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Abstract
We consider undirected graphs that arise as determinis-

tic functions of stationary point processes such that each

point has degree bounded by two. For a large class of point

processes and edge-drawing rules, we show that the aris-

ing graph has no infinite connected component, almost

surely. In particular, this extends our previous result for

signal-to-interference ratio graphs based on stabilizing Cox

point processes and verifies the conjecture of Balister and

Bollobás that the bidirectional k-nearest neighbor graph

of a two-dimensional homogeneous Poisson point process

does not percolate for k = 2.
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1 INTRODUCTION

Continuum percolation was introduced by Gilbert [10] in order to model connectivity in large telecom-

munication networks. In his graph model, the vertices form a homogeneous Poisson point process

(PPP) in R2
, and two points are connected whenever their distance is less than a fixed connection radius

r > 0. He showed that this model undergoes a phase transition: if the spatial intensity 𝜆 > 0 of the PPP

is sufficiently small, then the graph consists of finite components only, almost surely, whereas for large

enough 𝜆, the graph percolates, that is, it has an unbounded connected component, also almost surely.
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FIGURE 1 Top: Realizations of U-kNN graphs based on a PPP with k = 1 (left), k = 2 (center) and k = 3 (right). Bottom:

Realizations of B-kNN graphs based on a PPP with k = 2 (left), k = 4 (center) and k = 5 (right)

This model has been widely extended, for instance to the case of random connection radii and

for various point processes, see [2, 4, 8, 12, 16, 17, 21, 22]. A drawback of Gilbert’s model is that it

allows for an arbitrarily large degree of the vertices, whereas for many applications, it is a reasonable

assumption that the vertices should have bounded degree. Incorporating this property, Häggström and

Meester [13] studied percolation in the so-called undirected k-nearest neighbor (U-kNN) graph, based

on a stationary PPP in R𝑑
, 𝑑 ≥ 1, see top line of Figure 1. Here, all points of the point process are con-

nected to their k-nearest neighbors, for some fixed k ∈ N. This results in a graph that is the undirected

variant of a directed graph with out-degrees bounded by k, which itself also has degrees larger than

k. Let us write kU,𝑑 for the minimum of all k ∈ N such that the U-kNN-graph of the stationary PPP

in R𝑑
percolates with positive probability. It was shown in [13] that kU,𝑑 > 1 for all 𝑑 ∈ N, however,

kU,𝑑 = 2 for all sufficiently large 𝑑. This was complemented in [26] by the assertion that kU,𝑑 <∞ for

all 𝑑 ≥ 2.

Balister and Bollobás [1] studied the case 𝑑 = 2. They also introduced another undirected graph,

which is contained in the U-kNN graph, called the bidirectional k-nearest neighbor (B-kNN) graph,

see bottom line of Figure 1. Here, one connects two points of the point process if and only if they

are mutually among the k-nearest neighbors of each other. This graph has in fact degrees bounded

by k, which immediately implies that there is no percolation for k = 1, whatever the vertex set is

(note that in the PPP case this also follows from the results of [13]). Define the critical out-degree

kB,𝑑 analogously to kU,𝑑 but with U replaced by B. It was shown in [1] that kU,2 ≤ 11 and kB,2 ≤ 15.

Further, “high-confidence results” of [1] indicate kU,2 = 3 and kB,2 = 5. By “high-confidence

results,” the authors of that paper meant that these assertions follow once one shows that a certain
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242 JAHNEL AND TÓBIÁS

deterministic integral exceeds a certain deterministic value; however, the integrals were only evalu-

ated via Monte–Carlo methods so far. Hence, from a mathematical point of view, these are still open

conjectures, but there is very strong numerical evidence that they are true.

Another line of research on percolation of bounded-degree spatial graphs with unbounded-range

dependencies, which is also close to applications in wireless networks, is signal-to-interference plus
noise ratio (SINR) percolation, introduced in [6, 7]. Here, a transmission in the network is considered

successful if and only if, measured at the receiver, the incoming signal power of the transmitter is

larger than a given threshold times the interference (sum of signal powers) coming from all other

users plus some external noise. Then, the SINR graph is constructed by drawing an edge between two

vertices whenever the transmission between them is successful in both directions, see Section 4.2 for

more details. This graph has bounded degrees (see [6, theorem 1]), where the smallest degree bound

k depends on the model parameters. If the transmitted signal powers are all equal, then the SINR

graph is contained in the corresponding B-kNN graph (see [24, lemma 4.1.13]) and hence also of the

U-kNN graph.

In general, if in an undirected graph all degrees are bounded by k = 2, all infinite connected com-

ponents must be path graphs (no cycles, no branchings), infinite in one or two directions, which makes

the graph similar to a one-dimensional continuum percolation model, indicating that under rather gen-

eral conditions, there should be no infinite connected component. Certainly, there are deterministic

point processes where percolation is possible, but a little bit of randomness can be expected to suffice

for nonpercolation. In our recent paper [15], we showed that in SINR graphs based on general sta-

tionary Cox point processes (CPPs) in any dimension, under rather general choices of the parameters

resulting in degrees bounded by 2, there is no percolation.

In the present paper, moving away from the particular setting of SINR graphs, we present anal-

ogous results in a general framework, extending the methods of the proof of [15, theorem 2.2]. We

consider a generalization of the B-kNN graph, called the f -kNN graph. Here, points of the underly-

ing marked point process are connected by an edge whenever they are mutually among the k nearest

neighbors of each other with respect to an ordering that may also depend on some marks of the points,

apart from the (not necessarily Euclidean) distance of the points. The ordering is expressed in terms

of a function f , hence the name f -kNN graph. We show that under suitable conditions on the underly-

ing stationary marked point process, the f -kNN graph does not percolate for k = 2. This in particular

implies nonpercolation of subgraphs of the f -kNN graph depending on additional randomness. In

fact, our results extend to all stationary point processes that are deletion-tolerant in the sense of [14].

