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We study germs of analytic maps f : (X, S) → (Cp, 0), when 
X is an icis of dimension n < p. We define an image Milnor 
number, generalizing Mond’s definition, μI(X, f) and give 
results known for the smooth case such as the conservation of 
this quantity by deformations. We also use this to characterise 
the Whitney equisingularity of families of corank one map 
germs ft : (Cn, S) → (Cn+1, 0) with isolated instabilities in 
terms of the constancy of the μ∗

I -sequences of ft and the 
projections π : D2(ft) → Cn, where D2(ft) is the icis given 
by double point space of ft in Cn ×Cn. The μ∗

I -sequence of 
a map germ consist of the image Milnor number of the map 
germ and all its successive transverse slices.
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1. Introduction

The singularities of complex analytic mappings f : X → Y are well understood in 
general when X and Y are complex manifolds. They are described by the A -equivalence 
classes of holomorphic map germs f : (Cn, S) → (Cp, 0). On one hand, the classical 
Thom-Mather theory provides infinitesimal methods to characterize notions such as sta-
bility, finite determinacy, versality, etc. in terms of some algebraic invariants. On the 
other hand, a more recent approach pioneered by Mond, Damon, Gaffney, among others, 
is based on techniques of deformation theory, in a similar way as it is done in the case 
of singularities of complex analytic spaces. A modern reference for both theories is the 
recent book [34].

Basically, if f : (Cn, S) → (Cp, 0) is A -finite, then it has isolated instability, by the 
Mather-Gaffney criterion. If, in addition, (n, p) are nice dimensions or f has corank one, 
then we can take a stable perturbation fs which plays the role of the Milnor fiber in the 
case of a hypersurface with isolated singularity. The analytic and topological invariants of 
fs are in fact invariants of the map germ f which include, for instance, the discriminant 
Milnor number μΔ(f) when n ≥ p or the image Milnor number μI(f) when p = n + 1.

A natural question is what happens when we consider mappings f : X → Y and allow 
X and Y to have also singularities themselves. Since we work locally, we can assume 
that (Y, y) is embedded in (Cp, 0), so we consider the case of map germs f : (X, S) →
(Cp, 0), where X is a complex analytic space. In [33] Mond and Montaldi developed the 
Thom-Mather theory of pairs (X, f), where X is a complete intersection with isolated 
singularities (icis) and f : (X, S) → (Cp, 0) is a complex analytic map germ. They 
also studied deformations of such pairs, mainly in the case that n = dimX ≥ p. In 
particular, they showed that if (n, p) are nice dimensions, then the discriminant Milnor 
number μΔ(X, f) is greater than or equal to the Ae-codimension, with equality in the 
weighted homogeneous case. This extended a well known theorem by Damon-Mond in 
the case that X is smooth (see [2]).

In this paper, we are interested in deformations of pairs (X, f), with n = dimX < p, 
mainly in the case p = n + 1. When (n, p) are nice dimensions or when f has corank 
one, a stable perturbation of (X, f) is a pair (Xs, fs), where Xs is a smoothing of X
and fs : Xs → Cp is stable in the usual sense. If p = n + 1, the image fs(Xs) has the 
homotopy type of a wedge of spheres and the number of such spheres is the image Milnor 
number μI(X, f). A celebrated conjecture by Mond says that μI(X, f) is greater than 
or equal to the Ae-codimension, with equality in the weighted homogeneous case. The 
conjecture was originally stated by Mond in [31] when X is smooth and is known to be 
true when X is smooth and n = 1, 2 (see [31,32]) or when X is a plane curve (see [13]). 
But in all other cases the conjecture remains open.

When p > n, the homology of the image of a stable perturbation fs can be described 
in terms of the alternating homology of the multiple point spaces, by means of the 
image computing spectral sequence icss. This technique was introduced by Goryunov 
and Mond in [10] in the case that X is smooth and has been developed later by other 
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authors (see [1,11,16]). Here we show how to adapt the icss to the case that X is an
icis. Regarding this, we also study the case of germs of any corank in Section 3.

Our original motivation to study deformations of pairs (X, f) is because we were 
interested in the Whitney equisingularity (we) of families of map germs ft : (Cn, 0) →
(Cp, 0). In [5], Gaffney proved a very general theorem: the family is we if, and only if, it 
is excellent (in Gaffney’s sense) and all the polar multiplicities in the source and target 
of ft are constant on t. There are two problematic points in this theorem. The first one 
is that for each d-dimensional stratum of the stratification by stable types in the source, 
or target, we need d + 1 invariants, so the total number of invariants we need to control 
the we is huge. Hence, the main question is to find a minimal set of invariants whose 
constancy is equivalent to the we.

The second problem is that, in general, it is not easy to check whether the family ft is 
excellent or not. Roughly speaking, ft is excellent if there is no coalescence of instabilities 
nor 0-stable type singularities in the family. The crucial point here is to find a numerical 
invariant (associated to each member ft of the family), whose constancy implies that the 
family is excellent.

In a recent paper, [8], we solved the second question for families of multi-germs 
ft : (Cn, S) → (Cn+1, 0) of corank one. We prove that the family is excellent if the 
image Milnor number μI(ft) is constant on t, which solved a conjecture posed by Hous-
ton in these dimensions (see [17, Conjecture 6.2]). With respect to the first question, 
some partial results can be found in the papers by Jorge Pérez and Saia (see [19]) or 
Houston (see [18]).

In the last part of this paper we provide a minimal set of invariants which control the
we of families ft : (Cn, S) → (Cn+1, 0) of corank one. We follow the approach of Teissier 
in [43] for hypersurfaces with isolated singularity or Gaffney in [5] for icis, based on the 
μ∗-sequence. In our case, the we in the target is controlled by the μ∗

I-sequence of f , 
obtained by taking successive transverse slices of the map germ f . However, in order to 
control the we in the source, we make use of the μ∗

I -sequence of π : D2(f) → (Cn, S), 
where D2(f) is the double point space of f in Cn ×Cn and π is the projection onto the 
first component. We note that, since f has corank one, D2(f) is an icis of dimension 
n −1 and π has isolated instabilities. For this reason, we need to develop the deformation 
theory of pairs (X, f), where X is an icis.

Our main result about we is presented in Section 6 (see Theorem 6.7). We show that a 
family ft : (Cn, S) → (Cn+1, 0) of corank one is we if, and only if, the sequences μ∗

I(ft)
and μ̃∗

I

(
D2(ft), π

)
are constant on t. For a pair (X, f), the sequence μ∗

I(X, f) is the 
sequence of image Milnor numbers of the successive transverse slices of (X, f), starting 
with μI(X, f) (see Definition 6.5) and we use the notation μ̃∗

I(X, f) when we omit the 
first term μI(X, f) in the sequence. As a byproduct, we also deduce that ft is we in the 
target if, and only if, the sequence μ∗

I(ft) is constant on t.
To prove this result, we also prove in Section 4 a version of a Lê-Greuel formula 

for map germs on icis, which generalizes a result of [36]. This gives the link between 
Gaffney’s polar invariants, the image Milnor numbers and μ∗

I-sequence. Furthermore, we 
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define a new invariant in the source, the double point Milnor number μD, that coincides 
with the image Milnor number of the projection π : D2(f) → Cn when f has corank one 
(see Section 5).

Acknowledgments: The authors thank the anonymous referee for the careful reading 
and valuable suggestions.

2. Map germs with an icis in the source

In [33] Mond and Montaldi developed the Thom-Mather theory of singularities of 
mappings defined on an isolated complete intersection singularity (icis). They also ex-
tended Damon’s results in [2], which related the Ae-versal unfolding of a map germ f
with the KD(G)-versal unfoldings of an associated map germ which induces f from a 
stable map G. In particular, when the target has greater dimension than the source or 
both dimensions coincide, they proved that the discriminant Milnor number μΔ(X, f) is 
greater than or equal to the Ae-codimension, with equality in the weighted homogeneous 
case. This is a generalisation of a theorem of Damon and Mond in the case of mappings 
between smooth manifolds (cf. [3]). Here, we study what happens when the dimension of 
the source is one less than the dimension of the target and we consider the image Milnor 
number μI(f) instead of μΔ(f).

First of all, we fix a bit of notation to get rid of some details. Along the text (X, S)
will be a multi-germ of icis and f : (X, S) → (Cp, 0) will be a holomorphic map germ, 
written also as (X, f). This kind of germs are called germs on icis as well, and we may 
omit the base set of the germ if it does not provide relevant information or it is clear 
from the context.

Definition 2.1 (see [33, p. 4]). We will say that x ∈ X is a critical point of (X, f) if either 
X is smooth at x and f is not submersive at x or if x is a singular point of X. Besides, 
we will denote the set of critical points by Σ(X, f), in a similar fashion as in the case of 
a smooth source. Furthermore, we will say that (X, f) has finite singularity type if the 
restriction of f to Σ(X, f) is finite-to-one.

To be precise, we are not interested in map germs of the form f : (X, S) → (Cp, 0), 
but in equivalence classes of these maps by a certain relation. This is very common in 
the study of map germs, and in this text we focus on its analytic structure or, in other 
words, we study map germs modulo change of coordinates in source and target.

Definition 2.2. Two map germs f, g : (X, S) → (Cp, 0) are A -equivalent if there are 
germs of biholomorphisms φ of (X, S) and ψ of (Cp, 0) such that the following diagram 
is commutative:
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(X,S) (Cp, 0)

(X,S) (Cp, 0)

f

∼φ ψ∼

g

.

There is developed a huge mathematical machinery concerning A -equivalence, also 
known as Thom-Mather theory (see, for example, [34] or [44]). For example, to study 
the singularities that appear near to a given germ (in the sense of perturbations of map 
germs) we mainly use unfoldings. We recall the following definitions that generalize the 
smooth case.

Definition 2.3 (cf. [33, Definition 1]). Let f : (X,S) → (Cp, 0).

(i) An unfolding of the pair (X, f) over a smooth space germ (W, 0) is a map germ 
F : (X , S′) → (Cp ×W, 0) together with a flat projection π : (X , S′) → (W, 0) and 
an isomorphism j : (X, S) →

(
π−1(0), S′) such that the following diagram com-

mutes

(X,S)

(
π−1(0), j(S)

) (
Cp × {0} , 0

)

(X , j(S)) (Cp ×W, 0)

(W, 0)

f×{0}j

F

π π2

,

where π2 : Cp×W → W is the Cartesian projection. In this case, W is the parameter 
space of the unfolding, and in general we use (Cd, 0) instead of (W, 0). In short, we 
will use also (X , π, F, j) to denote the unfolding.

(ii) Given an unfolding (X , π, F, j) of (X, f), the map ft : Xt → Cp induced from F
on Xt := π−1(t) is called the perturbation of (X, f) induced by the unfolding, and 
is abbreviated to the pair (Xt, ft).

(iii) In this context, an unfolding of f is an unfolding of (X, f) with X = X × Cd and 
with π : X → Cd the Cartesian projection. This coincides with the usual definition 
for smooth spaces.

(iv) Two unfoldings (X , π, F, j) and (X ′, π′, F ′, j′) over W are isomorphic if there are 
isomorphisms Φ : X → X ′ and Ψ : Cp×Cd → Cp×Cd such that Ψ is an unfolding 
of the identity over Cd and the following diagram commutes:
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(X , j(S)) (Cp ×Cd, 0)

(X,S) (Cd, 0)

(X ′, j′(S)) (Cp ×Cd, 0)

Φ ∼

F

π

Ψ∼

π2j

j′

F ′

π′ π2
.

