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THE STRONG MASSEY VANISHING CONJECTURE FOR

FIELDS WITH VIRTUAL COHOMOLOGICAL DIMENSION AT

MOST 1

AMBRUS PÁL AND ENDRE SZABÓ

Abstract. We show that a strong vanishing conjecture for n-fold Massey
products holds for fields of virtual cohomological dimension at most 1 using
a theorem of Haran. We also prove the same for PpC fields, using results of
Haran–Jarden. Finally we construct a pro-2 group which satisfies the weak
Massey vanishing property for every n ≥ 3, but does not satisfy the strong
Massey vanishing property for n = 4.

1. Introduction

Definition 1.1. Let C∗ be a differential graded associative algebra with product ∪,
differential δ : C∗ → C∗+1, and cohomology H∗ = Ker(δ)/Im(δ). Choose an integer
n ≥ 2 and let a1, a2, . . . , an be a set of cohomology classes in H1. A defining
system for the n-fold Massey product of a1, a2, . . . , an is a set aij of elements of C1
for 1 ≤ i < j ≤ n+ 1 and (i, j) 6= (1, n+ 1) such that

δ(aij) =

j−1∑

k=i+1

aik ∪ akj

and a1, a2, . . . , an is represented by a12, a23, . . . , an,n+1. We say that the n-fold
Massey product of a1, a2, . . . , an is defined if there exists a defining system. The n-
fold Massey product 〈a1, a2, . . . , an〉aij of a1, a2, . . . , an with respect to the defining
system aij is the cohomology class of

n∑

k=2

a1k ∪ ak,n+1

in H2. Let 〈a1, a2, . . . , an〉 denote the subset of H2 consisting of the n-fold Massey
products of a1, a2, . . . , an with respect to all defining systems. We say that the
n-fold Massey product of a1, a2, . . . , an vanishes if 〈a1, a2, . . . , an〉 contains zero.
Definition 1.2. Let p be a prime number, let G be a profinite group, let C∗ be the
differential graded algebra of Z/p-cochains of G in continuous group cohomology.
The cohomology of C∗ is H∗ = H∗(G,Z/p). We say that G has the strong Massey
vanishing property for n with respect to p, where n is an integer ≥ 3, if for every
a1, a2, . . . , an ∈ H1(G,Z/p) such that ai ∪ ai+1 = 0 for every 1 ≤ i < n, the n-fold
Massey product of a1, a2, . . . , an vanishes. We say that G has the strong Massey
vanishing property with respect to p if it has the strong Massey vanishing property
with respect to p for every integer n ≥ 3. We say that G has the weak Massey
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vanishing property with respect to p if for every integer n ≥ 3 and a1, a2, . . . , an ∈
H1(G,Z/p) such that n-fold Massey product of a1, a2, . . . , an is defined, the n-fold
Massey product of a1, a2, . . . , an vanishes.

Definition 1.3. For every field K let G(K) denote the absolute Galois group of
K. Assume that the characteristic of K is not p. We say that the strong Massey
vanishing conjecture with respect to p holds for K if G(K) has the strong Massey
vanishing property with respect to p.

Remark 1.4. We call our conjecture strong because it is stronger in general than
the Massey vanishing conjecture formulated by Mináč and Tân (Conjecture 1.6
of [15] on page 259) since we do not require that the n-fold Massey product of
a1, a2, . . . , an is defined, unlike them. This is a strictly stronger requirement when
n > 3, see Theorem 1.10 below. See also Remark 2.6 below, which explains the
difference in terms of embedding problems.

There is quite a bit of beautiful work on this fascinating conjecture (see for
example [3], [5], [10], [11], and [15]), but it remains open in general. Our aim is to
prove the strong form of this conjecture for two new classes of fields whose definition
we recall next.

Definition 1.5. Recall that a field K has virtual cohomological dimension ≤ 1
if there is a finite separable extension L/K with cd(L) ≤ 1 where cd denotes the
cohomological dimension as defined in [17]. Since the only torsion elements in the
absolute Galois group of K are the involutions coming from the orderings of K, it is
equivalent (by a theorem in [18]) to require cd(L) ≤ 1 for any fixed finite separable
extension L of K without orderings, for example for L = K(i), where i =

√
−1. In

particular, if K itself cannot be ordered (which is equivalent to −1 being a sum of
squares in K), this condition is equivalent to cd(K) ≤ 1.

Examples 1.6. Examples of fields K which can be ordered with cd(K(i)) ≤ 1
include real closed fields, function fields in one variable over any real closed ground
field (by Tsen’s Hauptsatz of [19] on page 335), PRC (pseudo real closed) fields (for
definition see page 450 of [8]), the field of Laurent series in one variable over any
real closed ground field (by Lang’s Theorem 10 of [13] on page 384), and the field
Qab ∩R which is the subfield of R generated by the numbers cos(2πn ), where n ∈ N

(see Corollary 6.2 of [6] on page 410).

The first main result of this paper is the following

Theorem 1.7. The strong Massey vanishing conjecture holds for fields K with
cd(K(i)) ≤ 1 with respect to every prime number.

The proof is an easy application of earlier work of Haran and Dwyer. After we
review the latter, we give a quick proof of our first main result in the next section.
At the recommendation of the reviewer, we will use similar methods to prove the
same claim for pseudo p-adically closed fields, whose definition we recall next.

Definition 1.8. A field K is called pseudo p-adically closed (abbreviation: PpC)
if every absolutely irreducible variety V defined over K has a K-rational point,
provided V has a L-rational simple point for each p-adic closure L of K.

Theorem 1.9. The strong Massey vanishing conjecture holds for PpC fields with
respect to every prime number.
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The result follows from a result of Haran–Jarden (see Theorem 3.11 below), and
the validity of the strong Massey vanishing property for Demushkin groups, which is
our Theorem 3.5, and does require some work. Our last main result is the following
purely group-theoretical

Theorem 1.10. There is a pro-2 group G which satisfies weak Massey vanishing
for n ≥ 3 (with respect to every prime number), but does not satisfy strong Massey
vanishing for n = 4 (with respect to 2).

