf R0(π), see (4), so that orda(R0(π)) > 0. It now follows from Lemma 5.2 that
β(b) < β(a), finishing the proof. �

We have now collected all the ingredients we need to show that the number of
blowups needed from any given resolution of (X, 0) to achieve factorization through
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its Nash transform admits an upper bound that only depends on the topology of
(X, 0). To see this, let Γ be any weighted graph which can be realized as the
dual graph of some good resolution of (X, 0) factoring through its maximal ideal.
Then the auxiliary invariants of the closed points of the exceptional divisor of such
resolution are always bounded by the 4-tuple

Aux(Γ) = max
X′,π′,a

{Aux(a)}

where the maximum is taken over the set of triples
(
(X ′, 0), π′, a

)
, where (X ′, 0) is

a normal surface singularity, π′ : X ′
π′ → X ′ is a good resolution of (X ′, 0) realizing

the weighted graph Γ, and a is a closed point of the exceptional divisor (π′)−1(0) of
π′. Observe that, as noted in (6) the invariant Aux(Γ) is bounded from above by an
element of Z4 which only depends on the topology of (X, 0). It follows immediately
from Lemma 6.2 that if π : Xπ → X is a good resolution of (X, 0) which does not
factor through its Nash transform and π′ : Xπ → X is the good resolution of (X, 0)
obtained by blowing up once every basepoint of the family of generic polar curves
of (X, 0), then we have

max
b∈(π′)−1(0)

{Aux(b)} < max
a∈π−1(0)

{Aux(a)} ≤ Aux(Γ).

The result we are after follows now immediately by induction, since the weighted
dual graph Γπ′ belongs to a finite family of dual graphs which only depends on the
weighted dual graph Γπ and on Aux(Γ). Indeed, the family of generic polar curves
of (X, 0) can have at most m(Π, 0) basepoints, and we have already proven that
m(Π, 0) is bounded by the topology of (X, 0), so that the number of blowups, and
hence the combinatorics of Γπ′ , is itself bounded by the topology of (X, 0). This
concludes the proof of Theorem A. �

7. Polar exploration

We have discussed in Remark 4.2 how to give sharper bounds on the number of
realizable L-vectors on a given resolution graph Γ. On the other hand, the bound on
the number of P-vectors in Theorem A, being solely based on the polar multiplici-
ties given by the Lê–Greuel–Teissier formula, gives no information on the position
of polar curves relative to the hyperplane sections. We now discuss restrictions on
these relative positions, thus providing a sharper bound to the number of realizable
P-vectors and a better understanding on the polar geometry of singularities realiz-
ing Γ. For this, we can shift our focus to the following situation, which we refer to
as the problem of polar explorations : given a resolution graph Γ and a L-vector L
on Γ, how can we give geometric conditions on a P-vector P such that the triplet
(Γ, L, P ) may be realizable?

In this section we describe two distinct tools that can be very effective in ad-
dressing this question.

7.1. Inner rates and the Laplacian formula. Assume that (X, 0) is a normal
surface germ realizing the pair (Γ, L). The first tool we make use of is a result on
the structure of this germ with respect to its inner metric dinn, which is defined up
to a bi-Lipschitz homeomorphism by embedding (X, 0) in a smooth germ (Cn, 0)
and considering the arc-length on X induced by the usual Hermitian metric of Cn.
Denote by Sε the sphere in Cn having center 0 and radius ε > 0. Given two distinct
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curve germs (γ, 0) and (γ′, 0) on (X, 0) ⊂ (Cn, 0), the inner contact between γ and
γ′ is the rational number qinn = qinn(γ, γ

′) defined by

dinn
(
γ ∩ Sε, γ

′ ∩ Sε

)
= Θ(εqinn),

where given two function germs f, g :
(
[0,∞), 0

)
→

(
[0,∞), 0

)
we write f(t) =

Θ
(
g(t)

)
if there exist real numbers η > 0 and K > 0 such that K−1g(t) ≤ f(t) ≤

Kg(t) for all t ≥ 0 satisfying f(t) ≤ η.
Let π : Xπ → X be a good resolution of (X, 0) and let Ev be an irreducible

component of π−1(0). Then the inner rate qv of Ev is defined as the inner contact
qinn(γ, γ

′), where γ and γ′ are two curve germs on (X, 0) that pullback via π to two
curvettes at distinct points of Ev. This definition only depends on the exceptional
component Ev and not on the choice of a good resolution on which the component
appears (see [BdSFP22, Lemma 3.2]).