(v) If (X , π, F, j) is an unfolding of (X, f) over (Cd, 0), a germ ρ : (Cr, 0) → (Cd, 0)
induces and unfolding (Xρ, πρ, Fρ, jρ) of (X, f) by a base change or, in other words, 
by the fibre product of F and idCp × ρ:

Xρ := X ×Cp×Cd (Cp ×Cs) Cp ×Cs

X Cp ×Cd

Fρ

idCp×ρ

F

,

where we omit the points of the germs for simplicity.
(vi) The unfolding (X , π, F, j) is versal if every other unfolding, for example (X ′, π′,

F ′, j′), is isomorphic to an unfolding induced from the former by a base change, 
(Xρ, πρ, Fρ, jρ). A versal unfolding is called miniversal if it has a parameter space 
with minimal dimension.

As we were saying, an unfolding shows information about the deformations of the 
germ it unfolds. Roughly speaking, a versal unfolding shows all the possible information 
an unfolding can show, and if it is miniversal then the information of the unfolding is 
found without redundancies. On the other hand, there is a type of unfolding that does 
not contain relevant information: a trivial unfolding.

Definition 2.4. A trivial unfolding of a map germ f is an unfolding that is isomorphic to 
the constant unfolding (X ×Cd, π2, f × idCd , i),

(X,S)

(
X ×Cd, S × {0}

)
(Cp ×Cd, 0)

(Cd, 0)

f×{0}i

f×idCd

π2 π2

,

where π2 is the projection on the second factor and i is the inclusion (X, S) ↪→
(
X ×

Cd, S × {0}
)
.
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On this regard, a map germ is stable if every unfolding is trivial. If the map germ is 
not stable, we say that it has an instability or that it is unstable.

Following the idea that an unfolding shows information about the perturbations of 
a germ, it is evident from the definition of stability of a map germ that a map germ is 
stable if, and only if, it is its own miniversal unfolding. Another way of seeing this is that 
every deformation is A -equivalent to the original map germ if, and only if, it is stable. 
As a consequence of this, we see that if a map germ is stable then (X, S) is smooth and 
f is stable in the usual sense (see [34, Definition 3.4]). This is related to Theorem 2.7
below, where the Tjurina number of (X, 0) appears.

The concept of stabilisation is of high interest in the study of singularities of map 
germs (for example, see [3,31]). Roughly speaking, it is a one parameter unfolding such 
that every instability lies in the fiber of zero:

Definition 2.5 (cf. [33, Definition 2]). A stabilisation of a map germ f : (X, S) → (Cp, 0)
is an unfolding (X , π, F, j) such that the parameter space has dimension one and fs :
Xs → Cp has only stable singularities for s �= 0, where fs is the map induced by F .

How far the map germ (X, f) is of being stable is measured by means of its A -
codimension:

Definition 2.6. Let (X, S) ⊂ (CN , S) be a germ of an icis and consider a map germ 
f : (X, S) → (Cp, 0). We define the following objects:

(i) θCp,0 is the module of vector fields on (Cp, 0),
(ii) the module of tangent vector fields defined on (X, S) is

θX,S :=
Der

(
-log(X,S)

)
I(X)Der

(
-log(X,S)

) ,
where Der

(
-log(X, S)

)
are the vector fields on (CN , S) tangent to (X, S),

(iii) θ(f) is the module of vector fields along f ,
(iv) ωf : θCp,0 → θ(f) is the composition with f , and
(v) tf : θX,S → θ(f) is the composition with the differential of a smooth extension of 

f .

Then, the OCp,0-module

NAef := θ(f)
tf(θX,S) + ωf(θCp,0)

is the Ae-normal space and its dimension as vector space is the Ae-codimension of f . 
As usual, we will say that f is A -finite if this dimension is finite.
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In contrast, the Ae-codimension of the pair (X, f) is the dimension of the parameter 
space of a miniversal unfolding of the pair (X, f), if it exists, and it is infinite otherwise. 
If the A -codimension of (X, f) is finite, we say that (X, f) is A -finite.

It is reasonable to ask for the relation between the Ae-codimension of (X, f), the Ae-
codimension of f and the Tjurina number of X. This is addressed in [33, Theorem 1.4]
for the case of mono-germs, i.e., when S is a point:

Theorem 2.7. Let (X, 0) be an icis and f : (X, 0) → (Cp, 0) of finite singularity type, 
then f is A -finite if, and only if, (X, f) is A -finite. Furthermore, in this case,

Ae-codim(X, f) = Ae-codim(f) + τ(X, 0).

Note. With this result we see clearly that if a map germ has smooth source and it is 
stable in the usual sense then it is stable (and vice versa).

This theorem allows us to prove a very useful result, the Mather-Gaffney criterion for 
germs with an icis in the source.

Proposition 2.8. A map germ f : (X, S) → (Cp, 0) is A -finite if, and only if, it has 
isolated instability.

Proof. The instabilities could come from points where X is not smooth, which are iso-
lated. On the other hand, on the smooth points we have the usual Mather-Gaffney 
criterion (see, for example, [34, Theorem 4.5]), therefore, these points are isolated as 
well. Using Theorem 2.7 finishes the proof. �

As usual, we would like to relate those algebraic A -invariants with some invariants 
with a topological flavour. We study what happens when the dimension of the target is 
greater than the dimension of the source, especially when the difference is 1. The image 
Milnor number μI(f) of f : (Cn, S) → (Cn+1, 0) was introduced by Mond: the image of 
a stable perturbation has the homotopy type of a wedge of n-spheres and the number of 
such spheres is μI(f) (see [31, Theorem 1.4]). Of course, one expects that, in the case 
where the source is an icis, the situation is similar. There is a hypothesis that simplifies 
many arguments because it gives extra structure to the objects we study, the corank one 
hypothesis:

Definition 2.9. We say that f : (X, S) → (Cp, 0) has corank r if it has a smooth extension 
of corank r.

Indeed, Goryunov proved that the image of a stable perturbation of f : (X, 0) →
(Cp, 0) has non-trivial homology only in certain degrees if n < p and f has corank one, 
see [11, Theorem 3.3.1]. Furthermore, in [33, p. 13], Mond and Montaldi proved that, for 
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a map germ f : (X, 0) → (Cp, 0), the discriminant locus of a stable perturbation has the 
homotopy type of a wedge of spheres if dimX = n ≥ p, but the same proof works when 
p = n + 1. For the sake of completeness and because we will take this technique a bit 
further, we outline a proof when p = n + 1 based on the result of Siersma showed below 
(see also the previous work of Lê Dũng Tráng in [22,23]).

Consider first g : (CN+1, 0) → (C , 0) and allow isolated and non-isolated singularities. 
Recall the Milnor fibration: for ε, η small enough

g : g−1(Dη) ∩Bε → Dη

is a locally trivial fibre bundle over Dη \ {0}. Also, consider an unfolding of g, G :
(CN+1 ×Cr, 0) → (C ×Cr, 0) with G(x, u) = (gu(x), u).

Definition 2.10 (see [42, p. 2]). We say that the unfolding G is topologically trivial over 
the Milnor sphere Sε if, for η and ρ small enough,

(Sε × B̊ρ) ∩G−1(D̊η) D̊η × B̊ρ
G (1)

is a stratified submersion with strata {0}× B̊ρ and (D̊η \ {0}) × B̊ρ on D̊η × B̊ρ and the 
induced stratification on (Sε × B̊ρ) ∩G−1(D̊η).

Theorem 2.11 (cf. [42, Theorem 2.3]). With the notation of Definition 2.10, let G be 
a deformation of g which is topologically trivial over a Milnor sphere. Let u ∈ B̊ρ and 
suppose that all the fibres of gu are smooth or have isolated singularities except for one 
special fibre Xu := g−1

u (0) ∩Bε. Then Xu is homotopy equivalent to a wedge of spheres of 
dimension n and its number is the sum of the Milnor numbers over all the fibres different 
from Xu.

Finally, we give the main A -invariant regarding this kind of germs, the image Milnor 
number, as Mond did in [31]. Proposition 2.12 below justifies the definition, which is 
nothing more than our version of [33, Theorem 2.4] (see also [3, pp. 219–220]).

Proposition 2.12. Let f : (X, S) → (Cn+1, 0) be A -finite, where X is an icis with 
dim(X) = n. Suppose also that f has corank one or (n, n + 1) are nice dimensions 
in the sense of Mather. In this case, if (Xs, fs) is a perturbation given by a stabilisation 
of (X, f) with s �= 0, the image of fs intersected with a Milnor ball has the homotopy 
type of a wedge of spheres of dimension n.

We used the same techniques to prove a similar result for the smooth case, in [8, p.4]. 
There are routine technical details of the proof that can be found there. In any case, to 
prove this, note that the case of Ae-codimension equal to 0 is trivial. Otherwise, Xs is 
smooth and fs is stable outside the origin by [33, Theorem 1.4], so we can take a Milnor 
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sphere Sε such that the image of the stabilisation of the pair (X, f) is topologically trivial, 
seen as the zero-set of its defining equation G. One can conclude applying Theorem 2.11
to prove that the stable perturbation has the homotopy type of a wedge of spheres.

Definition 2.13. For f : (X, S) → (Cn+1, 0) as in Proposition 2.12, if (Xs, fs) is a per-
turbation given from a stabilisation of f , we will say that the image Milnor number of 
(X, f) is the number of spheres, in the homotopy type, of the image of (Xs, fs) on a 
Milnor ball, for s �= 0 (see Fig. 1). This number will be denoted by μI(X, f).

Remark. Actually, an equivalent definition can be given replacing (Xs, fs) from the 
stabilisation for any stable (Xu, fu) from a versal unfolding (or, in general, a stable 
unfolding) because any stabilisation can be found inside a versal unfolding by means of 
a base change. This may simplify some arguments or intuitions and we will use both 
indistinctly.

For the same reason, the definition does not depend on the stabilisation (cf. [33, p. 
12]). Finally, a stabilisation always exists when f has corank one or (n, n + 1) are nice 
dimensions. In fact, the bifurcation set B of a versal unfolding (X , π, F, j) over (Cd, 0)
is the set germ in (Cd, 0) of parameters u such that (Xu, fu) has some instability. It is 
enough to show that B is analytic and proper in (Cd, 0).

On one hand, we consider the set germ C in (Cp × Cd, 0) of pairs (y, u) such that 
(Xu, fu) is unstable at y. We fix a small enough representative F : X → Y × U , where 
Y and U are open neighbourhoods of the origin in Cp and Cd, respectively. Then C is 
the support of the relative normal module on Y × U , defined as

NAe(F |U) := θ(F |U)
trelF (θX|U ) + ωrelF (θY×U |U ) ,

where θ(F |U), θX|U and θY×U |U ) are the submodules of θ(F ), θX and θY×U of relative 
vector fields, respectively, and trel(F ) and ωrel(F ) are the respective restrictions of tF
and ωF . The fact that (X, f) has finite singularity type implies that NAe(F |U) is co-
herent (see the proof of [34, Lemma 5.3]) and, hence, C is analytic in Y × U . Moreover, 
the projection π2 : C → U given by π2(y, u) = u is a finite mapping, because (X, f)
has isolated instability. Therefore, B = π(C) is also analytic in U , by Remmert’s finite 
mapping theorem.

On the other hand, we prove that B cannot be equal to U . Since (X , π, F, j) is a 
versal unfolding of (X, f), (X , π) is a versal unfolding of X. Hence, there exists u0 ∈ U

such that Xu0 is smooth. Now, we can apply the classical Thom-Mather theory to the 
mapping fu0 : Xu0 → Cp. If either (n, p) are nice dimensions or fu0 has only corank one 
singularities, then for almost any u in a neighbourhood of u0, the mapping fu : Xu → Cp

has only stable singularities (see, for example, [34, Propositions 5.5 and 5.6]).

A desirable property of this topological A -invariant is that it is conservative, as it was 
for the usual image Milnor number (see [8, Theorem 2.6]). The reasoning that proves the 
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Fig. 1. Illustration of how μI(X, f) works, i.e., of the homology of the image of a stable perturbation (Xt, ft).

conservation of the usual image Milnor number can be applied verbatim for the general 
version, and is based as well on Theorem 2.11. Here, we give a sketch of the proof.