The key idea of the proof of this theorem is the use of Massey envelopes which
are infinite fibre products that can be associated to each group, satisfy weak Massey
vanishing, and which are in some sense universal with respect to this property.

Acknowledgement 1.11. The first author wishes to acknowledge the generous
support of the Imperial College Mathematics Department’s Platform Grant. The
second author was supported by the National Research, Development and Inno-
vation Office (NKFIH) Grants K120697, K115799. The project leading to this
application has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 741420). We also wish to thank the referee for his useful comments
and for suggesting us to prove Theorem 1.9, too, and for his intriguing questions
leading us to Theorem 1.10.

2. Real embedding problems and Massey products

Definition 2.1. An embedding problem for a profinite group G is the left hand
side diagram:

G

φ

��

B
α

// A,

G

φ

��

φ̃

~~

B
α

// A,

where A,B are finite groups, the solid arrows are continuous homomorphisms and
α is surjective. A solution of this embedding map is a continuous homomorphism

φ̃ : G → B which makes the right hand side diagram commutative. We say that
the embedding problem above is real if for every involution t ∈ G with φ(t) 6= 1
there is an involution b ∈ B with α(b) = φ(t). Following Haran and Jarden (see [8])
we say that that a profinite group G is real projective if G has an open subgroup
without 2-torsion, and if every real embedding problem for G has a solution.

Theorem 2.2 (Haran). A profinite group G is real projective if and only if G has
an open subgroup G0 of index ≤ 2 with cd(G0) ≤ 1, and every involution t ∈ G is
self-centralizing, that is, we have CG(t) = {1, t}.
Proof. This is Theorem A of [7] on page 219. �

By classical Artin–Schreier theory every involution in the absolute Galois group
of a field is self-centralising, so we get the following

Corollary 2.3. The absolute Galois group of a field K is real projective if and only
if K satisfies cd(K(i)) ≤ 1. �

We also need to recall Dwyer’s theorem relating the vanishing of Massey products
to certain embedding problems.
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Definition 2.4. Let eij : Matn(Z/p)→ Z/p be the function taking an n×n matrix
with coefficients in Z/p to its (i, j)-entry. Let

Un(p) = {U ∈Matn(Z/p) | eii(U) = 1, eij(U) = 0 (∀ i > j)}
be the group of upper triangular n× n invertible matrices with coefficients in Z/p.
Let G and C∗ be the same as in Definition 1.2. Then H1 is naturally isomorphic to
the group of continuous homomorphisms Hom(G,Z/p), and we will identify these
two groups in all that follow. Given n continuous homomorphisms

ai : G −→ Z/p (i = 1, 2, . . . , n),

let E(a1, a2, . . . , an) denote the embedding problem:

G

−a1×−a2×···×−an
��

ψ

yy

Un+1(p)
φn+1

// (Z/p)n,

where φn+1 is given by the rule U 7→ (e12(U), e23(U), . . . , enn+1(U)).

Theorem 2.5 (Dwyer). The n-fold Massey product 〈a1, a2, . . . , an〉 vanishes if and
only if the embedding problem E(a1, a2, . . . , an) has a solution.

Proof. See Theorem 2.4 of [2] on page 182. �

Remark 2.6. For every positive integerm let Zm(p) and Pm(p) denote the following
subgroups of Um(p):

Zm(p) = {B ∈ Um(p) | eij(B) = 0 if 1 ≤ i < j ≤ m− 1 or 2 ≤ i < j ≤ m},

Pm(p) = {B ∈ Um(p) | eij(B) = 0 if j = i+ 1, i+ 2 and 1 ≤ i, j ≤ m},
respectively. Clearly Zm(p) ⊂ Pm(p) and they are different when m > 4. By Theo-
rem 2.4 of [2] on page 182 quoted above the n-fold Massey product 〈a1, a2, . . . , an〉
is defined if and only if the embedding problem:

G

−a1×−a2×···×−an
��

ζ

vv

Un+1(p)/Zn+1(p)
ζn+1

// (Z/p)n,

has a solution, where ζn+1 : Un+1(p)/Zn+1(p) → (Z/p)n is the unique homomor-
phism such that the composition of the quotient map Un+1(p)→ Un+1(p)/Zn+1(p)
and ζn+1 is the homomorphism φn+1 : Un+1(p) → (Z/p)n in Definition 2.4, while
ai ∪ ai+1 = 0 for every 1 ≤ i < n if and only if the embedding problem:

G

−a1×−a2×···×−an
��

κ

vv

Un+1(p)/Pn+1(p)
κn+1

// (Z/p)n,

has a solution, where κn+1 : Un+1(p)/Pn+1(p)→ (Z/p)n is the unique group homo-
morphism such that the composition of the quotient map Un+1(p)→ Un+1(p)/Pn+1(p)
and κn+1 is the homomorphism φn+1 in Definition 2.4.
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Proof of Theorem 1.7. By Haran’s theorem it will be enough to show that every
such embedding problem with ai ∪ ai+1 = 0 for every i = 1, 2, . . . , n− 1 is real, in
other words the restriction of the embedding problem to any subgroup of order two
has a solution. In other words, by Artin-Schreier theory, we reduced the claim to
the case when K is real closed, i.e. when G(K) = Z/2. The claim for the latter is
trivial when p is odd, since Un+1(p) is a p-group. So we may assume without the
loss of generality that p = 2.

Now let a1, a2, . . . , an ∈ Hom(G(K),Z/2) be a set of cohomology classes in H1

such that ai∪ai+1 = 0 for every i = 1, 2, . . . , n−1. Let g ∈ G(K) be the generator.

Lemma 2.7. For every i = 1, 2 . . . , n − 1 the following holds: if ai(g) = 1 then
ai+1(g) = 0.