We now recall a deep result, the so-called Laplacian formula for the inner rate
function from [BdSFP22]. In order to state it we will introduce two additional
vectors indexed by the vertices of the dual graph Γπ of a good resolution π : Xπ → X
of (X, 0). For every vertex v of Γπ, set kv = valΓπ

(v) + 2g(v) − 2 and av =
mvqv, and consider the vectors Kπ = (kv)v∈V (Γπ), where as before ZΓ0

max(X, 0) =∑
v∈V (Γ0)

mvEv, and Aπ = (av)v∈V (Γπ). Let Lπ and Pπ be respectively the L- and
the P-vector of (X, 0) as before. Then the following equality holds:

(7) Aπ = I−1
Γ · (K + L− Pπ) .

This equality is an effective version (see [BdSFP22, Proposition 5.3]) of the main
result of loc. cit. Observe that in our situation IΓ and K + L are known, while Aπ

and Pπ are not, but either of the two is determined by the other one thanks to the
formula above.

In what follows, we argue that in general there is only a very limited number of
possible values of Aπ, therefore restricting the number of possible configurations of
Pπ. Since the vector Pπ has positive coordinates, then −I−1

Γ · Pπ is an element of

the Lipman cone E+ of Γ, and so Aπ belongs to the translate I−1
Γ · (K + L) + E+

of E+. Moreover, if a vertex v0 of Γ is an L-node of (X, 0), that is, if lv0 �= 0,
we know that its inner rate qv0 must be equal to 1 (see the paragraph preceding
Proposition 3.9 of [BdSFP22]). This implies that Aπ belongs to the intersection
for v0 running over the set of L-nodes of (X, 0) of the hyperplanes of ZV (Γ) whose
v0-th coordinate is equal to mv0 . Since D > 0 for every nonzero element D of the
Lipman cone E+, this intersection is finite, and in fact rather small. Therefore, the
vector Pπ can only take fewer values than those allowed by the proof of Theorem A.
This construction is illustrated in Figure 1.

7.2. Topological constraints. Additional restrictions may be derived from the
topological properties of the germ (X, 0), and more specifically from the local degrees
associated with a generic projection � : (X, 0) → (C2, 0). Let π : Xπ → X be a
good resolution of (X, 0) and let � : (X, 0) → (C2, 0) be a generic projection. Let
σ� : Y� → C2 be a sequence of point blowups of (C2, 0) such that the rational map
σ−1
� ◦ � ◦ π sends each component of π−1(0) surjectively to a component of σ−1

� (0)

that is, no Ev is contracted, so that � induces a map �̃ : Γπ → Γσ�
between (the

topological spaces underlying) the graphs Γπ and Γσ�
. Let π� : Xπ�

→ X be a good
resolution of (X, 0) such that π� ◦ � factors through σ�, let v be a vertex of Γπ and
let v1, . . . , vr be the vertices of Γπ�

that are adjacent to v and contained in Γπ. Let
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E+

I−1
Γ · (K + L) + E+

ZV (Γ)

I−1
Γ · (K + L)

ZΓ
min

possible values for Aπ

Aπ

(mv0
, 0)

Figure 1. Observe that, since ZΓ
min � 0, then the Lipman cone

E+ (in blue), and thus I−1
Γ · (K + L) + E+ (in red), contain no

horizontal line. Only six values of Aπ are possible in this example.