This includes all CPPs satisfying a basic nondegeneracy condition, and a large class of Gibbs point

processes.

As a special case, our results imply that for general stationary CPPs, the B-2NN graph does

not percolate. This in particular implies that kB,2 ≥ 3, which provides a partial verification of the

high-confidence results of [1]. Note that this result does not follow from [15, theorem 2.2] because in

general, if the SINR graph is contained in a B-2NN graph, it is a proper subgraph of it with substan-

tially less edges. After stating and proving our main results, we also present examples of graphs with

degrees bounded by 2 that are not contained in an f -2NN graph but where our proof techniques are

also applicable, and also ones where they are not applicable.

Our setting is also related to the line of research on outdegree-one graphs, which were introduced

in [3]. However, our results do not follow from the results of that paper, and also not the other way

around. We will comment on the similarities and differences of the two models in Section 4.4.

The rest of the paper is organized as follows. In Section 2 we present our setting and main result.

In Section 3 we provide the proofs for our main result. Section 4 is devoted to examples, extensions of

our methods, and discussions.
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JAHNEL AND TÓBIÁS 243

2 MODEL DEFINITION AND MAIN RESULT

In this section we present our model definition and main results. Our setting is as follows. Let 𝑑 ∈ N,

and let || ⋅ || be an arbitrary norm on R𝑑
. Further, let (R𝑑) denote the Borel-𝜎-algebra of R𝑑

(clearly,

||⋅|| generates the standard topology of R𝑑
, which generates(R𝑑)). Moreover, consider the measurable

space (M,), which serves as a mark space.

Next, let X = {(Xi,Pi)}i∈I be a marked point process in R𝑑 ×M, so that X = {Xi}i∈I is a stationary

point process in R𝑑
with finite intensity 𝜆 = E[X([0, 1]𝑑)], that is nonequidistant. This means that for

all i, j, k, l ∈ I, ||Xi − Xj|| = ||Xk − Xl|| > 0 implies {i, j} = {k, l} and ||Xi|| = ||Xj|| implies i = j,
almost surely. Clearly, this property implies that the point process X is simple, that is, P(Xi ≠ Xj,∀i, j ∈
I with i ≠ j) = 1. For illustration, note that the randomly shifted lattice Z𝑑 +U, where U is a uniform

random variable in [0, 1]𝑑 , is a simple stationary but not nonequidistant point process on R𝑑
.

Next, we introduce a total ordering of the points. For this, let f ∶ [0,∞) × M → [0,∞) be a

measurable function such that v → f (v, q) is monotone decreasing for all q ∈ M. We call such a

function an ordering function.

Definition 2.1. Let f be an ordering function and (v1, q1), (v2, q2), (v3, q3) ∈ R𝑑 ×M. We say that v2

is f -closer to v1 than to v3 if one of the following conditions is satisfied:

1 f (||v1 − v2||, q1) < f (||v3 − v2||, q3), or

2 f (||v1 − v2||, q1) = f (||v3 − v2||, q3) and ||v1 − v2|| < ||v3 − v2||.

Then, it is elementary to verify the following lemma.

Lemma 2.2. Let f be an ordering function. For X defined as above and X nonequidistant, almost
surely, the following holds. For all i ∈ I, the relation “Xi is f -closer to Xj than to Xl” is a total ordering
(i.e., irreflexive, antisymmetric and transitive, with any two elements being comparable) on the set
{(j, l) ∈ I × I ∶ j ≠ i and l ≠ i}, which we call the f -ordering.

Thus, if x = {(xi, pi)}i∈I is a deterministic, locally finite, infinite, and nonequidistant set of

points in R𝑑 × M (for some countable index set I) and vo ∈ x ∶= {xi}i∈I , we can represent x as

x = {vf
n(vo, x)}n∈N

0
, where v

f
0
(vo, x) = vo, and v

f
n(vo, x) is the nth nearest neighbor of vo in x with

respect to the f -ordering for any n ∈ N0. Next, we build a graph based on the f -ordering.

Definition 2.3. Let f be an ordering function, k ∈ N and X defined as above with X nonequidis-

tant, almost surely. The f -k-nearest neighbor (f -k NN) graph gk,f (X) is the random graph having

vertex set X and for all i ∈ I and n ∈ {1, … , k} an edge between Xi and v
f
n(Xi,X) whenever

Xi ∈ {vf
1
(vf

n(Xi,X),X), … , v
f
k(v

f
n(Xi,X),X)}.

As the next example shows, the B-kNN graph is an f -kNN graph for a point process with trivial

marks. Let us write {⋆} for the one-point measurable space (with = {Ø, {⋆}}).

Example 2.4. Consider a nonequidistant point process X in R𝑑
, 𝑑 ≥ 1, and equip X with trivial

marks in M = {⋆}. Then, f (v, q) = f (v) = v yields the B-k NN graph based on X.

We will explain the relations between f -kNN graphs and SINR graphs in Section 4.2.

Apart from the basic requirement of being nonequidistant, the property of deletion-tolerance intro-

duced in [14] is the most important requirement on the marked point process. An X-point is an

 10982418, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21084 by M

T
A

 A
lfred R

enyi Institute of, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



244 JAHNEL AND TÓBIÁS

(R𝑑 ×M)-valued random variable z, defined on the same probability space as X, such that z ∈ X a.s.,

and one says that X is deletion-tolerant if for any X-point z, the distribution of X∖{z} is absolutely

continuous with respect to the one of X. See [14, theorem 1.1] for the equivalent formulations of this

property for nonmarked point processes. We will present examples of marked point processes that are

deletion-tolerant below. Equipped with the above definitions, we are now able to state our main result.