Proof. Since for every a, b ∈ H1 the 2-fold Massey product 〈a, b〉 is the singleton
a ∪ b, by Theorem 2.5 we get that the embedding problem:

G(K)

ai×ai+1

��

ψi

zz

U3(2)
φ3

// (Z/2)2,

has a solution ψi. Assume now that ai(g) = ai+1(g) = 1. Then either

ψi(g) =



1 1 0
0 1 1
0 0 1


 or ψi(g) =



1 1 1
0 1 1
0 0 1


 .

However neither of these matrices has order two, which is a contradiction. �

In plain English the lemma above means that we can break up the row vector
(
a1(g) a2(g) . . . an(g)

)

to single entries of 1-s separated by zeros. By the above it is enough to construct
a matrix A ∈ Un+1(p) such that A2 is the identity matrix, and

φn+1(A) = a1 × a2 × · · · × an(g).
In fact the matrix A = (aij)

n+1
i,j=1 with

aij =





1, if i = j,

1, if i+ 1 = j and ai(g) = 1,

0, otherwise,

will do. Indeed it is a block matrix whose off-diagonal terms are zero matrices, and
the diagonal terms are either the 1× 1 matrix (1) or the 2× 2 matrix ( 1 1

0 1 ). These
have order dividing two, so the same holds for A, too. �

Finally we point out that Mináč and Tân actually proved the strong Massey
vanishing conjecture for what they call odd rigid fields.

Definition 2.8. We say that a field K is p-rigid for every α, β ∈ H1(G,Z/p) such
that α ∪ β = 0, the linear subspace span(α, β) is at most one-dimensional.

Theorem 2.9 (Mináč–Tân). Let p be an odd prime number and let K be a p-
rigid field which contains a primitive p-th root of unity. Then the strong Massey
vanishing conjecture holds for K.
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This result has been essentially proved in [14] (see Theorem 8.5 of loc. cit. and its
proof), however the authors only stated that the weak Massey vanishing conjecture
holds forK. A minimal modification of the authors’ argument will give this stronger
result. We present the modified proof for the reader’s convenience.

Proof. We are going to show the claim for all n ≥ 2 by induction on n. The initial
case n = 2 is trivially true. Let’s assume that n ≥ 3 and the claim holds for
n − 1. Suppose first that there is an index k ∈ {1, 2, . . . , n} such that ak = 0. If

k > 1 there is a homomorphism
←−
φ : G → Uk(p) lifting −a1 × −a2 × · · · × −ak−1

by the induction hypothesis. Otherwise let
←−
φ : G → U1(p) = {1} be the trivial

homomorphism. If k < n there is a homomorphism
−→
φ : G → Un−k(p) lifting

−ak+1 × −ak+2 × · · · × −an by the induction hypothesis. Otherwise let
−→
φ : G →

U1(p) be the trivial homomorphism.

Now let φ̃ : G→ Un+1(p) be the unique homomorphism such that

eij(φ̃(g)) =





eij(
←−
φ (g)), if 1 ≤ i, j ≤ k,

e(i−k)(j−k)(
−→
φ (g)), if k + 1 ≤ i, j ≤ n+ 1,

0, otherwise,

for every g ∈ G. In plain English φ̃(g) is a block matrix whose off-diagonal terms

are zero matrices, and the diagonal terms are the k × k matrix
←−
φ (g) and the

(n−k+1)×(n−k+1) matrix
−→
φ (g). Clearly φ̃ is a lift of −a1×−a2×· · ·×−an. So

we may assume without the loss of generality that ak 6= 0 for every k ∈ {1, 2, . . . , n}.
Then there is an a ∈ H1(G,Z/p) such that ak = λka for some λk ∈ Z/p for every

k, since K is p-rigid. By Theorem 8.1 of [14] the Massey product 〈a, a, . . . , a〉 is
defined and contains zero. Now a repeated application of part (b) of Lemma 6.2.4
in [4] on page 236 concludes the proof. �

3. Demushkin groups, p-adic embedding problems and Massey products

Definition 3.1. The kernel Ker(E) of an embedding problem E as one in Definition
2.1 is the kernel of α. We say that E is central if B is a central extension of A, that
is, when Ker(E) lies in the centre of B. In this case Ker(E) is abelian, so we can
equip it with the trivial G-module structure.

Definition 3.2. Assume now that the embedding problem E is central. The ob-

struction class of E is defined as follows. Let φ̂ : G→ B be a continuous map such

that α ◦ φ̂ = φ. Then the map c : G×G→ Ker(E) given by the rule:

c(x, y) = φ̂(xy)φ̂(y)−1φ̂(x)−1 ∈ Ker(E), (x, y ∈ G)
is a cocycle, and its cohomology class o(E) ∈ H2(G,Ker(E)) does not depend on

the choice of φ̂, only on E. By a well-known classical result E has a solution if and
only if o(E) = 0.

Lemma 3.3. Let G be a profinite group such that H2(G,Z/p) = 0. Then G has
the strong vanishing n-fold Massey product property with respect to p.

Proof. Since Un+1(p) is a p-group, it has a filtration by normal subgroups:

{1} = N0 ⊂ N1 ⊂ · · · ⊂ N(n−1
2 ) = Ker(φ)
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such that Un+1(p)/Nk is a central extension of Un+1(p)/Nk+1 and the kernel of the
quotient map πk : Un+1(p)/Nk → Un+1(p)/Nk+1 is:

Nk+1

Nk
∼= Z/p

for every k = 0, 1, . . . ,
(
n−1
2

)
− 1.

Note that it will be sufficient to show that the embedding problem E(h):
G

h

��

h

vv

Un+1(p)/Nk
πk

// Un+1(p)/Nk+1

for every every homomorphism G → Un+1(p)/Nk+1 has a solution for every k =
0, 1, . . . ,

(
n−1
2

)
. Indeed then we would get by descending induction on the index k

that −a1 × · · · × −an has a lift to G → Un+1(p)/Nk. The claim is now clear from
the case k = 0.