Γv be the subgraph of Γπ�
defined as the closure in Γπ�

of the connected component

of Γπ�
� �̃−1

(
�̃({v1, . . . , vr})

)
containing v, and consider the subgraph of Γσ�

defined

as Tv = �̃(Γv). Set

N (Γv) =
⋃

w∈V (Γv)

N(Ew)�
⋃

w′∈V (Γπ�
)�V (Γv)

N(Ew′)

and

N (Tv) =
⋃

w∈V (Tv)

N(Ew)�
⋃

w′∈V (Γσ�
)�V (Tv)

N(Ew′).

Adjusting the fiber bundles N(Ew) if necessary, by restricting � to π�

(
N (Γv)

)
we

obtain a cover �|π�(N (Γv)) : π�

(
N (Γv)

)
→ σ�

(
N (Tv)

)
. Following [BdSFP22, Defini-

tion 4.16], we call local degree of � at v the degree of this cover, and we denote
it by deg(v). Pick now a generic linear form h : (X, 0) → (C, 0) on (X, 0), denote

by F̂v the intersection of π�

(
N (Γv)

)
with the Milnor fiber X ∩ {h = t} of x, and

set F̂ ′
v = �v(F̂v). Restricting again �, we get a deg(v)-cover �|

̂Fv
: F̂v → F̂ ′

v. The
Hurwitz formula applied to this cover yields the following equality:

Lemma 7.1. χ(F̂v) +mvpv = deg(v)χ(F̂ ′
v).

This equality gives a topological constraint on each vertex v of Γ which enables
one to reduce the amount of cases in effective polar exploration, as we will see in
the example treated in the next section.

Remark 7.2. It is worth pointing out that the map �̃ and the local degree deg(v) can
be defined more intrinsically, without the need of choosing a modification of (C2, 0),
by working with suitable valuation spaces. We refer the reader to [BdSFP22], and
in particular to sections 2.1, 2.2, and 4.6 of loc. cit., for a more thorough discussion.
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8. An example of polar exploration

Example 8.1. We will discuss in detail Example 3 from the paper [MM20], showing
that we can determine its P-vector completely. Consider the hypersurface (X, 0) in
(C3, 0) defined by the equation z2 = (y+x3)(y+x2)(x34− y13). The dual graph of
the minimal resolution of (X, 0) which factors through the blowup of its maximal
ideal is given in Figure 2. All exceptional curves are rational, the arrow represents
the strict transform of a generic linear form, and the negative numbers are the self
intersections of the irreducible components of π−1(0). The multiplicities mv, which
are computed from this data using the equalities (1), are within parentheses in the
figure.

(2) (1)

(2) (5)

(2) (5)
(13) (3) (2) (1)

−1 −6

−3 −3

−3 −3

−1 −5 −2 −2
v1 v2

v3 v4

w3 w4

v5 v6 v7 v8

Figure 2. The graph Γπ, decorated with the self-intersections and
multiplicities of the exceptional curves corresponding to its ver-
tices.

Let us now focus on determining the P-vector of (X, 0) from the data we have
available. Observe that in the following discussion we will not derive any informa-
tion from the analytic type of the singularity (X, 0), but only from the weighted
graph Γπ and from the multiplicities of its vertices, so that our conclusion will hold
for any singularity (S, 0) realizing the same data. This means in particular that
the resolution of (S, 0) whose weighted dual graph is Γπ will be required to factor
through the blowup of the maximal ideal of (S, 0), so that the multiplicity m(S, 0)
of (S, 0) is the sum of the products mvlv over the vertices v of Γπ, which in this
case is equal to 2.

Applying [BdSFP22, Proposition 3.9] to the vertex v8, we deduce that the inner

rates are strictly increasing along a path from v1 to v8. In particular, if �̃ is the graph
morphism of subsection 7.2, one of the two chains going from v2 to v5 must be sent

by �̃ surjectively onto a chain γ in the tree �̃(Γπ). It follows that the image through �̃
of the second chain from v2 to v5 should contain γ as well, and since the multiplicity
of the surface is 2, this shows that the local degree on each of them cannot exceed
1, so that it must be equal to 1, and therefore the image of both must be precisely
γ. In particular the two strings are also strings of the graph Γπ�

, where π� is
the resolution of (X, 0) introduced in the discussion of subsection 7.2. Then, the
connected components of Γπ�{v5} and Γπ�

�{v5} containing v1 coincide, and thus
we can determine pv for each vertex v of this subgraph by applying Lemma (7.1).
We obtain pv1 = pv3 = pv4 = pw3

= pw4
= 0 and pv2 = 1.