Theorem 2.5. Let f be an ordering function and let the deletion-tolerant marked point process X be
such that the underlying point process X is stationary, nonequidistant and has a finite intensity. Then,
we have

P(g2,f (X) percolates) = 0.

The proof of this theorem is carried out in Section 3. In Section 4.2 we discuss the relation between

the proof of Theorem 2.5 and the one of [15, theorem 2.2]. In Section 4.3 we will explain how it

extends to other graphs that are defined similarly, have degrees bounded by 2, but are not subgraphs of

f -kNN graphs. A key ingredient in the proof of Theorem 2.5 and its aforementioned extensions is the

so-called edge-preserving property of the underlying graph, which we will introduce in Definition 3.2

below.

Note that deletion-tolerance is satisfied by many point processes, as is shown by the following

proposition, see also [14] for more examples without marks.

Proposition 2.6. Any i.i.d.-marked CPP X on R𝑑 × M is deletion-tolerant. Further, any
infinite-volume Gibbs point process X on R𝑑 × M based on an Hamiltonian H is deletion-tolerant,
whenever M is a Polish space equipped with the associated Borel 𝜎-algebra, and for all bounded
measurable Λ ⊂ R𝑑 and almost-all boundary conditions y

ZΛ(y) =
∫
Λ(dxΛ) exp(−HΛ(xΛ ∪ yΛc )) < ∞,

where Λ is an i.i.d.-marked Poisson point process in Λ and yΛc = {(v, q) ∈ y ∶ v ∈ R𝑑∖Λ).

The proof of this proposition is presented in Section 4.1. Note that the class of stationarity and

nonequidistant CPPs includes the homogeneous PPPs. The class of Gibbs point processes satisfying

the above condition is very rich and in particular includes the classical examples of superstable Hamil-

tonians, see [5] and references therein. Moreover, there are also well-known point processes that are

not deletion-tolerant. A very straightforward class of such processes is the following. As introduced

in [9, 18], we say that the point process X is number rigid if for any  ⊂ R𝑑
compact, there exists a

deterministic measurable function h such that,

#(X ∩) = h(X∖),

almost surely, that is, X outside determines the number of points of X in. The following proposition

states that number rigid point processes fail to be deletion-tolerant.

Proposition 2.7. If the nonmarked version X of the marked point process X is stationary and number
rigid with positive intensity, then X is not deletion-tolerant.

This proposition follows immediately from results of [14], see Section 4.1 for a proof.
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JAHNEL AND TÓBIÁS 245

According to [9], the Ginibre ensemble and the Gaussian zero process are number rigid point

processes in R2
, which are also stationary, nonequidistant, and of positive intensity. Hence, the proof

of Theorem 2.5 is not applicable for them. We nevertheless believe that they satisfy the assertion of

the theorem, but the proof would require additional arguments.

3 PROOF OF THEOREM 2.5

The proof of the Theorem 2.5 proceeds along the following line of arguments. We first show that

with probability 1, clusters, that is, maximally connected components, are either finite or they consist

only of points of degree 2, see Lemma 3.1 below. Next, we assume for a contradiction that there

exists an infinite cluster with positive probability. Then, we introduce a procedure that removes a finite

subprocess from the infinite cluster that is closest to the origin in a certain sense associated with the

f -ordering. (Below we will provide a formal definition of a finite subprocess of X). In the resulting

configuration, the infinite cluster still remains infinite, but it contains a vertex of degree 1. Hence, the

probability that the process takes values in the set of the resulting configurations is zero. Then it remains

to show that also the probability that the process takes place in the set of original configurations is

zero, which leads to the desired contradiction. This last step relies on the deletion-tolerance of X and

uses a certain result from [14] that we will recall below.

Note that for the proof of Theorem 2.5, we can assume that the intensity 𝜆 of the underlying station-

ary point process is positive, since otherwise Theorem 2.5 is trivially true. We start with the following,

previously proven lemma, which excludes existence of infinite clusters that have a degree-one point in

the case of general random graphs based on stationary marked point processes.

Lemma 3.1. [15, Lemma 5.4] Let g(X) be a random graph based on a marked point process X
such that the degree of all Xi ∈ X, deg(Xi), is bounded by 2, almost surely. Let X be stationary and
nonequidistant with a finite intensity, and consider the point process of degree-one points in infinite
clusters

0 =
∑

i∈I
𝛿Xi𝟙{deg(Xi) = 1, Xi is part of an infinite cluster in g(X)}.

Then, P(0(R𝑑) = 0) = 1.

The proof is based on a certain variant of the mass-transport principle (see [3, section 4.2] for

instance). Informally speaking, the proof goes as follows: If there was an infinite cluster having a point

of degree one, then by stationarity, the point process of degree-1 points of infinite clusters 0 would

have to have a positive density. This, however, leads to a contradiction because any infinite cluster

can only contain at most one degree-1 point and must contain infinitely many degree-2 points, which

implies that the aforementioned density must be equal to zero. We refer the reader to [15, section 5.2]

for further details.

In will be convenient to assume that X takes values in the set N of marked point configurations

x in R𝑑 × M such that x = {xi ∶ (xi, pi) ∈ x} is an infinite, locally finite, nonequidistant point

configuration on R𝑑
. We will denote by N the set of such point configurations x and equip N and N

with the corresponding evaluation 𝜎-fields.

One essential property that we will use in the proof of Theorem 2.5 is the so-called edge-preserving
property of the underlying f -kNN graph. Informally speaking, this means that if we remove points from
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246 JAHNEL AND TÓBIÁS

a configuration, then edges between remaining points are preserved. Now we provide the definition of

this property corresponding to our configuration spaces.