However E(h) is a central embedding problem with kernel isomorphic to Z/p by
the above. So its obstruction class o(E(h)) lies in H2(G,Z/p), which is zero by
assumption. So o(E(h)) vanishes, and hence E(h) has a solution. �

Definition 3.4. A pro-p group G is said to be a Demushkin group if

(1) dimZ/pH
1(G,Z/p) <∞,

(2) dimZ/pH
2(G,Z/p) = 1,

(3) the cup productH1(G,Z/p)×H1(G,Z/p)→ H2(G,Z/p) is a non-degenerate
bilinear form.

Theorem 3.5. Let n ≥ 3 be an integer and let p be a prime number. Then every
pro-p Demushkin group has the strong vanishing n-fold Massey product property
with respect to p.

This claim above is a strengthening of Theorem 4.3 of [15] on page 265, which
in turn is a generalisation of Lemma 3.5 of [11] on page 1317. Note that Z/2 is a
Demushkin group, so the theorem above generalises the key ingredient of the proof
of Theorem 1.7.

Proof of Theorem 3.5. Arguing the same way as we did at the beginning of the
proof of Theorem 2.9, we may assume without the loss of generality that ak 6= 0
for every k ∈ {1, 2, . . . , n}. Let Mk,m denote the subgroup

Mk,m = {U ∈ Um(p) | eij(U) = 0 if 1 ≤ i < j ≤ m− 1 or j = m, k ≤ i ≤ m− 1}
for every k = 1, 2, . . . ,m−1. ClearlyMk,m ⊂Mk+1,m for every k = 1, 2, . . . ,m−2.

Lemma 3.6. The subgroup Mk,m of Um(p) is normal.

Proof. For every pair a ≤ b of natural numbers let
←−
β a,b : Ub(p) → Ua(p) be the

homomorphism:

U 7→ (eij(U))ai,j=1,

that is the map which assigns to every element of Ub(p) its upper left a× a block.

Similarly
−→
β a,b : Ub(p)→ Ua(p) be the homomorphism:

U 7→ (e(b−a+i)(b−a+j)(U))ai,j=1,
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that is the map which assigns to every element of Ub(p) its lower right a× a block.

The subgroup Mk,m is the intersection of the kernel of
←−
β m−1,m and the kernel of−→

β m+1−k,m, so as an intersection of normal subgroups, it is normal. �

Let Qk,m denote the quotient group Um(p)/Mk,m and let ρk,m : Qk,m → Qk+1,m

denote the quotient map induced by the inclusion Mk,m ⊂Mk+1,m.

Lemma 3.7. The extension Qk,m of Qk+1,m is central, and the kernel of ρk,m is
isomorphic to Z/p for every k = 1, 2, . . . ,m− 2.

Proof. As we saw in the proof of Lemma 3.6 above Qk,m is the fibre product:

{(A,B) ∈ Um−1(p)× Um+1−k(p) |
−→
β m−k,m−1(A) =

←−
β m−k,m+1−k(B)},

considered as a subgroup of Um−1(p) × Um+1−k(p). Under this identification the
group Ker(ρk,m) is:

{(A,B) ∈ Um−1(p)× Um+1−k(p) | A = Im−1×m−1, B ∈ Zm+1−k(p)},
where Im−1×m−1 is the identity matrix and Zm+1−k(p) is the group defined in
Remark 2.6. Since Zm+1−k(p) is the centre of Um+1−k(p), it lies in the centre of
Qk,m, so the extension Qk,m of Qk+1,m is central. The map ιk,m : Ker(ρk,m) →
Z/(p) which is the composition of the isomorphism Ker(ρk,m)→ Zm+1−k(p) given
by the rule (A,B) 7→ B, and the map Zm+1−k(p) → Z/p given by the rule B 7→
e1(m+1−k)(B), is an isomorphism. �

We will identify the group Ker(ρk,m) with Z/p via the isomorphism ιk,m in the
proof of Lemma 3.7 in all that follows. For every homomorphism ψ : G→ Qk+1,m

let E(ψ) denote the embedding problem:

G

ψ

��

ψ

yy

Qk,m
ρk,m

// Qk+1,m.

Let χ : G→ Ker(ρk+1,m) be a homomorphism. Then the map ψχ given by the rule
g 7→ ψ(g)χ(g) is also a homomorphism from G to Qk+1,m, since Ker(ρk+1,m) lies in
the centre of Qk+1,m by Lemma 3.7. Let φk,m+1 : Qk,m+1 → (Z/p)m be the unique
homomorphism such that the composition of the quotient map Um+1(p)→ Qk,m+1

and φk,m+1 is the homomorphism φm+1 : Um+1(p)→ (Z/p)m in Definition 2.4 for
every k = 1, 2, . . . ,m− 1.

Lemma 3.8. Let ψ : G→ Qk+1,n+1 be a homomorphism such that φk+1,n+1 ◦ψ =
−a1 ×−a2 × · · · × −an. Then

o(E(ψχ)) = o(E(ψ)) + ak ∪ χ
in H2(G,Z/p) for every homomorphism χ : G→ Ker(ρk+1,n+1).

Proof. There is a commutative diagram of group homomorphisms:

Qk,n+1

��

ρk,n+1
// Qk+1,n+1

λ

��

Q1,n−k+2

ρ1,n−k+2
// Q2,n−k+2
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such that the vertical arrow on the left induces an isomorphism between Ker(ρk,n+1)
and Ker(ρ1,n−k+2) and φ2,n−k+2 ◦ λ ◦ ψ = −ak × −ak+1 × · · · × −an. Therefore
we may assume that k = 1 without the loss of generality, because the obstruction
classes of central embedding problems are natural. In this case the obstruction
classes o(E(ψ)) and o(E(ψχ)) are given by the Massey products for the defining
systems corresponding to ψ and ψχ, respectively, by Theorem 2.4 and the remark
immediately follow it in [2] on page 182. Therefore the difference between the two
is a1 ∪ χ (compare with Remark 2.2 of [15] on page 261), and hence the claim
follows. �

Now we are going to prove for every k = 1, 2, . . . , n − 1 that the embedding
problem E(k):

G

−a1×−a2×···×−an
��

ψ

yy

Qk,n+1

φk,n+1
// (Z/p)n,

has a solution by descending induction on k. Since the case k = 1 is the claim, this
will be sufficient to conclude the proof.