Theorem 2.14. Let f : (X, S) → (Cn+1, 0) be as in Proposition 2.12, and (Xu0 , fu0)
a perturbation in a one-dimensional unfolding of (X, f). Take a representative of the 
unfolding such that its codomain is a Milnor ball Bε. Then

μI(X, f) = βn

(
fu0(Xu0)

)
+

∑
y∈Bε

μI(Xu0 , fu0 ; y),

where βn is the nth Betti number, if u0 is small enough.

Sketch of the proof. If (Xu0 , fu0) is stable the result is trivial.
Assume that (Xu0 , fu0) is not stable. Then, take a versal unfolding of (X, f) such that 

it unfolds the original one-dimensional unfolding and (Xu0,v, fu0,v) is stable for v �= 0
small enough. Consider the defining equations for fu,v(Xu,v), G. Now, as f is stable 
outside the origin and X is smooth outside the points of S we can take a Milnor radius 
ε such that the family of equations G is topologically trivial over Sε. Now we are in the 
conditions of applying Theorem 2.11 and follow the reasoning of [8, Theorem 2.6], but 
working on Xu0,v and the corresponding instabilities of (Xu0 , fu0). �

In particular this implies the upper semi-continuity of the image Milnor number.

Corollary 2.15. Using the notation and hypotheses of Theorem 2.14, μI(X, f) is upper 
semi-continuous, i.e.,

μI(X, f) ≥ μI(Xu0 , fu0 ; y).

3. Multiple points and the icss

One may ask what happens when we have a map germ f : (X, S) → (Cp, 0) with 
X icis but dimX = n < p, in general. Houston studied this for the case of smooth 
source in [17] using the multiple point spaces of the map germ and an Image-Computing 
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Spectral Sequence (icss). We take a similar path, therefore, we need the machinery of 
the multiple point spaces (see [37,30,28], among others, for more details). To simplify 
notation, (Xt, ft) will be a stable perturbation of (X, f).

Definition 3.1. The kth-multiple point space, Dk(f), of a mapping or a map germ f is 
defined as follows:

(i) Let f : X → Y be a locally stable mapping between complex manifolds. Then, 
Dk(f) is equal to the closure of the set of points (x1, . . . , xk) in Xk such that 
f (xi) = f (xj) but xi �= xj , for all i �= j.

(ii) Given f : (X, S) → (Cp, 0) with finite singularity type, if (X , π, F, j) is a stable 
unfolding then

Dk(f) = J−1
k

(
Dk(F )

)
,

where Jk =
k︷ ︸︸ ︷

j × · · · × j.
(iii) For a map germ f : (X, S) → (Cp, 0), we will denote as d(f) the maximal multiplic-

ity of the stable perturbation of f (i.e., d(f) := max
{
k : Dk(ft) �= ∅

}
) and s(f)

the number of points of the set S.

These definitions behave properly under isomorphisms and base change of unfoldings, 
i.e., Items (ii) and (iii) do not depend on the stable unfolding (this is proved in [37, 
Lemma 2.3], which is stated for the smooth case but the proof works for our case).

The multiple point spaces have some useful properties, for example we study their 
complex structure if f is of corank one in Lemma 3.2. We know some facts about them 
in any corank, for example, we can use [14, Theorem 4.3 and Corollary 4.4] with an 
A -finite map germ f : (X, S) → (Cp, 0), dimX = n, and deduce that the dimension of 
Dk(f) is p − k(p − n) (if this number is not negative nor Dk(f) is empty), because the 
same proofs work. Furthermore, in the pair of dimensions (n, p), we deduce from [14, 
Theorem 4.3] that d(f) is at most the integer part of p

p−n . Finally, taking into account 
these previous remarks, this maximum is attained when s(f) ≥ d(f) because the proof 
of [8, Lemma 3.3] only relies on the dimension of the multiple point spaces.

We want to study the multiple point spaces because they provide a lot of information 
about the map they come from by means of an icss, as one can see in [28] or [11]. 
The following lemma is an example of this, and it generalizes [28, Theorem 2.14] for the 
context of multi-germs and an icis in the source and [17, Theorem 2.4 and Corollary 2.6]
for the context of icis in the source.

Lemma 3.2. For f : (X, S) → (Cp, 0) of corank 1 and finite singularity type, dimX =
n < p:
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(i) (X, f) is stable if, and only if, Dk(f) is smooth of dimension p −k(p −n), or empty, 
for k ≥ 1.

(ii) If Ae-codim(X, f) is finite, for each k with p − k(p − n) ≥ 0, Dk(f) is empty or an
icis of dimension p −k(p −n). Furthermore, for those k such that p −k(p −n) < 0, 
Dk(f) is a subset of Sk, possibly empty.

Proof. For the first statement, if (X, f) is stable, X is smooth and it follows from [17, 
Theorem 2.4] (cf. [28, Theorem 2.14] for the mono-germ case). For the converse, if every 
Dk(f) is smooth, then, in particular, so is D1(f) = X and, again, the result follows from 
[17, Theorem 2.4].

For the second statement, note that for the case of X being smooth the statement 
is contained in [17, Corollary 2.6]. Fortunately, if we take a versal unfolding (X , π, F, j)
of (X, f) we can apply that result. Also, for k with p − k(p − n) ≥ 0, observe that 
the codimension of Dk(F ) coincides with the one of Dk(f) because outside the isolated 
singularities they are smooth and of the same codimension. Furthermore, the only sin-
gularities that can appear in Dk(f) are at the problematic points (the ones that come 
from S) by the Mather-Gaffney criterion Proposition 2.8. It only remains to check that 
Dk(f) is a complete intersection, and this is the case as it can be constructed as a pull 
back of a complete intersection, Dk(F ), and both have the same codimension.

The other case is trivial. �
Note that this is the best we can aim for: we need to study D1(f) = X. The following 

example illustrates this.

Example 3.3. Let (X, 0) ⊂ (CN , 0) be a germ of an icis of dimension n. Then, the 
inclusion i : (X, 0) → (CN , 0) is stable in the sense that the Ae-codimension of i is 
zero, since ωi is surjective. However, the Ae-codimension of (X, i) is equal to the Tjurina 
number of (X, 0). Furthermore, after taking a stable perturbation of (X, i), say (Xt, it), 
every Dk(it) is empty for k ≥ 2 because Xt is smooth for t �= 0 and it is an inclusion 
to CN .

The multiple point spaces in corank one are specially friendly, as we have seen. Indeed, 
if we consider (X, S) ⊆ (CN , S) and a map germ f : (X, S) → (Cp, 0) of corank 1 and 
finite singularity type, dimX = n < p, we can simplify even more the structure of the 
different Dk(f). This is because Dk(f) is a subset of Xk, therefore a subset of CNk and, 
if f is of corank one, we can assume that f has the form

f : (X,S) → (Cp, 0)

(x1, . . . , xN ) 	→ (x1, . . . , xN−1, h1(x), h2(x)) .
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Therefore, the first N − 1 coordinates of all the points in a k-tuple in Dk(f) must be 
the same. Omitting repeated entries, we can see Dk(f) as a subset of X×Ck−1. Finally, 
observe that this identification preserves the icis structure.

On the other hand, there is a natural action of Σk in Dk(f) by permutation of entries 
of the k-tuples of points. Also, recall that all the elements in Σk can be decomposed 
into disjoint cycles in a unique way, called the cycle decomposition, and this inspires a 
refinement of the kth-multiple point space based on the relations an element σ ∈ Σk gives. 
To be precise, if we take a partition of k, γ(k) = (r1, . . . , rm), and αi = # {j : rj = i}, 
where #A denotes the number of points in A, one can find an element σ ∈ Σk such that 
it can be decomposed into αi cycles of length i, all the cycles being pair-wise disjoint. 
In this case, the partition γ(k) is called the cycle type of σ (see [41, pp. 2–3]).

Definition 3.4. We define Dk (f, γ(k)) as (the isomorphism type of) the subspace of Dk(f)
given by the fixed points of σ with the usual action, for σ of cycle type γ(k). We may 
also use Dk(f)σ instead of Dk (f, γ(k)) to specify the element.

Remark. By symmetry, Dk(f)σ is isomorphic to Dk(f)σ′ if σ and σ′ have the same cycle 
type (recall that the cycle types determine the conjugacy classes). Hence the definition 
of Dk (f, γ(k)) works modulo isomorphism. We will omit this detail in general (see also 
Lemma 3.5).

If we take into account the group action and the subspaces Dk(f)σ, we have a re-
finement of Lemma 3.2. It is a generalization of [28, Corollary 2.15] for the context of 
multi-germs and an icis in the source and [17, Corollary 2.8] for the context of icis in 
the source.

Lemma 3.5. With the hypotheses of Lemma 3.2 and γ(k) a partition of k, we have the 
following.

(i) If f is stable, Dk (f, γ(k)) is smooth of dimension p − k(p − n) − k +
∑

i αi, or 
empty.

(ii) If Ae − codim(X, f) is finite, then:
(a) for each k with p − k(p − n) − k +

∑
i αi ≥ 0, Dk (f, γ(k)) is empty or an icis 

of dimension p − k(p − n) − k +
∑

i αi,
(b) for each k with p − k(p − n) − k +

∑
i αi < 0, Dk (f, γ(k)) is subset of Sk, 

possibly empty.

A proof of this lemma can be seen in [17, Corollary 2.8], because the same proof 
applies once we know Lemma 3.2. In any case, observe that the Item (i) is a consequence 
of Lemma 3.2 and the fact that we are adding k−

∑
i αi equations to the ones of Dk(f)

to form Dk (f, γ(k)), as each ri of γ(k) gives ri − 1 more equations. Item (ii) follows the 
same idea of Item (i).
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From the homology of the Milnor fiber of the multiple point spaces, a special part will 
serve our purposes, the so-called alternating part.

Definition 3.6. Given a sign homomorphism, sign : G → {±1} where {±1} ∼= Z/2Z, 
and a linear action of a finite group G on some C-vectorial space H, we say that the 
G-alternating part of H is the set

{h ∈ H : gh = sign(g)h, for all g ∈ G} ,

and we denote it by HAltG . If the group is Σk, then the sign homomorphism is the usual 
sign of a permutation and we simply write HAltk or HAlt if the group is clear from the 
context.

Remark. In terms of representation theory, HAltG is the isotype of the sign representation 
of the representation H. Furthermore, the sign homomorphism can be defined as the 
usual sign for permutations for every finite group, seen as a subgroup of a ΣN by Cayley’s 
theorem (see [39, Proposition 1.6.8]).

With the study of the multiple point spaces, we are able to obtain a lot of information 
of images of stable perturbations in any pair of dimensions, as long as n < p. This is 
done by means of an icss, as the one we show below. For example, in [17], Houston 
uses a similar theorem as we are going to use this theorem now, furthermore it will 
appear in later techniques as well. The theorems that give an icss have been evolving 
through the years, being more general and with new approaches. A first version of these 
theorems was [10, Proposition 2.3] for rational homology and A -finite map germs. See 
also the generalizations [11, Corollary 1.2.2] for finite maps and integer homology; [16, 
Theorem 5.4] with a bigger class of maps, any coefficients and homology of the pair; [1]
with a new approach and [34, Section 10] for a self-contained review of the icss.

Theorem 3.7. Let F : X → Y be a finite and proper subanalytic map and let Z be a, 
possibly empty, subanalytic subset of X such that F |Z is also proper. Then, there exists 
a spectral sequence

E1
r,q = HAltr+1

q

(
Dr+1 (F ) , Dr+1 (F |Z) ;Z

)
=⇒ H∗ (F (X) , F (Z) ;Z) ,

and the differential is induced from the natural map εr+1,r : Dr+1(F ) → Dr(F ) given by 
the projection on the first r coordinates.