Definition 3.2. Let g ∶ N → N × (N × N), x → g(x) = (x,Eg(x)) be a function that maps a marked

point configuration x to a graph with vertex set x. We say that g is edge-preserving if for all y, x ∈ N
with y ⊆ x, for all (v1, q1), (v2, q2) ∈ y such that (v1, v2) ∈ Eg(x), one has (v1, v2) ∈ Eg(y).

Let us, for the remainder of this section, fix an ordering function f . It is then easy to see that the

f -kNN graph gk,f ∶ x → gk,f (x) is edge-preserving for all k ∈ N. See Sections 4.2 and 4.3 for further

examples of edge-preserving graphs.

Now, for x ∈ N and vo ∈ x, we consider the sequence (vn(vo, x))n∈N
0

of the marked points

of x ordered in increasing f -order of x, measured from vo. Then, nonboldface vi(vo, x), as defined

in Section 2, is the first component of vi(vo, x), which we call the ith nearest f -neighbor of vo. In

particular, recall that v0(vo, x) = vo.

Next, if vo has degree two in g2,f (x), then vo is connected by an edge to both v1(vo, x) and v2(vo, x).
Moreover, both v1(vo, x) and v2(vo, x) also have vo as one of their first two nearest f -neighbors, that is,

vo ∈ {v1(vi(vo, x), x), v2(vi(vo, x), x)} ,

for all i ∈ {1, 2}. These k-nearest f -neighbor relations hold almost surely and in particular for every

nonequidistant configuration x. Thanks to the choice of our configuration space N, we can entirely

exclude configurations that offend the degree bound or the k-nearest f -neighbor relations or are not

nonequidistant. In particular, the f -2NN graph g2,f (x) is well-defined for all x ∈ N.

Given this, for x ∈ N, we define 𝓁(x) ∈ [0,∞] as the number of infinite clusters in g2,f (x), and in

case 𝓁(x) > 0, we let z(x) = (z(x), r(x)) denote the closest point of x to the origin such that z(x) has

degree two and is contained in an infinite cluster in g2,f (x), and we write 1(x) for the cluster containing

z(x).
Now, in order to show that the probability that g2,f (X) percolates is zero, it suffices to verify that

P(𝓁(X) ≥ 1) = 0. (3.1)

Next, for x ∈ N with 𝓁(x) ≥ 1, we define the third-nearest f -neighbor of z(x)within the infinite cluster

1(x) by

𝜏(x) = inf{i ≥ 3 ∶ vi(z(x), x) ∈ 1(x)}.

Indeed, among the points vj(z(x), x), j < 𝜏(x), precisely two (namely, v1(z(x), x) and v2(z(x), x)) are

contained in 1(x). In case 𝓁(x) = 0, we put 𝜏(x) = ∞. Then, we have the following assertion.

Proposition 3.3. Under the assumptions of Theorem 2.5, for any natural number i ≥ 3, we have

P({𝓁(X) ≥ 1} ∩ {𝜏(X) = i}) = 0. (3.2)

Before proving Proposition 3.3, let us show why it implies Theorem 2.5.

Proof of Theorem 2.5. Noting that {𝓁(X) ≥ 1} ⊂ {𝜏(X) < ∞} and using a union bound,

Proposition 3.3 implies P(𝓁(X) ≥ 1) = 0, which is (3.1), and thus finishes the proof of

Theorem 2.5. ▪
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JAHNEL AND TÓBIÁS 247

In order to verify Proposition 3.3, let us now present a preliminary result. First, we say that a point

process Y is a finite subprocess of X if Y is defined on the same probability space as X, satisfies

#Y < ∞ and Y ⊂ X almost surely. Then we have the following claim: If X is deletion-tolerant, then for

any subprocess Y of X, the law of X∖Y is absolutely continuous with respect to the one of X. Indeed,

for M = Rl
, l ≥ 0, the claim follows from [14, theorem 1.1]. Now we verify it in the case of general M

analogously to the proof presented for the case M = Rl
in [14, section 3]. Let us assume that for some

measurable subset  of N we have P(X∖Y ∈ ) > 0. Then, there must exist some n ∈ N such that

P({X∖Y ∈ } ∩ {#Y = n}) > 0. Set Yn = Y if #Y = n and set Yn = Ø otherwise. Then, it follows

that P(X∖Yn ∈ ) > 0. Since X is deletion-tolerant, it follows that P(X ∈ ) > 0, as claimed.

Next, we observe the following. For x ∈ N with 𝓁(x) ≥ 1, by definition, we have that z(x) is

connected by an edge both to v1(z(x), x) and v2(z(x), x) in g2,f (x). Further, since the degrees are bounded

by two, for such x, v1(z(x), x) and v2(z(x), x) have no further joint neighbor in g2,f (x) since otherwise

1(x) has a loop and cannot be infinite. Hence, for any i ≥ 3, there exists l ∈ {1, 2} such that vi(z(x), x)
and vl(z(x), x) are not connected by an edge in g2,f (x). Let us denote the corresponding vl(z(x), x) by

mi(x), and define mi(x) = v1(z(x), x) if neither v1(z(x), x) nor v2(z(x), x) is connected to vi(z(x), x) by

an edge. The element of {v1(z(x), x), v2(z(x), x)} not being equal to mi(x) is denoted by ni(x). We will

write qi(x) for the mark of mi(x).
Let us define the set of configurations in which the infinite cluster closest to the origin is one-armed

B = {x ∈ N ∶ 𝓁(x) ≥ 1 and 1(x) contains a point of degree one},

and note that B ⊂ {x ∈ N ∶ 𝓁(x) ≥ 1}. With this, for x ∈ N, let us define the finite point configuration

y(x) =

{
{v3(z(x), x), … , v𝜏(x)−1(z(x), x), (m𝜏(x)(x), q𝜏(x)(x))} if 𝓁(x) ≥ 1 and x ∉ B,
Ø, if 𝓁(x) = 0 or x ∈ B.