Let us first consider the case k = n− 1 first. By the induction hypothesis there

are solutions
←−
ψ and

−→
ψ to the embedding problems:

G

−a1×−a2×···×−an−1

��

←−
ψ

yy

Un(p)
φn

// (Z/p)n−1,

G

−an−1×−an
��

−→
ψ

zz

U3(p)
φ3

// (Z/p)2,

respectively. The direct product
←−
ψ ×−→ψ : G→ Un(p)×U3(p) lies in Qn−1,n+1, and

it is a solution to E(n− 1).
Now assume that E(k) has a solution ψ for some k ≥ 2. By assumption ak−1 6= 0

and the cup product

∪ : H1(G,Z/p)×H1(G,Z/p)→ H2(G,Z/p) ∼= Z/p

is a non-degenerate bilinear form, so there is a χ ∈ H1(G,Z/p) such that

o(E(ψ)) + ak−1 ∪ χ = 0.

Therefore there is a solution ψ : G→ Qk−1,n+1 to E(ψχ) by Lemma 3.8. This ψ is
also a solution to E(k − 1), since φk−1,n+1 = φk,n+1 ◦ ρk−1,n+1. �

Lemma 3.9. For every pair of prime numbers l, p, not necessarily different, the
maximal l-adic quotient H of G(Qp) is either a pro-l Demushkin group or we have
H2(H,Z/l) = 0.

Proof. When l = p then either H is projective, and hence H2(H,Z/l) = 0, or it is a
Demushkin group (see §5 of [12] on pages 130-31 for a proof). When l 6= p then H
is Zl if l does not divide p− 1, and hence H2(H,Z/l) = 0, or H is the semi-direct
product Zl ⋊ Zl such that the second copy of Zl acts on the first via the character
m 7→ pm if l divides p− 1, and hence it is a Demushkin group. �

Definition 3.10. We say that an embedding problem as the one in Definition 2.1
above is a G(Qp)-problem if for every closed subgroup H of G which is isomorphic
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to G(Qp) there is a homomorphism φ̃H : H → B such that α ◦ φ̃H = φ|H . Follow-
ing Haran and Jarden (see [9]) we say that that a profinite group G is p-adically
projective if every G(Qp)-problem for G has a solution, and if the collection of all
closed subgroups of G which are isomorphic to G(Qp) is topologically closed.

By the main result of [9] (see the Theorem on page 148) we know the following

Theorem 3.11 (Haran–Jarden). If K is a PpC field, then G(K) is p-adically
projective. Conversely, if G is a p-adically projective group, then there exists a
PpC field K such that G(K) ∼= G. �

Now we are ready to give a

Proof of Theorem 1.9. By the Haran–Jarden Theorem 3.11 it will be enough to
show that for every prime number l every such embedding problem with ai∪ai+1 = 0
for every i = 1, 2, . . . , n− 1 is a G(Qp)-problem. In order to do so it will be enough
to show that for every l as above the maximal l-adic quotient of G(Qp) has the
strong vanishing n-fold Massey product property with respect to l. However this is
immediate from Lemma 3.9, Lemma 3.3 and Theorem 3.5. �

4. Properties of unipotent groups

Definition 4.1. As usual let Eij ∈ Matn(Z/p) denote the elementary matrix char-
acterised by the property that

ekl(Eij) =

{
1, if k = i and l = j,

0, otherwise,

and let I ∈Matn(Z/p) be the identity matrix. They satisfy the following identity:

(4.1.1) EijEkl =

{
Eil, if j = k,

0, otherwise.

Lemma 4.2. For every i < j and k < l the following hold:

(a) we have E2
ij = 0,

(b) we have EijEklEij = 0,
(c) we have:

[Eij , Ekl] =





Eil, if j = k,

−Ekj , if l = i,

0, otherwise,

Proof. Since i 6= j, part (a) is immediate from (4.1.1). If EijEklEij 6= 0 then j = k
and l = i by (4.1.1). Then i < j = k < l = i, which is a contradiction. Therefore
part (b) holds. If in

[Eij , Ekl] = EijEkl − EklEij
both terms are non-zero, then j = k and l = i by (4.1.1). This is not possible, as
we have just seen. Therefore at most one of the terms is non-zero, and hence part
(c) claim follows. �

Lemma 4.3. We have:

[I + Eij , I + Ekl] =





I + Eil, if j = k,

I − Ekj , if l = i,

I, otherwise,
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for every i < j and k < l.

Proof. Note that

(I + Eij)(I − Eij) = I − Eij + Eij − E2
ij = I

when i < j, using claim (a) of Lemma 4.2. Therefore

[I + Eij , I + Ekl] =(I + Eij)(I + Ekl)(I − Eij)(I − Ekl)
=I + Eij + Ekl + EijEkl − Eij − E2

ij − EklEij − EijEklEij
− Ekl − EijEkl − E2

kl + EijE
2
kl

+ EijEkl + E2
ijEkl + EklEijEkl + EijEklEijEkl.

By part (a) of Lemma 4.2 all red terms are zero, while by part (b) of Lemma 4.2
all blue terms are zero. Therefore

[I + Eij , I + Ekl] = I + EijEkl − EklEij = I + [Eij , Ekl].

because of the cancellations between the remaining terms. The claim follows from
part (c) of Lemma 4.2. �

Notation 4.4. For every positive integer m let Km(p) denote the following sub-
group of Um(p):

Km(p) = {B ∈ Um(p) | eii+1(B) = 0 if 1 ≤ i < m}.
For every pair of positive integers k,m let Uk,m(p) denote the following subgroup
of Um(p):

Uk,m(p) = {B ∈ Um(p) | eij(B) = 0 if 1 ≤ i < j ≤ min(i+ k − 1,m)},
Note that, using this notation, we have

Zm(p) = Um−1,m(p), Pm(p) = U3,m(p), Um(p) = U1,m(p) and Km(p) = U2,m(p).