Since the inner rate function achieves its maximum strictly on the vertex v8, then
v8 keeps valency one in the graph Γπ�

, and applying again Lemma (7.1) we obtain
χ(Fv8) + mvpv8 = deg(v8)χ(F

′
v8). Since χ(Fv8) = 1, we obtain that χ(F ′

v8) ≥ 1,
so that χ(F ′

v8) = 1 since F ′
v8 has one boundary component. Therefore, pv8 =
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deg(v8) − 1, so pv8 ∈ {0, 1} since deg(v8) cannot exceed the multiplicity of (S, 0),
which is 2.

Notice that we do not know at this point whether Γπ�
has or not an extra edge

adjacent to one of the vertices v5, v6, or v7 whose image through �̃ is contained in

�̃(Γπ). Applying again Lemma (7.1), we then have four cases: (pv5 , pv6 , pv7 , pv8) ∈
{(1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0)}, with the first case corresponding to
Γπ = Γπ�

.
We now use the Laplacian formula recalled in equation (7) to eliminate some of

these possibilities for P and to compute the inner rates. Writing the formula for
every vertex v ∈ {v1, v2, v3, v4, w3, w4}, for which we know pv, and using the fact
that qv1 = 1, we obtain the corresponding inner rates qv and the inner rate qv5 ,
which are as follows: qv2 = 2, qv3 = qw3

= 5
2 , qv4 = qw4

= 13
5 , and qv5 = 34

13 .
Now, the Laplacian formula for v5 yields −13qv5 +5(qv4 + qw4

) + 3qv6 = 1− pv5 .
Therefore 3qv6 + pv5 = 9, where qv6 ∈ 1

3N and qv6 > qv5 = 34
13 . Therefore qv6 = 3

and pv5 = 0 or qv6 = 8
3 and pv5 = 1. But we know from the Hurwitz arguments

above that pv5 = 1 or 2. Therefore, the only possibility is qv6 = 8
3 and pv5 = 1.

The Laplacian formula for v6 gives −15qv6 + 13qv5 + 2qv7 = −pv6 . Then 2qv7 +
pv6 = 11 with qv7 ∈ 1

2N, qv7 > 8
3 and and pv6 ≤ 1. The unique possibility is qv7 = 3

and pv6 ≤ 0.
The Laplacian formula for v7 gives qv8 + pv7 = 4qv7 − 3qv6 = 4, with qv8 ≥ 0,

qv8 > 3, and pv7 ≤ 1. The unique possibility is qv8 = 4 and pv7 ≤ 0.
Among the four possibilities for (pv5 , pv6 , pv7 , pv8) identified above, the unique

possibility is then (1, 0, 0, 1), so pv8 = 1. This is indeed compatible with the Lapla-
cian formula for v8.

We have obtained a unique possibility for P and the inner rates, as shown in
Figure 3. Observe that since there are no edges joining two vertices with nonzero
pv, then the strict transform Π∗ of the polar curve Π by π meets E at smooth points
of the exceptional divisor π−1(0). Moreover, since each pvi equals either zero or
one, then π is a good resolution of Π, that is π−1(0) is a simple normal crossing
divisor. The arrows in Figure 3 represent the strict transform of a generic polar
curve.

1 2

5
2

13
5

5
2

13
5

34
13

8
3 3 4

Figure 3. The graph Γπ, decorated with the inner rates of its
vertices and arrows corresponding to the components of a generic
polar curve.

Remark 8.2. Observe that at this stage in the previous example it is not possible
to know whether the P-nodes of (S, 0) are v2, v5, and v8, since in principle the
resolution whose weighted dual graph is Γπ might not factor through the Nash
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transform of (S, 0). For example, in the case of the hypersurface (X, 0) we started
with, none of those three vertices is a P-node.
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