Let us fix i ≥ 3. Let x ∈ N be such that 𝓁(x) ≥ 1 and 𝜏(x) = i. Then, we define a thinned configuration

xi = x∖y(x),

and put xi = {v ∶ (v, q) ∈ xi} for the corresponding nonmarked configuration.

We claim that {𝓁(x) ≥ 1} ∩ {𝜏(x) = i} is a subset of {𝓁(xi) ≥ 1}. For this, first note that the

removal of finitely many points of the point process can change the edge structure of the remaining

points. Nevertheless, it cannot remove edges that were already present before the removal of points

since g2,f is edge-preserving. Hence, all edges between two points of xi
in g2,f (x) also exist in g2,f (xi).

In particular, if g2,f (x) contains an infinite cluster, then g2,f (xi) contains all but at most finitely many

edges of this cluster. This implies that 𝓁(xi) ≥ 1, hence the claim.

Then, the next claim is that for x ∈ N with 𝓁(x) ≥ 1 and 𝜏(x) = i, we have that xi
is contained in

B. The proof of this claim is clear if x ∈ B since then xi = x. Thus, we now consider the case x ∉ B.

This case is illustrated in Figure 2. Recall that for x ∈ N, z(x) cannot have degree higher than two in

g2,f (xi), whereas it has degree at least one and its cluster 1(xi) is infinite in g2,f (xi). Note also that

the edge between z(x) and ni(x) still exists in g2,f (xi). Further, if z(x) has degree two in g2,f (xi), then

it is connected to the second-nearest f -neighbor toward z(x) in xi
, which is v2(z(x), xi) = vi(z(x), x),

whereas v1(z(x), xi) = ni(x). Now, since x ∉ B, 𝓁(x) ≥ 1 and vi(z(x), x) ∈ 1(x), it follows that

vi(z(x), x) has degree equal to two in g2,f (x). Further, it is neither connected to mi(x) by an edge nor to

z(x) in this graph. Hence, both edges adjacent to vi(z(x), x) also exist in g2,f (xi). But since vi(z(x), x)
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248 JAHNEL AND TÓBIÁS

FIGURE 2 An illustration of the removal of the finite subconfiguration y(x) = {(mi, qi), v3(z(x)), … , vn−1(z(x))} from the

configuration x satisfying 𝓁(x) ≥ 1, 𝜏(x) = i ≥ 3 and x ∉ B. The point vi = vi(z(x), x) is contained in the infinite cluster

1 = 1(x) including z = z(x), and it is not a neighbor of mi = mi(x), which equals v1 = v1(z(x), x) here, whereas

v2 = v2(z(x), x) = ni = ni(x). (In the figure we use the short-hand notations vj = vj(z(x), x) for all values of j.) Hence, if vi has

degree two in 1, then there are various possibilities respecting the degree bound of two to connect vi to 1 so that it is not

connected to mi by an edge. vi can either be a direct neighbor of v2 (see dashed line) or a further point of the path from z to

infinity starting with the edge from z to v2 (dash-dotted lines) or a nondirect neighbor of v1 on the path from z to infinity starting

with the edge from z to v1 (dotted lines). Now, removing the finite subconfiguration y(x) from the realization (the nonmarked

points corresponding to y are colored red in the figure), in the resulting f -2NN graph of xi = x∖y(x), both edges adjacent to vi

are preserved. Also all edges from z to infinity starting with the edge from z to v2 are preserved, hence z is still contained in an

infinite cluster, but the edge from z to v1 is removed. In the resulting new configuration, the second-nearest f -neighbor toward

z is vi, and hence this is the only point of the configuration that could be connected to z by an edge. But vi still cannot have

degree 3 or more, hence it cannot be connected to z. Thus, in the new configuration, z is in an infinite cluster and has degree 1

has degree at most two in g2,f (xi), it follows that z(x) and vi(z(x), x) are not connected by an edge in

this graph. Hence, xi ∈ B, which implies the claim.

Note that by Lemma 3.1, the set B is a P-null set, that is,

P(X ∈ {xi ∶ x ∈ N,𝓁(x) ≥ 1 and 𝜏(x) = i}) = 0. (3.3)

This implies (3.2). Next, we have the following lemma.

Lemma 3.4. Under the assumptions of Theorem 2.5, for any i ≥ 3, P({𝓁(X) ≥ 1}∩{𝜏(X) = i}) > 0

implies P(X ∈ {xi ∶ x ∈ N,𝓁(x) and 𝜏(x) = i}) > 0.

Before proving the lemma, let us now explain why it implies Proposition 3.3.

Proof of Proposition 3.3. By Lemma 3.4, where we show that if the collection of thinned configu-

rations is contained in a P-null set, also the nonthinned configurations form a P-null set, we see that

(3.3) implies (3.2), which concludes the proof of Proposition 3.3. ▪

Finally, it remains to verify Lemma 3.4. Its proof strongly relies on deletion-tolerance.

Proof of Lemma 3.4. Let us fix i ≥ 3 and assume that P({𝓁(X) ≥ 1} ∩ {𝜏(X) = i}) > 0. For the

finite subprocess Y = y(X) of X this means that

0 < P({𝓁(X) ≥ 1} ∩ {𝜏(X) = i}) = P (X ∈ {x ∈ N ∶ 𝓁(x) ≥ 1, 𝜏(x) = i})
≤ P

(
X∖Y ∈ {xi ∶ 𝓁(x) ≥ 1, 𝜏(x) = i}

)
.

Next, since X is assumed to be deletion-tolerant and Y is a finite subprocess of X, by the equivalent

characterization of deletion-tolerance as presented below Proposition 3.3, it follows that the law of

X∖Y is absolutely continuous with respect to the one of X. This yields

0 < P
(
X ∈

{
xi ∶ 𝓁(x) ≥ 1, 𝜏(x) = i

})
.