Finally let ιm : Z/p→ Zm(p) be the unique isomorphism such that

ιm(1) = I + E1m.

Definition 4.5. For every 1 ≤ i < j ≤ m let bij : Um(p) → Uj−i+1(p) be the
unique homomorphism such that

ekl(bij(B)) = e(i+k−1)(i+l−1)(B) (∀B ∈ Um(p), 1 ≤ k < l ≤ j − i+ 1).

In plain English this is the (j − i + 1) × (j − i + 1) diagonal block with the right
upper corner at the (i, j)-th entry. Note that

(4.5.1) Uk,m(p) =
⋂

j−i=k−1
1≤i<j≤m

Ker(bij) (∀2 ≤ k ≤ m− 1).

In particular Uk,m(p) is a normal subgroup of Um(p) for every k.

Proposition 4.6. The subgroup Uk,m(p) is generated by the elements:

{I + Eij | k ≤ i+ k − 1 < j ≤ m}.
Proof. First note that these elements are actually in Uk,m(p), so the claim actually
makes sense. We are going to show the latter by descending induction on k. When
k ≥ m then Uk,m(p) is the trivial group so the claim is trivially true. Now assume
that the claim is true for 1 ≤ k + 1 ≤ m. Then it will be sufficient to prove the
lemma below. �
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Lemma 4.7. The image of the set {I + Eii+k | 1 ≤ i ≤ m − k} with respect to
the quotient map Uk,m(p)→ Uk,m(p)/Uk+1,m(p) is a basis of the p-torsion abelian
group Uk,m(p)/Uk+1,m(p).

Proof. Recall that the kernel of the map:

bk,m =
∏

j−i=k
1≤i<j≤m

bij : Uk,m(p)→ Zm(p)m−k ∼= (Z/p)m−k

is Uk+1,m(p). Moreover under the identification Zm(p)m−k ∼= (Z/p)m−k furnished
by ιm this homomorphism bk,m maps the set {I+Eii+k | 1 ≤ i ≤ m−k} bijectively
onto the standard basis of (Z/p)m−k for every 1 ≤ k ≤ m − 1. The claim is now
clear. �

Corollary 4.8. The derived subgroup Km(p)′ is U4,m(p).

Proof. For every i, j with 4 ≤ i + 3 < j ≤ m we have

I + Eij = [I + Ei(i+2), I + E(i+2)j ] ∈ Km(p)
′

by Lemma 4.3. Therefore Km(p)
′ contains U4,m(p) by Proposition 4.6. On the

other hand the quotient Km(p)/U4,m(p) is generated by the images J of

{I + Eij | 2 ≤ i+ 1 < j ≤ m, j ≤ i+ 3}
under the quotient map Km(p)→ Km(p)/U4,m(p) by Proposition 4.6. Since for i, j
and k, l with 2 ≤ i + 1 < j ≤ m, j ≤ i + 3 and 2 ≤ k + 1 < l ≤ m, l ≤ k + 3 if
j = k, then i+ 3 < l, and if l = i, then k + 3 < j, so we have

[I + Eij , I + Ekl] ∈ U4,m(p)

using Lemma 4.3. Hence the elements of J commute. Since they generate the
quotient Km(p)/U4,m(p) we get that the latter is commutative. Therefore U4,m(p)
contains Km(p)′, too. �

Definition 4.9. Recall that the p-Zassenhaus filtration of a finite p-group G, de-
noted by G(n,p), n = 1, 2, . . ., is defined inductively by

G(1,p) = G, G(n,p) = (G(⌈n/p⌉,p))
p

∏

i+j=n

[G(i,p), G(j,p)] for n ≥ 2.

(The original definition is different, but it is equivalent to this one by a theorem
of Lazard, see Theorem 11.2 of [1] on page 271). As its name suggest this is a
descending filtration by characteristic subgroups. It follows from the formula above
that for every n the quotient G(n,p)/G(n+1,p) is abelian of exponent dividing p.
Consider the graded Z/p-module:

gr(G) =
⊕

n≥0

G(n,p)/G(n+1,p).

The commutator map and the p-power map induce on gr(G) the structure of a
p-restricted Lie Z/p–algebra (see §12.2 of [1] on pages 298-305).

Proposition 4.10. We have Um(p)(k,p) = Uk,m(p) for every k,m ≥ 1.
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Proof. First we are going to show that I + Eij ∈ Um(p)(j−i,p) for every i, j such
that 1 ≤ i < j ≤ m by induction on j − i. The case j − i = 1 is trivial. Now let’s
assume that the claim is true when j − i = k − 1, where k ≥ 2. Then for every
1 ≤ i < j ≤ m such that j − i = k we have

I + Eij = [I + Eii+1, I + Ei+1j ] ∈ [Um(p)(1,p), Um(p)(j−i−1,p)] ⊆ Um(p)(j−i,p)

using Lemma 4.3 and the induction hypothesis. Since by Proposition 4.6 the sub-
group Uk,m(p) is generated by the elements

{I + Eij | k ≤ i+ k − 1 < j ≤ m},
we get that Um(p)(k,p) ⊇ Uk,m(p) for every k,m. We are going to show the reverse
inclusion by induction on m. The case m = 1 is trivial. Now let’s assume that
m ≥ 2 and the claim is already known for m − 1. Note that for every group
homomorphism α : G→ H we have α(G(k,p)) ⊆ H(k,p) for every k ≥ 1. Therefore

Um(p)(k,p) ⊆b−11m−1(Um−1(p)(k,p)) ∩ b−12m(Um−1(p)(k,p))

=b−11m−1(Uk,m−1(p)) ∩ b−12m(Uk,m−1(p)) = Uk,m(p)

when k < m, using the induction hypothesis. Hence Um(p)(k,p) = Uk,m(p) when
k < m. In order to complete the proof, we only need to show the following

Lemma 4.11. We have:

(a) we have [U(k,p)(p), U(l,p)(p)] = {1} when k + l = m,
(b) we have U⌈m/p⌉,m(p)p = {1}.