Remark. We skip the details about the difference between the homology of the alternating 
chains, usually called the alternating homology, and the alternating part of the homology
we use here. There is no relevant change using one or the other here except, perhaps, in 
Lemma 3.9, where the details of the difference are explained. The reason we use them 
indistinctly is that they coincide with rational coefficients, for more information see [11, 
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Theorem 2.1.2] for our setting, but also [34, Proposition 10.1]. A complete account of 
this can also be found in the thesis of the first author (in particular, [9, Section 2.2]).

Our first application of Theorem 3.7 is the following result, which follows the idea of 
[17, Theorem 3.1] and generalizes it when the source is an icis and we consider integer 
homology. Moreover, it is a generalization of [11, Theorem 3.3.1], for multi-germs.

Theorem 3.8. Consider a map germ f : (X, S) → (Cp, 0) of finite Ae-codimension and of 
corank 1, with X icis of dimension dimX = n < p. Then, the reduced integer homology 
of the image of a stable perturbation of (X, f) is zero except possibly in dimensions

(i) p − k(p − n) + k − 1 for all 2 ≤ k ≤ d(f),
(ii) d(f) − 1 if s(f) > d(f), and
(iii) n if X is non-smooth (or p = n + 1).

Proof. Apply Theorem 3.7 to a versal unfolding of (X, f), say (X , π, F, j), and its re-
striction to Z = π−1(t) = Xt that gives a stable perturbation, (Xt, ft). Hence, we have 
the spectral sequence

E1
r,q (F, f) := HAltr+1

q

(
Dr+1 (F ) , Dr+1 (ft) ;Z

)
=⇒ H∗ (F (X ) , ft (Xt) ;Z) .

This spectral sequence, of homology type, collapses at the second page instead of the 
first one (cf. Table 1), because the bottom row of the E1 page may have non-trivial 
differentials, as in the case of the quadruple point singularity of a map C2 → C3. From 
this, we can recover the limit of the spectral sequence and deduce the result. First of all, 
take into account that Im(F ) is contractible. Furthermore, by Lemma 3.2, the reduced 
homology of Dk(ft) could be non-trivial only in middle dimension, therefore, the groups

Hi (F (X ) , ft (Xt) ;Z)

are possibly non-trivial when

i = r + dimDr+1 + 1

= r + p− (r + 1)(p− n) + 1

= p− (p− n)(r + 1) + (r + 1),

for 2 ≤ r + 1 ≤ d(f).
The only other possible non-trivial entry, after collapsing the sequence, is E2

d(f),0. This 
comes from the fact that the bottom row of the first page is an exact sequence except 
at E1

d(f),0. This, in turn, comes from applying Theorem 3.7 for F and Z = ∅, deducing 
that the non-trivial part of the bottom row has to be exact because F (X ) is contractible 
(one can also apply the proof and statement of [17, Lemma 3.3] verbatim for this case).
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Table 1
First page of the spectral sequence E1

r,q = HAltr+1
q

(
Dr+1 (F ) , Dr+1 (ft)

)
for a map germ f : (X, S) →

(C6, 0) in the pair of dimensions (5, 6) (left) and the input objects required to compute it after the 
identifications HAlt

m

(
Dr+1(F ), Dr+1(ft)

) ∼= HAlt
m−1

(
Dr+1(ft)

)
, m > 1, and HAlt

•
(
Dr+1(F ), Dr+1(ft)

)
=

HAlt
•

(
Dr+1(F )

)
, r + 1 > d(f) (right).

7
6 •
5 •
4 •
3 •
2 •
1 •
0 • • • · · ·

r
q

0 1 2 3 4 5 6 7 8 · · ·

HAlt
7

HAlt
6

HAlt
5 Xt

HAlt
4 ft

HAlt
3 ft

HAlt
2 ft

HAlt
1 ft (F, ft)

HAlt
0 F F F · · ·

D1 D2 D3 D4 D5 D6 D7 D8 D9 · · ·

Finally, when r = 0 we have some homology apart from the 0-dimensional, because 
D1(ft) = Xt and it is the stable perturbation of the icis X. The homology in this case 
appears when i = 0 + dim(X) + 1 and it is equal to μ(X). Using the exact sequence of 
the homology of the pair, the result follows. �

The argument of Theorem 3.8 would work for any corank if we were able to prove 
that the alternating homology of the pairs 

(
Dk(F ), Dk(f)

)
in any corank appear in the 

same dimensions as in corank one. Unfortunately, the techniques used for the smooth 
case do not give what we hope for.

The following lemma is stated for rational homology, the version with integer coeffi-
cients is explained in the remark that follows its proof.

Lemma 3.9 (cf. [14, Theorem 4.6]). Let f : (X, S) → (Cp, 0) be an A -finite map germ, 
where (X, S) is a germ of an icis of dimension n < p and codimension r. Consider a 
non-empty Dk(ft) and write d for dimC Dk(ft). Then,

(i) for k ≥ 2, HAlt
q

(
Dk(ft)

)
= 0 if q �= 0 or q /∈ [d + (1 − r)k, d], and

(ii) HAlt
q

(
D1(ft)

)
is zero for q �= 0, d.

Proof. Observe that D1(ft) = Xt is the Milnor fibre of the icis D1(f) = X, so we can 
assume that k ≥ 2.

With rational coefficients, the homology of the alternating chains and the alternating 
part of the homology coincide (see [34, Proposition 10.1]), so we can use them indistinctly. 
In this proof we use the homology of the alternating chains to prove the statement.

For q ≥ d the space Dk(ft) has the homotopy type of a CW -complex of dimension d, 
therefore, there are no alternating chains above dimC Dk(ft). This proves the result for 
those q. It only remains to check when q < dimC Dk(ft) for k ≥ 2. To prove the remaining 
part of the lemma, we take the proof of [14, Theorem 4.6] as reference. This argument 
consists of two steps: controlling the alternating homology of the pair 

(
Dk(F ), Dk(ft)

)
by virtue of [14, Theorem 3.30], where F is a one parameter unfolding of f , and specify 
exactly when this pair can have alternating homology using [14, Theorem 3.13].
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The hypothesis of [14, Theorem 3.13 and Theorem 3.30] are not too restrictive, so we 
can take a one-parameter unfolding F of f and combine these theorems to prove that

HAlt
q

(
Dk(F ), Dk(ft)

)
= 0

for

q ≤ min {(n + 1 − r + 1)k − (p + 1)(k − 1) − 1, nk − p(k − 1)}

= nk − p(k − 1) + (1 − r)k = d + (1 − r)k.

Therefore, using the exact sequence of the pair and the fact that Dk(F ) contracts to 
isolated points in an equivariant way, we have that HAlt

0
(
Dk(ft)

) ∼= HAlt
0

(
Dk(F )

)
and 

HAlt
q−1

(
Dk(ft)

) ∼= HAlt
q

(
Dk(F ), Dk(ft)

)
, for q > 1. �

Remark. As the reader should notice, this lemma can be stated for the homology of 
alternating chains (some times denoted by AH) instead of alternating homology and 
integer homology instead of rational homology. If one wants to use integer homology the 
same proof works changing HAlt for AH and adding in Item (ii) that the homology is free 
if q = 0, d (which is trivial, because the group acting is Σ1). Nevertheless, Corollary 3.10
is well stated as it is, changing to rational coefficients to write HAlt.

Corollary 3.10. With the hypotheses of Lemma 3.9, the reduced integer homology of the 
image of a stable perturbation of (X, f) is zero except possibly in dimensions

(i) p − k(p − n) + k − 1 + s for all 0 ≤ s ≤ (1 − r)k and 2 ≤ k ≤ d(f),
(ii) d(f) − 1 if s(f) > d(f), and
(iii) n if X is non-smooth (or p = n + 1).

Proof. The proof follows from the version of Lemma 3.9 with integer coefficients and the 
homology of the alternating chains, Theorem 3.7 and a careful inspection of the icss as 
in Theorem 3.8. �
Remark. Observe that, if X is a hypersurface, this theorem proves that the homology 
of the image appears in the same dimensions than the smooth case. Also, note that this 
theorem may not be sharp, because [14, Theorem 3.13] only gives a estimate to control 
the alternating homology of the pair 

(
Dk(F ), Dk(ft)

)
and it could be a bad estimate in 

general.

It is surprising that, in the case of corank one, the same proof does not prove The-
orem 3.8. This makes us think that there is an argument that avoids the detail of the 
codimension of the icis:
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Conjecture 3.11. Consider a map germ f : (X, S) → (Cp, 0) of finite Ae-codimension, 
with X icis of dimension dimX = n < p. Then, the reduced integer homology of the 
image of a stable perturbation of (X, f) is zero except possibly in dimensions

(i) p − k(p − n)k + k − 1 for all 2 ≤ k ≤ d(f),
(ii) d(f) − 1 if s(f) > d(f), and
(iii) n if X is non-smooth.

Remark. This conjecture and Theorems 3.8 and 3.10 are related to [25, Theorems 2.3 
and 2.8], when the source is smooth and the map germ is not necessarily A -finite but 
the dimensions of the multiple point spaces are controlled. They, and Section 5, are also 
closely related with [25, Theorem 2.4] in the particular case that X is the double point 
space D2(f).

Houston also uses Theorem 3.7 in [17] with a versal unfolding F , of a multi-germ 
f : (Cn, S) → (Cn+1, 0), and a section that gives the stable perturbation, ft. Also, taking 
into account that the Euler-Poincaré characteristic of every page remains invariant, see 
[29, Example 1.F], and that the image of the versal unfolding is contractible, it remains 
to compute χ 

(
E1

∗,∗
)

to get μI(f), and the terms of the sum are arranged to define 
Houston’s alternating Milnor numbers, μAlt

k (f) (actually, he computes them through the 
limit of the spectral sequence, both ways give the same result).

These ideas and the previous proofs inspire the following definition (see also the 
simplification and developments of it in [8], particularly how to determine d(f) when 
s(f) > d(f) with [8, Lemma 3.3]).

Definition 3.12. Given an A -finite map germ f : (X, S) → (Cn+1, 0) of corank one, 
with X icis of dimension n, the k-th alternating Milnor number of (X, f), denoted as 
μAlt
k (X, f), is defined by

μAlt
k (X, f) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

rank HAltk
n−k+2

(
Dk(F ), Dk(ft);Z

)
, if 1 ≤ k ≤ d(f)

(
s(f) − 1
d(f)

)
, if k = d(f) + 1 and s(f) > d(f)

0, otherwise,

being F its versal unfolding and ft a stable perturbation.

These numbers are very useful because they decompose the image Milnor number. 
This was used by Houston in [17, Definition 3.11] for the smooth case of corank one, we 
extend it to the non-smooth case of corank one.
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Fig. 2. The first alternating Milnor number and its relationship with the deformations of (X, f) and the 
μI(X, f). Here, one can also appreciate the conclusions of Theorem 2.14 and Corollary 2.15.

Proposition 3.13. For f : (X, S) → (Cn+1, 0) A -finite of corank one and X an icis of 
dimension n,

∑
k

μAlt
k (X, f) = μI (X, f) .

Proof. From the proof of Theorem 3.8, we only have to check that μAlt
d(f)+1(X, f) coincides 

with the (rank of the) remaining non-zero entries of the spectral sequence after collapsing, 
i.e., we have to check that

rankE2
d(f),0 =

(
s (f) − 1
d (f)

)
.