This implies the lemma. ▪
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JAHNEL AND TÓBIÁS 249

4 EXAMPLES, DISCUSSION, AND EXTENSIONS

4.1 Examples of deletion-tolerance

In this section, we verify Propositions 2.6 and 2.7. We first carry our the proof of Proposition 2.6.

Proof of Proposition 2.6. First, let X be an i.i.d. marked CPP, where X is stationary and

non-equidistant. Then, due to the i.i.d. markings, X can be seen as a PPP with random directing mea-

sure Γ(dv) ⊗ (dq), where  is the distribution of the marks and Γ is the (random) intensity of the

unmarked CPP, see for example, [20, section 13]. Consider an event such that P(X ∈ ) = 0, then,

by the definition of deletion tolerance, it suffices to show that for any bounded measurable set B ⊂ R𝑑
,

we have

E

[
∑

Xi∈X∩B
𝟙{X∖Xi ∈ }

]

= 0.

But, using the Mecke formula for PPPs in general measurable spaces, see [20, theorem 13.8], we have

that

E

[
∑

Xi∈X∩B
𝟙{X∖Xi ∈ }

]

= E[Γ(B)P(X ∈ |Γ)] = 0,

as desired.

Let now X be a stationary Gibbs point processes. As in the proof of Proposition 2.7 below, we want

to employ an equivalent characterization of deletion tolerance via almost-sure positivity of conditional

void probabilities, see [14, theorem 1.1] for the case of unmarked point processes. In order to lift this

to the level of marked point processes we extend the arguments as exhibited in [14]. However, first

note that by our assumptions, for all bounded measurable Λ ⊂ R𝑑
, and almost all realizations XΛc of

X in Λc
, we have

P(XΛ = Ø|XΛc ) ≥ e−𝜆|Λ|Z−1

Λ (XΛc) > 0,

where 𝜆 > 0 denotes the intensity of the underlying unmarked Poisson point process.

Using this, on a general level, if for some bounded Λ ⊂ R𝑑
and measurable ⊂ R𝑑 ×M, we have

P(XΛc ∈ ) > 0, then P(X ∈ ) ≥ P(XΛc ∈ ,XΛ = Ø) = E[𝟙{XΛc ∈ }P(XΛ = Ø|XΛc)] > 0 and

hence, the law of XΛc is absolutely continuous with respect to the law of X. In order to deduce deletion

tolerance from this absolute continuity, we consider open balls B(x, r) in R𝑑 ×M, where x ∈ Q𝑑 ×D,

with D a countable-dense subset of the Polish space M, and r ≥ 0 is rational. We let C denote the set of

unions of finitely many such balls. Then, by the local finiteness of X, for all X-points Z, there exists a

C-valued random variable 𝚪 such that P(X𝚪 = 𝛿Z) = 1. But then, if for some measurable ⊂ R𝑑 ×M
we have P(X − 𝛿Z ∈ ) > 0, it follows that

0 < P(X − 𝛿Z ∈ ,X𝚪 = 𝛿Z) = P(X𝚪c ∈ ) =
∑

Γ∈C
P(X𝚪c ∈ ,𝚪 = Γ),

and hence P(XΓc ∈ ) > 0 for some Γ. But this implies P(X ∈ ) > 0 by the absolute continuity

asserted above. ▪

Finally, we prove Proposition 2.7. The proof is based on the following lemma.
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250 JAHNEL AND TÓBIÁS

Lemma 4.1. Let the marked point process X be deletion-tolerant. Then, the underlying point process
X is also deletion-tolerant.

In order to keep the proof short, we again assume that X takes values in the configuration space N
and X in the configuration space N, which were defined in Section 3.

Proof. Let A be any measurable subset of N. Further, let Y be any X-point. Let P be the mark of Y
(defined realizationwise). Then (Y ,P) is an X-point and we have

P(X ∈ A) = P
(
X ∈ A, (Pi)i∈N ∈ MN

)
= P(X ∈ A ×MN).

Since A ×MN
is a measurable subset of N and X is deletion-tolerant, we have

0 < P(X∖{(Y ,P)} ∈ A ×MN) = P(X∖{Y} ∈ A).

Hence, the distribution of X∖{Y} is absolutely continuous with respect to the one of X, as

wanted. ▪

Proof of Proposition 2.7. Thanks to Lemma 4.1, it suffices to show that X is not deletion-tolerant.

Further, as already mentioned in the proof of Proposition 2.6, the following assertion is known from

[14, theorem 1.1]: If X is deletion-tolerant, then for any bounded S ∈ (R𝑑), we have that almost surely

P (X ∩ S = Ø|X ∩ Sc) > 0. (4.1)

Assume now that the conditions of the proposition are satisfied. Let ∈ (R𝑑) be compact. Since

X is stationary with positive intensity, there exists some k ∈ N such that

P(#(X ∩) = k) > 0.

Let us now consider the measurable set F = h−1


(k). We have

P((X ∩c) ∈ F) > 0.