Indeed [Um(p)(k,p), Um(p)(l,p)] = [Uk,m(p), Ul,m(p)] by the above, as both k < m
and l < m. Moreover ⌈m/p⌉ < m, since m ≥ 2, so Um(p)p(⌈m/p⌉,p) = U⌈m/p⌉,m(p)p.

Since Um(p)(m,p) is generated by these groups, we get that this group is trivial.
Therefore all the higher terms in the p-Zassenhaus filtration of Um(p) are trivial,
too. Since Uk,m is trivial when k ≥ m, the claim also holds when k ≥ m. �

Proof of Lemma 4.11. Let A ∈ Uk,m(p) and B ∈ Ul,m(p) be arbitrary. Write A =
I + X and B = I + Y such that eij(X) = 0, if 1 ≤ j ≤ min(i + k − 1,m), and
eij(Y ) = 0, if 1 ≤ j ≤ min(i+l−1,m). For every row vector α = (α1, α2, . . . , αm) ∈
(Z/p)m let el(α) be its l-th coordinate αl. If α ∈ (Z/p)m is a row vector such that
ei(α) = 0 when i ≤ j for some j = 0, 1, . . . then ei(αX) = 0 when i ≤ j + k.
Similarly ei(αY ) = 0 when i ≤ j + l. Therefore αXY is zero for every row vector
α, since k + l = m. Hence XY = 0, and so AB = (I +X)(I + Y ) = I +X + Y . A
similar argument shows that BA = I + Y +X . Therefore AB = BA, so claim (a)
holds.

Now let A ∈ U⌈m/p⌉,m(p) be arbitrary, and write A = I+X such that eij(X) = 0,
if 1 ≤ j ≤ min(i+ ⌈m/p⌉−1,m). If α ∈ (Z/p)m is a row vector such that ei(α) = 0
when i ≤ j for some j = 0, 1, . . . then ei(αX) = 0 when i ≤ j+ ⌈m/p⌉. We get that
ei(αX

d) = 0 when i ≤ j+ ⌈m/p⌉d by induction on d. So αXp is zero for every row
vector α, since ⌈m/p⌉p ≥ m. Hence Xp = 0, and so Ap = (I +X)p = Ip+Xp = I.
Claim (b) follows. �

Notation 4.12. Let glm(p) denote the Lie algebra associated to the rankm matrix
algebra Matm(Z/p) over Z/p. Let um(p) ⊂ glm(p) denote the sub-Lie algebra of
strictly upper triangular matrices:

um(p) = {B ∈ glm(p) | eij(B) = 0 if 1 ≤ j ≤ i ≤ m}.



14 Ambrus Pál and Endre Szabó

Since um(p) is a Lie subalgebra of the Lie algebra of an associative algebra which
is closed under the p-power map, it has the structure of a p-restricted Lie Z/p–
algebra. For every A ∈ Um(p)(k,p) let ck(A) ∈ gr(Um(p)) denote its class in the
quotient Um(p)(k,p)/Um(p)(k+1,p). In order to distinguish it from the commutator
in groups, we will let J, K denote the Lie bracket in Lie algebras.

Proposition 4.13. There is a unique isomorphism

λm : gr(Um(p))→ um(p)

of p-restricted Lie Z/p–algebras such that λm(cj−i(I + Eij)) = Eij for every i, j
such that 1 ≤ i < j ≤ m.

Proof. By Lemma 4.7 and Proposition 4.10 the set {ck(I +Eii+k) | 1 ≤ i ≤ m− k}
is a basis of Um(p)(k,p)/Um(p)(k+1,p) for every k ≥ 1. Therefore

{cj−i(I + Eij) | 1 ≤ i < j ≤ m}
is a basis of gr(Um(p)). So there is a unique Z/p-linear map λm : gr(Um(p)) →
um(p) such that λm(cj−i(I + Eij)) = Eij for every i, j such that 1 ≤ i < j ≤ m.
Since λm maps a basis onto a basis, it is an isomorphism. Since

λm(Jcj−i(I + Eij), cl−k(I + Ekl)K) = Jλm(cj−i(I + Eij)), λm(cl−k(I + Ekl))K

for every i < j and k < l by part (c) of Lemma 4.2 and by Lemma 4.3, we get that
λm is a Lie-algebra homomorphism using the bilinearity of the Lie bracket.

Let (·)[p] denote the p-operation of any p-restricted Lie Z/p–algebra. Then we

have (I + Eij)
p = I, so cj−i(I + Eij)

[p] = 0, while E
[p]
ij = Epij = 0, hence

λm(cj−i(I + Eij)
[p]) = λm(cj−i(I + Eij))

[p]

for every 1 ≤ i < j ≤ m. Now we only need to add the following well-known fact:
if λ : g → h is a Lie algebra isomorphism between p-restricted Lie Z/p–algebras,
and it respects the p-operation on a basis of g, then it is an isomorphism between
p-restricted Lie Z/p–algebras. �

Definition 4.14. Let φn+1 : Un+1(p)→ (Z/p)n be the homomorphism given by the
rule U 7→ (e12(U), e23(U), . . . , enn+1(U)). Similarly let ηn+1 : Kn+1(p)→ (Z/p)n−1

be the homomorphism given by the rule U 7→ (e13(U), e24(U), . . . , en−1n+1(U)). Let
{·, ·} : (Z/p)3 × (Z/p)2 → Z/p be the bilinear pairing given by the rule:

{(a1, a2, a3), (b1, b2)} = a1b2 − a3b1.
Corollary 4.15. For every A ∈ U4(p) and B ∈ K4(p) we have:

[A,B] = ι4({φ4(A), η4(B)}).
Proof. From Proposition 4.10 we know that A ∈ U4(p)(1,p) and B ∈ U4(p)(2,p), so we
get that [A,B] ∈ U4(p)(3,p) = Z4(p) using again Proposition 4.10. As U4(p)(4,p) is
trivial, again from Proposition 4.10, the commutator [A,B] is uniquely determined
by its class in gr(U4(p)). The claim now follows from Proposition 4.13. �

Notation 4.16. For every m let (φ1m, φ
2
m, . . . , φ

m−1
m ) denote the coordinates of

φm : Um(p)→ (Z/p)m−1.