From [17, Lemma 3.3], which can be stated for general stable map germs with a verbatim 
proof, or the constancy of the Euler-Poincaré characteristic of the spectral sequence (see 
[29, Example 1.F]) we have

rankE2
d(f),0 =

∣∣∣∣∣∣
s(f)∑

	=d(f)+1

(−1)	
(
s (f)
�

)∣∣∣∣∣∣ =
(
s (f) − 1
d (f)

)
. �

One term deserves a bit of attention: μ1(X, f). This term does not appear in the 
smooth case because it is zero but, in general, it is equal to μ(X) (see Fig. 2). Proposi-
tion 3.13 allows us to reduce the weak form of Mond’s conjecture for icis to the smooth 
case.

Corollary 3.14 (cf. [8, Theorem 3.9]). For f : (X, S) → (Cn+1, 0) A -finite of corank one 
and X an icis of dimension n, μI(X, f) = 0 if, and only if, (X, f) is stable.

Proof. One direction is trivial.
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If μI(X, f) = 0 then μAlt
1 (X, f) = μ(X) = 0 and we are in the case of smooth domain, 

proved in [8, Theorem 3.9]. �
Remark. Note that the weak form of Mond’s conjecture for the smooth case in any corank 
implies, with the same proof of Corollary 3.14, the same conjecture for icis in any corank 
by means of Proposition 3.13, which can be stated for any corank using Lemma 3.9 and 
always carries a term equal to μ(X).

4. A Lê-Greuel type formula

Now that we have a basic building of the image Milnor number with icis in the 
source, our last preparatory step is to prove a Lê-Greuel type formula for μI(X, f). In 
[36] I. Pallarés-Torres and the second named author proved a Lê-Greuel type formula in 
the setting of the image Milnor number in the smooth case and finitely determined map 
germs. Recall the original Lê-Greuel formula, see [12,21],

μ(X, 0) + μ(X ∩H, 0) = dimC
On

(g) + J(g, p) .

Here, (X, 0) is an icis with defining equation g, p a function such that (X ∩ H, 0) is 
an icis as well, where H := p−1(0), and J(g, p) is the ideal generated by the minors of 
maximum order of the Jacobian matrix of (g, p). Taking into account that the right hand 
side of the equation could be seen as the number of critical points of p restricted to the 
Milnor fiber of X, it is obvious that the main theorem of [36] is a similar result for the 
context of map germs when p is a generic linear projection (see Fig. 3):

Theorem 4.1 (see [36, Theorem 3.2]). Let f : (Cn, 0) → (Cn+1, 0) be a corank 1 and 
A -finite map germ with n > 1. Let p : Cn+1 → C be a generic linear projection which 
defines a transverse slice g : (Cn−1, 0) → (Cn, 0). Then

#Σ
(
p|Zs

)
= μI (f) + μI (g) ,

where #Σ 
(
p|Zs

)
is the number of critical points on all the strata of Zs := Im (fs), being 

fs a stable perturbation of f .

If p : Cn+1 → C is a generic linear projection, then the transverse slice is, by definition, 
the restriction f :

(
f−1(H), 0

)
→ (H, 0), where H is the hyperplane H = p−1(0). When f

has corank one, we can choose coordinates in such a way that the transverse slice is in fact 
a mapping g : (Cn−1, 0) → (Cn, 0) and f is an unfolding of g (see [27, pp. 1380–1381]).

The stratification considered in the image of the stable perturbation fs in the theorem 
above is the stratification by stable types (see [34, Definition 7.2]). We recall that two 
points y1 and y2 in the image of fs belong to the same stratum if, and only if, the multi-
germs of fs at such points are A -equivalent. Since fs has only corank one singularities, 
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Fig. 3. Depiction of the Lê-Greuel type formula for map germs.

each stratum is determined by a partition γ(k), with 1 ≤ k ≤ n + 1 and it is, in fact, a 
Whitney stratification (see [34, Corollary 7.5]).

We prove a similar result for an icis in the source and multi-germs. The first step 
is to work with Marar’s formula for our setting of multi-germs and icis in the source. 
Fortunately, his proof is essentially combinatorial and one can prove the version we 
need with almost no modifications. Hence, if γ(k) = (r1, . . . , rm) is a partition of k and 
αi = # {j : rj = i}, Marar’s formula is the following.

Theorem 4.2 (cf. [26, Theorem 3.1]). Let f0 : (Cn, 0) → (Cp, 0) of corank 1 and A -finite, 
2 ≤ n < p, and consider its stable perturbation ft : Xt → Cp. Then

χ (ft(Xt)) = a0χ (Ut) +
∑
k≥2

∑
γ(k)

aγ(k)χ
(
Dk (ft, γ(k))

)
,

where a0 = 1 and

aγ(k) = (−1)
∑

αi+1∏
i≥1 i

αiαi!

if Dk (ft, γ(k)) is non-empty, and zero otherwise.

Now, by Theorem 4.2 but stated for a stable perturbation of an A -finite corank 1
map germ f : (X, S) → (Cn+1, 0), with dimX = n, we have

1 + (−1)nμI(X, f) = #S + (−1)nμ(X)

+
∑
k≥2

∑
γ(k)

aγ(k)

(
β
γ(k)
0 + (−1)dimDk(f,γ(k))μ

(
Dk (f, γ(k))

))
,

(2)

where #S is the number of points in S and βγ(k)
0 the zero Betti number of Dk (f, γ(k)).

With Theorem 4.1 in mind, we take a generic linear projection p : Cn+1 → C, with 
kernel H ∼= Cn, which defines a transverse slice g := f | :

(
X ∩ f−1(H), S

)
→ (Cn, 0).
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Observe that X ∩ f−1(H), which we will call X̃ to simplify notation, is still an
icis. Following the steps of [36] from here, notice that, if dimDk (f, γ(k)) > 0, then 
dimDk (f, γ(k)) − 1 = dimDk (g, γ(k)) and, if dimDk (f, γ(k)) = 0, then the fiber of 
Dk (g, γ(k)) (i.e., Dk

(
gs, γ(k)

)
for a stable perturbation gs) is empty, by Lemma 3.5. 

Therefore, if we apply the previous formula to (X̃, g), we get

1 + (−1)n−1μI(X̃, g) = #S + (−1)n−1μ(X̃)

+
∑

k≥2, γ(k):
dimDk(f,γ(k))>0

aγ(k)

(
β
γ(k)
0 + (−1)dimDk(f,γ(k))−1μ

(
Dk (g, γ(k))

))
. (3)

If we subtract Equation (3) from Equation (2), and use that dimDk (f, γ(k)) = n + 1 −
k − k +

∑
i αi (see Lemma 3.5), we have

μI(X, f) + μI(g, X̃) = μ(X) + μ(X̃)

+
∑

k≥2, γ(k):
dimDk(f,γ(k))=0

(−1)
∑

αi+1+n∏
i≥1 i

αiαi!

(
β
γ(k)
0 + μ

(
Dk (f, γ(k))

))

+
∑

k≥2, γ(k):
dimDk(f,γ(k))>0

1∏
i≥1 i

αiαi!
(
μ
(
Dk (f, γ(k))

)
+ μ

(
Dk (g, γ(k))

))
,

where we have simplified the signs expanding aγ(k), and βγ(k)
0 denotes the same as before.

Once we arrive here, we can keep simplifying signs: if dimDk(f, γ(k)) =
∑

αi + 1 +
n − 2k = 0, then the first sign is positive.

On the other hand, we can choose a generic projection and coordinates on source and 
target so that p(y1, . . . , yn+1) = y1. Moreover,

Dk (g, γ(k)) = Dk (f, γ(k)) ∩ p̃−1(0),

where p̃ : X × Ck−1 → C is the projection on the first coordinate for every k, seeing 
Dk(f) as a subset of X × Ck−1 (recall the comments below Example 3.3), and it is 
generic as well (in general it would be a mapping induced by p ◦ f).

By the comments above, the structure of icis given in Lemma 3.5 and the Lê-Greuel-
type formula for icis; we have

μ
(
Dk (f, γ(k))

)
+ μ

(
Dk (g, γ(k))

)
= #Σ

(
p̃|Dk(fs,γ(k))

)

and

μ(X) + μ(X̃) = #Σ
(
p̃|X

)
,

s
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where fs and Xs are the stable perturbations of f and X.
Moreover, note that, if dimDk(f, γ(k)) = 0, then

μ
(
Dk (f, γ(k))

)
= m0

(
Dk (f, γ(k))

)
− β

γ(k)
0 ,

where m0
(
Dk (f, γ(k))

)
is the multiplicity of Dk

(
f, γ(k)

)
. This can also be seen as the 

number of critical points of p̃|Dk(fs,γ(k)).
In conclusion,

μI(X, f) + μI(g, X̃) =
∑
k≥1

∑
γ(k)

#Σ
(
p̃|Dk(fs,γ(k))

)
∏

i≥1 i
αiαi!

.

This is exactly the same point Pallarés-Torres and the second author, Nuño-
Ballesteros, reach in [36, Theorem 3.2]. The theorem below follows from there (see Fig. 3).

Theorem 4.3 (see [36, Theorem 3.2]). For an A -finite map germ f : (X,S) →
(
Cn+1, 0

)
of corank 1 from an icis X of dimension dimX = n ≥ 2, let p : Cn+1 → C be a generic 
linear projection which defines a transverse slice g :

(
X ∩ (p ◦ f)−1 (0) , S

)
→ (Cn, 0). 

Then,

μI (f,X) + μI

(
g,X ∩ (p ◦ f)−1 (0)

)
= #Σ

(
p|Zs

)
,

where #Σ 
(
p|Zs

)
is the number of critical points in the stratified sense of p restricted to 

Zs := Im (fs), being fs a stable perturbation of f .

We complete Theorem 4.3 with the case of a one-dimensional icis X.

Proposition 4.4 (see [36, Theorem 3.1]). Let f : (X, S) → (C2, 0) be an injective map 
germ from an icis X of dimension one. Consider a generic linear projection p : C2 → C, 
then

μI(X, f) + m0(f) − 1 = #Σ
(
p|Zs

)
,

where #Σ 
(
p|Zs

)
is the number of critical points in the stratified sense of p restricted to 

Zs := Im (fs), being fs a stable perturbation of f , and m0(f) = dimC OX,S/f
∗m2 the 

multiplicity of f .

Proof. We have two strata in the image Zs of the stable perturbation (Xs, fs): the 0-
dimensional stratum Z0

s given by the transverse double points and the 1-dimensional 
stratum Z1

s = fs(Xs) \ Z0
s .

Obviously, #Σ 
(
p|Z0

s

)
is equal to #Z0

s , which is equal to μAlt
2 (X, f). Since fs is a local 

diffeomorphism on Z1
s , #Σ 

(
p|Z1

)
is equal to the number of critical points of p ◦ fs on 
s
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Xs (here the points of Z0
s can be excluded by genericity of p). By the usual Lê-Greuel 

formula for X and X ∩ (p ◦ f)−1(0), we have

#Σ (p ◦ fs) = μ(X) + deg(p ◦ f) − 1.

But, again, the genericity of p implies that deg(p ◦ f) = m0(f). Hence,

#Σ
(
p|Z0

s

)
+ #Σ

(
p|Z1

s

)
= μAlt

2 (X, f) + μ(X) + m0(f) − 1

= μI(X, f) + m0(f) − 1,

by Proposition 3.13. �
5. The double point Milnor number

Finding conditions for a 1-parameter family to be Whitney equisingular requires work-
ing on the source and in the target separately. In the case of the source, we need to assure 
some structure and, as the reader could guess, the double point set is the best candidate. 
Furthermore, this set is the projection of an icis, the double point space, if the map is 
nice enough (see Fig. 4). We have some invariants in this sense.

Definition 5.1. The double point set of f : (Cn, S) → (Cn+1, 0), of finite singularity type, 
is the projection on the first coordinate of D2(f), and we denote it by D(f). Furthermore, 
if f is A -finite, we will define the double point Milnor number as

μD(f) := βn−1 (D(ft)) ,

where ft is a stable perturbation of f .