Hence, the conditional probability

P(X ∩ = Ø|X ∩c ∈ F), (4.2)

is well-defined. However, since {X ∩ c ∈ F} ⊆ {#(X ∩ ) = k}, (4.2) equals zero. This shows

that for our choice of X and for S = , the assertion (4.1) does not hold, and hence X is not

deletion-tolerant. ▪

4.2 SINR graphs as subgraphs of f -kNN graphs

Let us briefly summarize the relation between Theorem 2.5 and [15, theorem 2.2]. Indeed, the two

proofs are similar, in particular, two steps of the proof, Lemma 3.1 and the part of Proposition 2.6

regarding the Cox case already appeared in [15]. However, in [15] we focused on the particular

case of SINR graphs based on stationary and nonequidistant CPPs, having concrete applications in
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JAHNEL AND TÓBIÁS 251

telecommunications in mind, and we did not aim at checking whether our proof works also for a wider

class of point processes or graphs. Thus, the main novelty in this paper is not that we exploit new proof

techniques (although the proofs of Proposition 2.7 and the part of Proposition 2.6 regarding Gibbs

point processes have no analogues in [15]). Instead, we highlight that apart from the general combi-

natorial condition of working with undirected and stationary random graphs with degrees bounded by

two, two properties are crucial for a straightforward generalization of the proof in [15]: (1) the dele-

tion tolerance of the underlying point process and (2) the edge-preserving property of the graph. The

latter observation allows for the extensions of Theorem 2.5 presented in Section 4.3.

This puts the result into a general framework and allows for generalizations of the result both with

respect to the type of graph and with respect to the kind of point process. Here, let us note that the

SINR graph is not a special case of an f -kNN graph, but a proper subgraph of an f -2NN graph under

particular choices of the parameters, which is itself edge-preserving. Nonpercolation in f -2NN graphs

was not even known before the present paper in the simplest case represented by the B-2NN graph.

In order to make the relation between f -kNN graphs and SINR graphs explicit we recall the

definition and interpretation of the latter graphs. Let M = N = [0,∞), ||⋅|| = ||⋅||2, Po be a nonnegative

random variable, and X = {(Xi,Pi)}i∈I an i.i.d. marked point process in R𝑑 ×[0,∞) such that all Pi are

distributed as Po. Let 𝓁 ∶ (0,∞) → [0,∞), the so-called path-loss function, be a monotone decreas-

ing function. Typical examples of path-loss functions correspond to Hertzian propagation (see [6, 7]),

for example, for 𝛼 > 𝑑, the unbounded function 𝓁(r) = r−𝛼 , its truncated variant 𝓁(r) = min{1, r−𝛼},
and its “shifted” variant 𝓁(r) = (1 + r)−𝛼 . Now, define f (x, p) = 1∕(p𝓁(||x||)). In a telecommunication

context, for (Xi,Pi) ∈ X and x ∈ R𝑑
, Pi expresses the signal power transmitted by a device at spa-

tial position Xi, and 𝓁 describes propagation of signal strength over distance. Note that 𝓁 need not be

strictly decreasing, which gives relevance to Part (2) of Definition 2.1 in order to make the f -ordering

well-defined. We observe that in case Po is almost surely equal to a fixed positive constant, then the

arising f -kNN graph is the B-kNN graph.

In this setting, the SINR graph [6] is usually introduced in the following way. Let No be another

nonnegative random variable independent of X. Choose two further parameters 𝛾, 𝜏 > 0, the so-called

interference-cancellation factor and the SINR threshold, respectively, and for i, j ∈ I, i ≠ j, connect Xi
and Xj by an edge whenever the SINR constraint is satisfied in both directions, that is,

Pi𝓁(|Xi − Xj|) > 𝜏

(

No + 𝛾

∑

k∈I∖{i,j}
Pk𝓁(|Xk − Xj|)

)

, (4.3)

and the same holds with the roles of i and j interchanged. Then, it is known from [6, theorem 1] that if X
is a simple point process (even if not stationarity or not nonequidistant), all degrees in the SINR graph

are less than k = 1 + 1∕(𝜏𝛾). Using the elementary arguments of [24, lemma 4.1.13], one can easily

verify that if X = {Xi}i∈I is also nonequidistant, then the SINR graph is a subgraph of the f -kNN graph

of the present example. Further, if No > 0 is deterministic, then the SINR graph has bounded edge

lengths and hence is a subgraph of the Gilbert graph introduced in [10]. The same assertion holds also

for No = 0 in case 𝓁 has bounded support. For positive assertions about percolation in SINR graphs

based on various kinds of point processes, we refer the reader, for example to [2, 6, 7, 15, 19, 24, 25].

Hence, for point processes satisfying the conditions of Theorem 2.5, there is no percolation in

the SINR graph if its degrees are bounded by 2, which is always the case if 𝛾 ≥ 1∕(2𝜏). Thanks

to Proposition 2.6, in particular, Gibbs point processes are covered by this result. To the best of our

knowledge, there have been no results about SINR percolation for Gibbs point processes before (apart

from the degree bounds themselves). Regarding nonpercolation in case degrees are bounded by two,

the case of CPPs was handled in [15, theorem 2.2]. Here, based on the observation [15, section 5.2,
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252 JAHNEL AND TÓBIÁS

proof of proposition 5.8] that SINR graphs are edge-preserving on their own right in the sense of

Definition 3.2, we carried out a certain variant of the proof of Theorem 2.5 for the SINR graph directly,

with no direct reference to f -kNN (or even B-kNN) graphs.

The aforementioned positive results on SINR percolation guarantee that for various kinds of point

processes, the SINR graph percolates with positive probability for some positive 𝛾 given that 𝜆 is

sufficiently large, while all the other parameters (depending on the type of point process) are fixed. In

other words, we know that k∗ < ∞ holds for the infimum k∗ of all degree bounds k such that there

exists an SINR graph with largest degree equal to k that percolates. There are multiple interesting open

questions related to this. First, what is the smallest value of such k∗, and how does it depend on the type

of the point process? The main results of the present paper imply that for stationary and nonequidistant

point processes that are deletion-tolerant, we have k∗ ≥ 3. Further, according to the high-confidence

results of [1], k∗ ≥ 5 for the two-dimensional PPP. Second, is the smallest such degree bound the same

for SINR graphs as for the underlying B-kNN graph? While the relationship between Gilbert graphs

and SINR graphs is clear (viz., Gilbert graphs are increasing limits of SINR graphs as 𝛾 ↓ 0), we are

not aware of results stating that the B-kNN graph is an increasing limit of certain SINR graphs with

degree bound k, and such a result may not be true in general. Namely, it may be the case that an SINR

constraint of the form (4.3) with degree bound k ∈ N poses stronger restrictions on the edges of the

graph than a B-kNN constraint for the same k. We defer the investigation of such questions to future

work, noting that numerical evidence indicates that the two critical degree bounds are not the same in

general, see for example, Figure 3.