Remark. The double point Milnor number was denoted as μΣ2 in [15] by Houston.

Note that we have to define μD(f) through a stable perturbation of f because D(f) is 
a hypersurface with possibly non-isolated singularities, hence may not have finite Milnor 
number in the ordinary sense of a hypersurface. However, we can still use Theorem 2.11
to prove that D(ft) in Definition 5.1 has the homotopy type of a wedge of spheres of 
middle dimension, as a small deformation of D(f) is topologically trivial in a Milnor 
sphere (see Definition 2.10).

The main reason to use this invariant is that μD(f) is the image Milnor number 
of certain (X, f) if f has corank one, in that case μD(f) coincides with μI

(
D2(f), π

)
. 

Hence, we can use all the machinery we developed above if f has corank one. Firstly, 
μD(f) is well defined by Proposition 2.12. Secondly, there are triple points of ft that also 
correspond to double points of π and give rise to more homology (as Fig. 4 represents, 
there we have depicted a vague idea of the generators of the homology because some 
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Fig. 4. Representation of how the homology of the double point set of a stable perturbation works.

higher-dimensional properties cannot be made visible). Finally, the invariant μD(f) is 
also conservative by Theorem 2.14:

Corollary 5.2. Let f : (Cn, S) → (Cn+1, 0) be finitely A -determined, of corank 1, and 
fu a one-parameter perturbation of f = f0. Take a representative of the unfolding such 
that its codomain, Bε, is a Milnor ball. Then,

μD(f) = βn−1 (D(fu)) +
∑
y∈Bε

μD(fu, y).

Remark. Observe that Definition 5.1 can be generalized for every pair of dimensions 
(n, p) as long as n < p and f has corank one. Despite the fact that D(f) could not be a 
hypersurface, D2(f) is an icis in this case (see Lemma 3.2) and we can define μD(f) by 
means of Theorem 3.8 (one can also use the Euler-Poincaré characteristic of the image 
of a stable perturbation, see for example [35]).

Once more, we focus on the multiple point spaces but, in this case, we deal with (
D2(f), π

)
and Dk(π), where f has corank one and it is A -finite. Using the principle of 

iteration (cf. [20, 4.1]), the multiple point spaces of a perturbation of f are isomorphic 
to the multiple point spaces of a perturbation of π with a shift in the multiplicity, and 
the same is true for unfoldings F and Π (of f and π, respectively). More precisely, 
Dk(πt) ∼= Dk+1(ft) and Dk(Π) ∼= Dk+1(F ), where the first isomorphism is given by

φ : Dk(πt) −→ Dk+1(ft)(
(x, x1), . . . , (x, xk)

)
	−→ (x, x1, . . . , xk),

(4)

and the second one is analogous. This inspires us to compare μAlt
k

(
D2(f), π

)
and μAlt

k+1(f), 
which determine μD(f) and μI(f), respectively. The relation is straightforward consid-
ering that

μAlt
k

(
D2(f), π

)
= rank HAltk

n−1−k+2
(
Dk(Π), Dk(πt)

)
= rank HAltk

n−1−k+2
(
Dk+1(F ), Dk+1(ft)

)
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and

μAlt
k+1(f) = rank H

Altk+1
n−1−k+2

(
Dk+1(F ), Dk+1(ft)

)
.

More precisely, the difference between μAlt
k

(
D2(f), π

)
and μAlt

k+1(f) is the group of per-
mutations that acts.

To ease the notation, we write H instead of Hn−1−k+2
(
Dk+1(F ), Dk+1(ft)

)
and k will 

be clear from the context. Consequently, we want to compare the alternating actions of 
Σk+1 and Σk < Σk+1 on H, where Σk acts as a subgroup fixing the first entry (by 
construction of the isomorphism of Equation (4)). We will use representation theory to 
do this. For this reason, we will see H as a C-vector space.

Recall that for each partition of N , say γ(N), there is associated an irreducible 
representation of ΣN (see [41, Proposition 1.10.1]). We will call this representation 
the γ(N)-representation. The representation that acts by its sign is associated to the 
partition (1, . . . , 1), and we call it the alternating representation. Moreover, from the 
branching rules (see [41, Theorem 2.8.3]), we know that the alternating representation 
of ΣN appears as a restriction of ΣN+1 from both the alternating representation and 
the (2, 1, . . . , 1)-representation. Therefore, knowing the character of the last one will be 
useful. Unfortunately, we could not find it in the literature.

Lemma 5.3. The character of the irreducible representation associated to the partition 
(2, 1, . . . , 1) is

sign(σ) (fix (σ) − 1) ,

where fix(σ) is the number of entries fixed by the permutation σ.

Proof. If N = 3, the result is trivial. Assume that N > 3; then, by [4, Exercise 4.14], 
we know that the representation associated to this partition is either the standard or 
the tensor product of the standard and the alternating representations. By a careful 
inspection (but see also [4, Exercise 4.6]), we know that it is not the standard rep-
resentation, therefore its character is the product of the standard and the alternating 
representations. �

For any representation V of a finite group G there is a decomposition into irreducible 
representations where there could be multiple copies of the same irreducible representa-
tion, see for example [4, Proposition 1.8]. For any partition γ(N) of N , the γ(N)-isotype, 
also written as V γ(N), is the sum of those copies of the γ(N)-representation. In the par-
ticular case of the (1, . . . , 1)-isotype we will use the name alternating isotype, as well. 
Hence, a useful object is the projection onto an isotype.

The projection onto the (2, 1, . . . , 1)-isotype can be made explicit considering we know 
the character and the dimension of the irreducible representation associated to this 
partition (see [4, Section 2.4]):
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Pk+1 := k

(k + 1)!
∑

σ∈Σk+1

sign(σ) (fix(σ) − 1)σ.

Remark. Observe that one can define the projection Pk+1 with domain any space where 
Σk+1 acts, here we will define it on H if nothing is said.

Theorem 5.4. Let f : (Cn, S) → (Cn+1, 0) be A -finite of corank 1. Then,

μAlt
k+1(f) ≤ μAlt

k

(
D2(f), π

)

for k = 1, . . . , n. Furthermore,

(i) for k = 2, . . . , n, μAlt
k+1(f) = μAlt

k

(
D2(f), π

)
if, and only if, Pk+1 ≡ 0 (or, equiva-

lently, the (2, 1, . . . , 1)-isotype is zero), and
(ii) for k = 1, μAlt

2 (f) = μ 
(
D2(f)

)
if, and only if, the space Hn−1

(
D2(ft)

)
coincides 

with its alternating isotype, for ft a stable perturbation of f .

Proof. For k = 2, . . . , n, from the branching rules, we know that the alternating iso-
type of the Σk representation on H comes exactly from the alternating isotype and the 
(2, 1, . . . , 1)-isotype of the representation of Σk+1.

Moreover, the former isotype contributes with the same dimension it has but the 
latter makes a contribution of one dimension for each k-dimensional copy it has. This 
comes from the fact that, in this isotype, every copy of the (2, 1, . . . , 1)-representation 
has dimension k and each one splits into an alternating representation of dimension 1
and an irreducible (2, 1, . . . , 1)-representation of dimension k − 1 when we restrict it to 
the subgroup Σk.

As the only difference between μAlt
k+1(f) and μAlt

k

(
D2(f), π

)
is the different groups 

acting, Σk+1 and Σk as a subgroup, the result follows for these cases.
On the other hand, Pk+1 ≡ 0 if, and only if, there is no (2, 1, . . . , 1)-isotype, so Item (i)

follows.
Finally, Item (ii) is trivial, as the only two possible representations of Σ2 are the 

trivial and the alternating one. �
Remark. It is possible to determine the difference between μAlt

k+1(f) and μAlt
k

(
D2(f), π

)
, 

for it depends on the number of repetitions of the (2, 1, . . . , 1)-representation. For exam-
ple, one can compute it through the inner product between the character of the whole 
representation of Σk+1 and the (2, 1, . . . , 1)-representation (see [4, Corollary 2.16]), which 
is nothing more than counting the number of generators fixed by Pk in a convenient basis.

Also, for k = n and k = n + 1, one is dealing with zero homology and the multiple 
point spaces are points, this ease the relation and we can say something more.
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Theorem 5.5. With the hypotheses of Theorem 5.4, for k = n,

(n + 1) rank H
Altn+1
0

(
Dn+1(ft)

)
= rank HAltn

0
(
Dn+1(ft)

)
.

Also, for k = n + 1,

d(f)s(f)2

s(f) − 1 μAlt
n+2(f) = μAlt

n+1
(
D2(f), π

)
.

Proof. Now, we are dealing with points and the zero homology. In particular, we can 
identify the elements in the homology with the 0-chains. Hence, one can find a basis of 
H

Altn+1
0

(
Dn+1(ft)

)
with elements given using the orbits of points p, for p ∈ Dn+1(ft):

∑
σ

sign(σ)σ(p).

The action of Σn+1 on the homology of the orbit of p is the regular representation, 
so it decomposes into the alternating representation we are considering, n (2, 1, . . . , 1)-
subrepresentations and more irreducible subrepresentations (see [4, p. 17]). The contri-
butions to the alternating isotype of the representation of Σn come from: one alternating 
representation from each (2, 1, . . . , 1)-subrepresentation, each one of the alternating 
subrepresentation of Σn+1 will be preserved in the subgroup, and there are no more 
contributions from other isotypes. This happens for every orbit of points in Dn+1(ft), 
proving the first statement.

To prove the second part, recall that μAlt
n+2(f) comes from the bottom row of the 

spectral sequence (see, for example, Table 1), and the argument is similar but, now, 
working with the multiple point space of the unfolding. Therefore, again, the alternating 
isotype of Σk is k+1 times bigger than the alternating isotype of Σk+1. Hence, if originally 
μAlt
n+2(f) was

∣∣∣∣∣∣
s(f)∑

	=d(f)+1

(−1)l
(
s(f)
�

)∣∣∣∣∣∣ =
(
s(f) − 1
d(f)

)
,

now, μAlt
n+1

(
D2(f), π

)
is

∣∣∣∣∣∣
s(f)∑

	=d(f)+1

(−1)	�
(
s(f)
�

)∣∣∣∣∣∣ = d(f) (d(f) + 1)
s(f) − 1

(
s(f)

d(f) + 1

)

= d(f)s(f)2

s(f) − 1

(
s(f) − 1
d(f)

)
. �

Remark. Although these inequalities and equalities are enough for our purposes, one can 
specify the relation of μAlt

n+1(f) and μAlt
n

(
D2(f), π

)
using the ideas of the second part of 

the proof of Theorem 5.5 and considering the exact sequence of the pair.
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Also, one may ask what happens if the group acts by permutation of the elements 
of a base for some k < n (this action could be not faithful). Regarding this, there are 
algorithms to compute the alternating part based in the same idea: looking for orbits 
and the relation between the actions. An upper bound is also possible with the same 
ideas.

There are some interesting corollaries of Theorems 5.4 and 5.5. For example, it could 
happen that there is not enough space in the homology group to fit a (2, 1, . . . , 1)-
subrepresentation.

Corollary 5.6. With the notation of Theorem 5.4, for k = 1, . . . , n, if

rank
(
Hn−1−k+2

(
Dk+1(F ), Dk+1(ft)

))
− μAlt

k+1(f) < k,

then

μAlt
k+1(f) = μAlt

k

(
D2(f), π

)
.

Proof. The proof is based on the fact that a (2, 1, . . . , 1)-representation of Σk has di-
mension k and the ideas of Theorems 5.4 and 5.5. �

Another example is an inequality involving the full Milnor number on both contexts.

Corollary 5.7. For f as in Theorem 5.4, μI(f) ≤ μD(f). This holds with equality if, and 
only if, Hn−1

(
D2(ft)

)
coincides with its alternating isotype and all the Pi are zero for 

all i, for Pi as in Theorem 5.4.