4.3 Extensions and limitations of the proof of Theorem 2.5

We now present examples of graphs with degrees bounded by two that are not contained in an f -2NN

graph but have rather similar properties to it, to the extent that the proof techniques of Theorem 2.5

are applicable to it.

Example 4.2 (Locally furthest neighbors). The edge-preserving property of f -k NN graphs (see

Definition 3.2) also holds if we replace the “k-nearest neighbors with respect to the f -ordering” in

their definition by “k-furthest neighbors in a bounded (possibly random) set shifted to the point,

w.r.t. f -ordering”. For the sake of simplicity of notation, let us explain how this works in the case of

B-k NN graph. The case of general f -k NN graphs can be handled similarly, taking into account also

the marks and using the f -ordering instead of the ordering of Euclidean norms. We assume throughout

this discussion that the point process X is stationary, nonequidistant, and deletion-tolerant.

Let us fix a deterministic measurable set A ⊆ R𝑑
of finite Lebesgue measure and define a random

graph with vertex set X via connecting two different points Xi,Xj of the point process X by an edge

whenever Xj is one of the k ∈ N furthest neighbors in (A+Xi)∖{Xi} and the same holds with the roles

of i and j interchanged. It is easy to see that this graph is well-defined and edge-preserving. Clearly,

for k = 2 it has degrees bounded by two. Hence, non-percolation of the graph can be verified along

the lines of the proof of Theorem 2.5 also in the case of this graph. If A is bounded, then the graph has

bounded edge lengths (unlike the B-k NN graph).

This approach can be extended to the case when the deterministic set A + Xi is replaced by a

random set AXi in such a way that {AXi}i∈I are stationary, since the edge-preserving property and the

degree bound of two are still preserved. E.g., the proof techniques of Theorem 2.5 are still applicable

if {AXi}i∈I is a Boolean model with random radii based on X = {Xi}i∈I [21]. Instead of connecting Xi
to the two furthest neighbors in X∩AXi by an edge, one can also connect it to the two nearest neighbors

in X ∩ AXi and obtain the same result. We refrain from presenting further details here.
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JAHNEL AND TÓBIÁS 253

FIGURE 3 B-kNN graphs (in the first line) and signal-to-interference plus noise ratio (SINR) graphs with degree bound k (in

corresponding order in the second line) for k = 2, 4, 5, for X being a stationary Cox point process. The random intensity

measure Λ is given as the edge-length measure (i.e., the one-dimensional Hausdorff measure) of a two-dimensional

Poisson–Voronoi tessellation. The simulation leads to the conjecture that the smallest k such that the B-kNN graph percolates

is k = 5, which would mean that it equals the one of the two-dimensional PPP (which is 5 according to the high-confidence

results of [1]). Further, it is known from [25] that in this case, for large enough 𝜆 and accordingly chosen small 𝛾 > 0, there is

also percolation in the SINR graph. However, it does not seem to be the case that this already happens when the degree bound

equals 5, as the simulation suggests. Here, 𝛾 is just slightly bigger than 1∕(5𝜏), that is, a small further increase of 𝛾 would

increase the degree bound to 6, but the SINR graph is still much less connected than the corresponding B-5NN graph

The next example shows that there are graphs defined very similarly to the f -2NN graph for which

our methods are not applicable.

Example 4.3 (k1th and k2th nearest neighbors). Let k1, k2 ∈ N such that k1 < k2. Similarly to

Definition 2.3, the f -k1th or k2th-nearest neighbor (f -(k1, k2)NN) graph g(k
1
,k

2
),f (X) is defined as the

random graph having vertex set X and for all i ∈ I and n ∈ {1, 2} an edge between Xi and v
f
n(Xi,X)

whenever Xi ∈ {vf
k

1

(vf
n(Xi,X),X), … , v

f
k

2

(vf
n(Xi,X),X)}. In the case k1 = 1 and k2 = 2, g(1,2),f (X) is

equal to the f -2NN graph g2,f (X). However, it is easy to see that if (k1, k2) ≠ (1, 2), then the f -(k1, k2)NN

graph is in general not edge-preserving in the sense of Definition 2.3. This is a major obstacle for

generalizing the proof of Theorem 2.5 to the case (k1, k2) ≠ (1, 2), despite the fact that many of the

proof ingredients of the theorem are still available in this case.

4.4 Relation of our model to outdegree-one graphs

In the setting of outdegree-one graphs [3], one considers directed percolation in a directed graph

arising as a deterministic and stationary function of a PPP in R𝑑
, where each vertex has precisely

one out-degree. It was shown in [3] that under certain stabilization and looping conditions of the
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edge-drawing mechanism, this model does not percolate, in the sense that the out-component (or the

in-component) of any vertex is almost-surely finite, see also [11]. In [23], it was shown that this result

is applicable for the example of the kth nearest neighbor graph, where the outgoing edge of a vertex

points to the kth nearest neighbor of the vertex in the point process. This setting looks rather similar

to the one that we are considering but is still different from it, for at least two reasons. First, although

it is tempting to think that the B-kNN graph can be obtained as a deterministic transformation of a

(stationary) outdegree-one graph satisfying the conditions of [3], we were not able to find such an

outdegree-one graph. Second, the kth nearest neighbor graph is only contained in the U-kNN graph,

not in the B-kNN one; in particular, the results of [23] cannot be derived from our ones.
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