Thence, there are some nice characterizations as well, in particular weak Mond’s 
conjecture for μD(f).

Corollary 5.8 (see [8, Theorem 3.9]). For f as in Theorem 5.4, the following are equiv-
alent:

(i) f is stable,
(ii) μI(f) = 0, and
(iii) μD(f) = 0.

Proof. If f is stable, then μD(f) = μI

(
D2(f), π

)
= 0 as so are all the alternating Milnor 

numbers. If 0 = μD(f), then μI(f) = 0 by Corollary 5.7, but, if μI(f) = 0, then f is 
stable by the weak Mond’s conjecture for corank 1 (see [8, Theorem 3.9]). �

For an f : (Cn, S) → (Cn+1, 0) of corank one, we have studied the homology of the 
projection of D2(ft) onto Cn and we have compared it with the homology of the image 
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of ft, for ft a stable perturbation of f . One can keep looking for relations between the 
multiple point spaces using the same ideas.

On one hand we can reproduce the roles of the image of ft and D(ft) easily:

· · · D3(ft) D2(ft) D1(ft) = Cn Cn+1

· · · D4
3(ft) D3

2(ft) D2
1(ft) = D(ft) Im(ft)

π3
2 π2

1 ft

,

where πk
k−1 : Dk(•) → Dk−1(•) is the projection that forgets the last entry, for k =

2, . . . , d(f), and Dk
k−1(•) is the image of πk

k−1.
On the other hand, although πk

k−1 : Dk(f) → Dk−1(f) has the problem that the 
target is an icis as well, the homology of Dk

k−1(ft) is well defined for any A -finite 
f : (Cn, S) → (Cn+1, 0) of corank 1. This is a consequence of Theorem 3.7 applied to 
πk
k−1 : Dk(ft) → Dk−1(ft). Hence, again by the iteration principle, the Betti numbers 

of Dk
k−1(ft) are determined by the Σi+1-alternated homologies of 

(
Dk+i(F ), Dk+i(ft)

)
, 

for i = 0, . . . , d(f) − k.
Furthermore, Dk+i(ft) is the unique fiber, up to isomorphism, of Dk+i(f) and the 

action of the permutations does not depend on the stable perturbation, so these Betti 
numbers will be well defined.

Finally, note that the homology will appear again in middle dimension for the pair of 
dimensions (n, n + 1), for the same reason it happens for D(ft). Hence, we will simply 
write βk(f) to denote βn−k+1

(
Dk

k−1(ft)
)
.

We have compared β1(f) := μI(f) with β2(f) = μD(f) and, similarly, we can compare 
βk(f) with βk+1(f). This is very easy if d(f) < n + 1 or we have a mono-germ, because 
we can forget about the homology of the pair and the unfolding by the exact sequence of 
the pair. As we were saying, by Theorem 3.7 and the iteration principle, arranging the 
terms in a convenient way, we have

βk+1(f) = rank
⊕
i≥2

HAlti
(
Dk+i(ft)

)
⊕H

(
Dk+1(ft)

)
(5)

and

βk(f) = rank
⊕
i≥1

HAlti+1
(
Dk+i(ft)

)
⊕H

(
Dk(ft)

)
, (6)

from where we have omitted the index of the homology. Therefore, subtracting Equa-
tion (6) from Equation (5) and using the ideas of Theorems 5.4 and 5.5, we get

βk+1(f) − βk(f) =
∑
i≥2

rank H
(
Dk+i(ft)

)(2,1,...,1)
i

+ μ
(
Dk+1(f)

)

− μ
(
Dk(f)

)
− rank HAlt2

(
Dk+1(f )

)
,

(7)
t
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with (2, 1, . . . , 1) partition of i + 1.

Remark. One can take this to a broader context as long as the first page of the spectral 
sequence collapses and the iteration principle works.

We put this in practice with some examples.

Example 5.9. For f : (C2, 0) → (C3, 0) as in Theorem 5.4 and taking k = 1 in Equa-
tion (7),

μD(f) − μI(f) =
rank H0

(
D3(ft)

)(2,1)
2 + μ

(
D2(f)

)
− 0 − μAlt

2 (f)

=
rank H0

(
D3(ft)

)(2,1)
2 + rankH1

(
D2(ft)

)(2)
,

where H1
(
D2(ft)

)(2) is the part of the homology that is fixed by the group Σ2, i.e., 
the trivial isotype of Σ2. The last equality is due to the fact that there are only two 
irreducible representations of Σ2, the alternating and the trivial one.

Example 5.10. For f : (C2, 0) → (C3, 0) as in Theorem 5.4, and taking k = 2 in Equa-
tion (7),

β3(f) − μD(f) = rank H0
(
D3(ft)

)
− μ

(
D2(f)

)
− rank HAlt2

0
(
D3(ft)

)
= −μ

(
D2(f)

)
+ rank H0

(
D3(ft)

)(2)
,

following the same notation as above.

Note that the triple points of ft are strict in Examples 5.9 and 5.10, i.e., in D3(ft)
the points are the Σ3-orbit of (a, b, c) with a �= b �= c �= a. Say we have T triple points, 
then

• rank H0
(
D3(ft)

)(2,1) = 4T , as it is the complement of the alternating and trivial 
isotype and both representations have dimension one.

• rank H0
(
D3(ft)

)(2) = 3T , as it is the trivial isotype of Σ2 fixing the first entry (it 
has elements of the form (a, b, c) + (a, c, b)).

• rankHAlt
0

(
D3(ft)

)
= 3T , similarly as the previous case.

• β3(f) = 6T , as it is simply counting the elements of the orbits.

In conclusion, we have the following results, which were obtained also by Houston with 
similar invariants (see [15, Proofs of Theorems 2.7 and 2.8]).



R. Giménez Conejero, J.J. Nuño-Ballesteros / Advances in Mathematics 408 (2022) 108660 33
Theorem 5.11. For f : (C2, 0) → (C3, 0) A -finite and being T the number of triple points 
of a stable perturbation of f ,

μD(f) = μ
(
D2(f)

)
+ 3T.

Proof. If f has corank 1, we are done by Proposition 3.13. If f does not have corank 
one, D2 has dimension one and D3 is zero dimensional, so the homology is in middle 
dimension and the same argument can be applied. �

Similarly:

Theorem 5.12. For f : (C3, 0) → (C4, 0) as in Theorem 5.4 and being Q the number of 
quadruple points of a stable perturbation ft of f ,

μD(f) = 4Q + μ
(
D2(f)

)
+

μ
(
D3(f)

)
− μT

3 (f) + μAlt
3 (f)

2 ,

where μT
3 (f) := rank H1

(
D3(ft)

)(3) is the invariant homology by Σ3 and μAlt
3 (f) is 

defined as in Definition 3.12, i.e., the alternating homology by Σ3.

Proof. By Equation (7) for k = 1, we have that

μD(f) − μI(f) =
rank H

(
D3(ft)

)(2,1)
2 +

rank H
(
D4(ft)

)(2,1,1)
3

+ μ
(
D2(f)

)
− 0 − μAlt

2 (f).

Now, observe that Σ3 has only three irreducible representations: the trivial representa-
tion, alternating representation and the (2, 1)-representation. With this in mind,

rank H
(
D3(ft)

)(2,1)
2 =

rank H
(
D3(ft)

)
− μT

3 (f) − μAlt
3 (f)

2 .

Finally, recall that μI(f) = μAlt
2 (f) + μAlt

3 (f) + μAlt
4 (f) (see [17, Definition 3.11] or 

Proposition 3.13). Furthermore,

rank H
(
D4(ft)

)(2,1,1)
3 = 3Q

and

μAlt
4 (f) = Q.

The result follows from here. �
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There is another relation between μI and μD. Let f : (Cn, S) → (Cn+1, 0) be A -finite 
of corank one and let g : (Cn−1, S′) → (Cn, 0) be a transverse slice. By the Lê-Greuel 
type formula (recall Theorems 4.1 and 4.3), we know that

μI(f) + μI(g) = #Σ(p|Zs
) =

∑
Q

#Σ
(
p|Q(fs)

)
,

where p : Cn+1 → C is the generic projection which defines the transverse slice, Zs is 
the image of a stable perturbation of f , Q runs through all the stable types in the target 
and Q(fs) denotes the points of fs in the target that are of stable type Q.

Using the same argument, we have that

μD(f) + μD(g) = #Σ(p ◦ fs) =
∑
QS

#Σ
(
(p ◦ fs)|QS(fs)

)
,

where now QS runs through all the stable types in the source.
If a stable type in the source QS corresponds to Q in the target, the restriction 

fs : QS(fs) → Q(fs) is a local diffeomorphism and is r-to-one, where r = r(Q) is the 
number of branches of the stable type Q. Hence,

#Σ((p ◦ fs)|QS(fs)) = r(Q)#Σ(p|Q(fs)).

Therefore, if μI(ft) and μI(gt) are constant in a family, this implies that μD(ft) and 
μD(gt) are also constant, by upper semi-continuity.

Proposition 5.13. Let f : (Cn, S) → (Cn+1, 0) be A -finite of corank one and let g :
(Cn−1, S′) → (Cn, 0) be a transverse slice. If μI(ft) and μI(gt) are constant in a family, 
then μD(ft) and μD(gt) are also constant.

The previous argument could make the reader think that, when we deal with Whitney 
equisingularity, controlling the target is enough to control the source, or vice versa. This 
idea is wrong in general. We take care of the details to control the target and the source 
in Section 6, and the problem with the previous idea is that μD(g) is not what we need 
(see Corollary 6.4 and Theorem 6.7). See also Example 6.8 for an example where this 
idea fails.

6. Whitney equisingularity

In [5], Gaffney showed that a one parameter family ft : (Cn, S) → (Cn+1, 0) is 
Whitney equisingular if, and only if, it is excellent (in Gaffney’s sense) and all the polar 
multiplicities in the source and target are constant on t. The problem is that, for each 
d-dimensional stratum in the source or target, we need d + 1 invariants, so the total 
number of invariants we need to control the Whitney equisingularity is huge.
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In this section, we follow the approach of Teissier in [43] for hypersurfaces with isolated 
singularities or Gaffney in [6] for icis to show that, in the corank one case, Whitney 
equisingularity can be characterized in terms of the μ∗

I(ft) and μ∗
I

(
D2(ft), π

)
sequences, 

obtained by taking successive transverse slices of ft.
In Section 4, we already made use of the stratification S by stable types of the 

image of a locally stable mapping f : X → Y between smooth manifolds X and Y with 
dimX = n and dimY = n + 1 and with only corank one singularities. Since each stable 
type is determined by its Mather algebra Q, we can denote by Q(f) the stratum of points 
y ∈ f(X) such that the multi-germ of f at y has type Q. Because f is stable, S is a 
partial stratification of f in the sense of [7, Proposition 3.1]. It follows that we have an 
induced stratification S ′ on X, with strata QS(f) = f−1 (Q(f)), such that f : X → Y

is a Thom stratified map.
Suppose, now, that we have an A -finite germ f : (X, S) → (Cn+1, 0) of corank one, 

where X is an n-dimensional icis. By Proposition 2.8, we can take a finite representative 
f : X → Y , where Y is an open neighbourhood of 0 in Cn+1 such that f−1(0) = S

and f : X \ S → Y \ {0} is a locally stable mapping. The stratification by stable types 
on f : X \ S → Y \ {0} extends to f : X → Y just by adding S and {0} as strata in 
the source and target, respectively. By shrinking the representative if necessary, we can 
always assume that f has no 0-stable singularities, so S and {0} are in fact the only 
0-dimensional strata.

Finally, we give a version of excellency, stratification by stable types and Whitney 
equisingularity for unfoldings of germs on icis.

Let (X , π, F, j) be a one parameter unfolding of (X, f) which is origin preserving (that 
is, S ⊂ Xt and ft(S) = 0, for all t) so we can see the unfolding as a family of germs 
ft : (Xt, S) → (Cn+1, 0).

Definition 6.1. We say that (X , π, F, j) is excellent if there exist a representative F :
X → Y × U , where Y and T are open neighbourhoods of the origin in Cn+1 and C
respectively, such that for all t ∈ T , f−1

t (0) = S and ft : Xt \ S → Y \ {0} is a locally 
stable mapping with no 0-stable singularities.

When the unfolding is excellent, F : X \S×{0} → (Y \ {0}) ×T is also stable, so we 
have a well defined stratification by stable types. This extends to F : X → Y × T just 
by adding S× T and {0} × T as strata in the source and target, respectively. These are, 
in fact, the only 1-dimensional strata.

Definition 6.2. We say that (X , π, F, j) is Whitney equisingular if F : X → Y × T is a 
Thom stratified map with the stratification by stable types.

Now, we recall the definition of polar multiplicities, following Gaffney in [5].
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Definition 6.3. Let f : (X, S) → (Cn+1, 0) be A -finite of corank one. For each stable type 
Q such that d = dimQ(f) > 0 and for each i = 0, . . . , d − 1, the ith-polar multiplicities
in the source and target are

mi(f,Q) = m0

(
Pi

(
Q(f)

))
, mi(f,QS) = m0

(
Pi

(
QS(f)

))
,

where the bar means the Zariski closure and Pi(Z) is the absolute polar variety of 
codimension i of Z in the sense of Lê and Teissier in [24, p. 462].

The dth-stable multiplicities are

md(f,Q) = deg
(
π : Pd

(
Q(F ), π

)
→ (Cr, 0)

)
,

md(f,QS) = deg
(
π : Pd

(
QS(F ), π

)
→ (Cr, 0)

)
,

where, now, (X , π, F, j) is an r-parameter versal unfolding of (X, f) and Pd(Z, π) is the 
relative polar variety of codimension d of a family π : Z → Cr (see [43, Section IV.1]).

Finally, we denote by c(f) the number of all 0-stable singularities that appear in a 
stable perturbation of (X, f).

It follows from the definition of relative polar variety that the top polar multiplicity 
md(f, Q) is equal to the number of critical points of p|Q(fs), where p : Cn+1 → C is 
a generic linear projection and (Xs, fs) is a stable perturbation of (X, f). Since the 0-
stable singularities are also critical points of p in the stratified sense, we get the following 
reformulation of Theorem 4.1:

Corollary 6.4. For a corank 1 and A -finite multi-germ f : (X, S) → (Cn+1, 0), X an
icis of dimension dimX = n > 1, let p : Cn+1 → C be a generic linear projection which 
defines a transverse slice g : (Y, S) → (Cn, 0), where Y = X ∩ (p ◦ f)−1 (0). Then,

μI(X, f) + μI(Y, g) =
∑

dimQ(fs)=d>0

md(f,Q) + c(f),

where the sum runs on all Q such that dimQ(fs) = d and all d > 0.

Now, we define the μ∗
I and μ∗

D-sequences of a corank one map germ.

Definition 6.5. Consider f : (X, S) → (Cn+1, 0) A -finite of corank one, with X an icis

of dimension dimX = n > 1. We take a generic flag of vector subspaces

H(n−1) ⊂ · · · ⊂ H(1) ⊂ H(0) = Cn+1,

such that H(i) has codimension i. We put X(i) = X ∩ f−1 (H(i)
)

and f(i) = f |X(i)
and 

define the μ∗
I-sequence of (X, f) as
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μ∗
I(X, f) :=

(
μI(X, f), μI

(
X(1), f(1),

)
, . . . , μI

(
X(n−1), f(n−1)

))
.

Sometimes we do not consider the top image Milnor number μI(X, f) in the μ∗
I -sequence 

and, then, we denote it by μ̃∗
I(X, f).

It is well-known that, by generic, we mean a suitable Zariski open in a convenient 
space, and this definition does not depend on the generic flag we are taking. The details 
can be seen in [27, pp. 1380–1381].

In next lemma, we see that all polar multiplicities can be seen as top polar multiplic-
ities of the corresponding transverse slices.

Lemma 6.6. With the hypothesis and notation of Definition 6.5, suppose that Q is a stable 
type such that dimQ(fs) = d > 0, for a stable perturbation (Xs, fs) of (X, f). Then,

md−i

(
f(i),Q

)
= md−i (f,Q) , i = 1, . . . , d.

Proof. By induction, it is enough to prove that

md−i

(
f(1),Q

)
= md−i (f,Q) , i = 1, . . . , d.

To see this, we first observe that Q 
(
f(1)

)
= Q(f) ∩H(1), so the equality for i = 2, . . . , d

follows directly from [24, Corollary 4.1.9].
For i = 1, we can see f as a stabilisation of f(1). If � : Cn+1 → C is the linear form 

such that H(1) = �−1(0), this means that f |	−1(t), with t �= 0, is a stable perturbation 
of f(1). In particular, md−1

(
f(1),Q

)
is the number of critical points of a generic linear 

projection p : Cn+1 → C restricted to Q 
(
f |	−1(t)

)
= Q(f) ∩ �−1(t). This number can be 

also seen as

deg
(
� : Pd−1

(
Q(f), �

)
→ (C, 0)

)
, (8)

where Pd−1

(
Q(f), �

)
is the closure of the set of critical points of (p, �)|Q(f).

On the other hand, md−i (f,Q) = m0

(
Pd−1

(
Q(f)

))
. Since Pd−1

(
Q(f)

)
is 1-

dimensional and � is generic, this is equal to

deg
(
� : Pd−1

(
Q(f)

)
→ (C, 0)

)
, (9)

where Pd−1

(
Q(f)

)
is again the closure of the set of critical points of (p, �)|Q(f). So, 

Equations (8) and (9) are equal. �
We arrive to the main theorem, which characterises the Whitney equisingularity of a 

family of map germs in terms of the μ∗
I -sequences of ft and 

(
D2(ft), π

)
.
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Theorem 6.7. Let ft : (Cn, S) → (Cn+1, 0) be a one parameter family of A -finite corank 
one map germs. Then, the family is Whitney equisingular if, and only if, the sequences 
μ∗
I(ft) and μ̃∗

I

(
D2(ft), π

)
are constant on t.

Proof. Suppose that the sequences μ∗
I(ft) and μ̃∗

I

(
D2(ft), π

)
are constant. First of all, 

the constancy of μI(ft) implies that the family is excellent (see [8, Theorem 4.3]). In 
fact, this holds not only for the family ft, but also for all families ft(i), i = 1, . . . , n − 1. 
In particular, all the numbers of 0-stable singularities c 

(
ft(i)

)
are constant (see [5, 

Proposition 3.6]). By Gaffney’s results in [5, Theorems 7.1 and 7.3], we need to proof 
that all polar invariants in the source and target are constant.

By Lemma 6.6, the constancy of the polar multiplicities follows from the constancy 
of the top polar multiplicities of all the transverse slices ft(i), with i = 1, . . . , n − 1. 
Secondly, we apply recursively Corollary 6.4 on ft(i) for i = 0, . . . , n − 2. For any i, we 
have

μI

(
ft(i)

)
+ μI

(
ft(i+1)

)
=

∑
dimQ(ft(i))=d>0

md

(
ft(i),Q

)
+ c

(
ft(i)

)
.

The polar multiplicities md

(
ft(i),Q

)
are upper semi-continuous (see [5, Proposi-

tion 4.15]). Therefore, all md

(
ft(i),Q

)
must be constant.

For the polar multiplicities in the source, we follow the same argument, but this time 
applied to the family 

(
D2(ft), π

)
. Observe that the polar multiplicities of ft(i) in the 

source coincide with the polar multiplicities of 
(
D2(ft(i)), π

)
in the target. Hence, we 

need to study μ∗
I

(
D2(ft(i)), π

)
. Moreover, it follows from Proposition 5.13 that

μD(ft) + μD

(
ft(1)

)
=

∑
QS

r(Q)#Σ
(
p|Q(fs)

)
.

Since the right-hand side is constant, for all the members in the sum are either po-
lar multiplicities in the target or numbers of 0-stable invariants, so is the left-hand 
side. Again, the upper semi-continuity of μD (see Corollary 2.15) implies that μD(ft) is 
also constant. Hence, it is enough to consider the reduced sequence μ̃∗

I

(
D2(ft), π

)
, as 

μD(ft) = μI

(
D2(ft), π

)
.

Finally, the converse is easy. If the family ft is Whitney equisingular, so are the families 
ft(i), for i = 1, . . . , n − 1. By Thom’s second isotopy lemma, they are topologically 
trivial and, hence, their image Milnor numbers are constant (see [8, Corollary 2.10]). 
Analogously, the family 

(
D2(ft), π

)
must be also Whitney equisingular, which gives the 

constancy of the sequence μ̃∗
I

(
D2(ft), π

)
. �

The following example shows that μ̃∗
I

(
D2(ft), π

)
, or even μ∗

I

(
D2(ft), π

)
, is not enough 

to control Whitney equisingularity.
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Example 6.8. Consider the one parameter family ft : (C2, 0) → (C3, 0) such that

ft(x, y) = (x, y4, x5y − 5x3y3 + 4xy5 + y6 + ty7).

This family is an example of topologically trivial family such that it is not Whitney 
equisingular, which was shown in [40, Example 5.5].

In this example, we also have constancy of μ (D(ft)). Therefore, the source is Whitney 
regular as D(ft) is a family of plane curves. In particular, all the multiplicities in the 
source and μ∗

I

(
D2(ft), π

)
are constant. However, neither the polar multiplicities in the 

target nor μ∗
I(ft) are constant because the family is not Whitney equisingular (and by 

Theorem 6.7).

The proof of Theorem 6.7 allows us to state a partial result when only the sequence 
μ∗
I(ft) is constant.

Definition 6.9. We say that the family ft is Whitney equisingular in the target if there 
exists a representative of the unfolding F : X → Y × T as in Definition 6.2 such that 
the stratification by stable types on Y × T is a Whitney stratification.

Proposition 6.10. Let ft : (Cn, S) → (Cn+1, 0) be a one-parameter family of A -finite 
corank one map germs. Then, the family is Whitney equisingular in the target if, and 
only if, the sequence μ∗

I(ft) is constant on t.

Example 6.11. Related to Example 6.8, there are families ft that are Whitney equisin-
gular in the target, but they are not Whitney equisingular. In [38], Tomazella, Silva, and 
the second author prove that the family ft : (C3, 0) → (C4, 0) such that

ft(x, y, z) = (x, y, z5 + xz, z7 + yz + tz8)

has

μ∗
I(ft) = (25, 16, 10),∀t,

μ̃I

(
D2(f0), π

)
= (65, 9), for t = 0,

μ̃I

(
D2(ft), π

)
= (65, 8), for t �= 0.

This shows that the family is Whitney equisingular only in the target (by Theorem 6.7
and Proposition 6.10). This and Example 6.8 enhance the importance of all the invariants 
of Theorem 6.7.

As a corollary of Theorem 6.7, and closing the topic we have started with Example 6.8, 
the Whitney equisingularity of a family ft : (C2, S) → (C3, 0) is controlled by just two 
invariants in the target. In fact, in [27] it was shown that ft (of any corank) is Whitney 
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equisingular if, and only if, μ (D(ft)) and μ 
(
Im(ft(1))

)
are constant, where μ is the 

usual Milnor number of a plane curve.

Corollary 6.12. Let ft : (C2, S) → (C3, 0) be a one parameter family of A -finite corank 
one map germs. Then, the family is Whitney equisingular if, and only if, μI(ft) and 

μI

(
ft(1)

)
are constant on t.
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