Lemma 4.17. There is a group homomorphism χ : U3(2) → U4(2) such that
φ4 ◦ χ = (φ13, φ

2
3, φ

1
3).
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Proof. Note that the group U3(2) is generated by the two elements:

x =



1 1 0
0 1 0
0 0 1


 and x =



1 0 0
0 1 1
0 0 1




subject to the relations:

x2 = I, y2 = I, [x, y]2 = I, [x, [x, y]] = I, [y, [x, y]] = I,

and this system of relations give a presentation of U3(2). On the other hand the
the two elements:

a =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 and b =




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1




of U4(2) satisfy the same relations:

a2 = I, b2 = I, [a, b]2 = I, [a, [a, b]] = I, [b, [a, b]] = I.

Therefore there is a group homomorphism χ : U3(p) → U4(p) such that χ(x) = a
and χ(y) = b. In particular

φ4(χ(x)) = (φ13, φ
2
3, φ

1
3)(x) and φ4(χ(y)) = (φ13, φ

2
3, φ

1
3)(y).

Since x and y generate U3(p), the claim follows. �

5. Fibre products and embedding problems

Definition 5.1. Let Um(p) and Um(p) denote the quotient groups:

Um(p) = Um(p)/Zm(p) and Um(p) = Um(p)/Pm(p),

respectively, and let ωn+1 : Un+1(p) → Un+1(p) and ̟n+1 : Un+1(p) → Un+1(p)
denote the quotient maps. Let ζn+1 : Un+1(p)→ (Z/p)n be the unique homomor-
phism such that the composition of ωn+1 and ζn+1 is the homomorphism φn+1.

Similarly let κn+1 : Un+1(p) → (Z/p)n be the unique group homomorphism such
that the composition of ̟n+1 and κn+1 is the homomorphism φn+1.

Definition 5.2. By a class of embedding problems B we mean a homomorphism
ǫ : Γ → ∆ of finite groups. We say that B has abelian kernel if Ker(ǫ) is abelian.
We say that B is central if Ker(ǫ) is a central subgroup of Γ. We say that an
embedding problem for a group G belongs to a class B as above if it is of the form:

G

φ

��

ψ

~~
Γ

ǫ
// ∆.

We will let B(φ) denote the latter. Given a homomorphism χ : H → G we define
the pull-back of B(φ) as the embedding problem B(φ ◦χ) belonging to the class B.

Definition 5.3. Let En denote the class of embedding problems given by the
homomorphism φn+1 : Un+1(p) → (Z/p)n. Let Dn denote the class of embedding
problems given by the homomorphism ζn+1 : Un+1(p) → (Z/p)n. Let Cn denote

the class of embedding problems given by the homomorphism κn+1 : Un+1(p) →
(Z/p)n.
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Notation 5.4. Let G,H, J be three groups and let γ : G → J and χ : H → J be
two homomorphisms. The fibre product G×γ,χH is the group:

G×γ,χ H = {(g, h) ∈ G×H | γ(g) = χ(h)} ⊆ G×H.
For every n ≥ 3 and pro-finite group G let Dn(G) denote the set of continuous
homomorphisms a : G −→ (Z/p)n such that the embedding problem Dn(a) has a
solution.

Notation 5.5. Now let G be a p-group, and let α = (α1, α2, . . . , αn) ∈ Dn(G) for
some n ≥ 3. Let H denote the fibre product Un+1(p)×φn+1,αG, and let ρ : H → G
be the projection onto the second factor. Let Z be the subgroup

Z = {(a, b) ∈ Un+1(p)×φn+1,α G | a ∈ Zn+1(p), b = 1}
of H . Finally let B be the class of embedding problems ǫ : Γ→ ∆ and let B(φ) be
an embedding problem for G belonging to the class B.

Proposition 5.6. Assume that the embedding problem B(φ ◦ ρ) has a solution ψ
whose restriction onto Z is trivial. Then B(φ) has a solution, too.

Proof. Now let H denote the fibre product Un+1(p)×ζn+1,α G, and let ρ : H → G
be the projection onto the second factor. Note that the quotient of H by its
normal subgroup Z is canonically isomorphic to H . Since Ker(ψ) contains Z by
assumption, the homomorphism ψ factors through the quotient map H → H, so
there is a solution ψ : H → Γ of the embedding problem B(φ ◦ ρ). By assumption
there is a solution ω : G→ Un+1(p) of the embedding problem Dn(α). The direct
product ω × idG : G → Un+1(p) × G maps G into H . We have a commutative
diagram:

G
ω×idG

//

idG

��
❅

❅

❅

❅

❅

❅

❅

❅

H
ψ

//

ρ

��

Γ

ǫ

��

G
φ

// ∆.

The composition ρ◦(ω× idG) is the identity, therefore the composition ψ◦(ω× idG)
is a solution to B(φ). �

Proposition 5.7. Assume that n ≥ 4, the class B has abelian kernel, and the
embedding problem B(φ ◦ ρ) has a solution for G. Then B(φ) has a solution, too.

Proof. Let ψ : H → Γ be a solution of B(φ ◦ ρ). Then the restriction of ψ onto the
subgroup

K = {(a, b) ∈ Un+1(p)×φn+1,α G | a ∈ Kn+1(p), b = 1}
of H lands in the kernel of Ker(ǫ). The latter is abelian, so ψ is trivial on the
subgroup

K ′ = {(a, b) ∈ Un+1(p)×φn+1,α G | a ∈ U4,n+1(p), b = 1}
by Corollary 4.8. Since n ≥ 4 the group K ′ contains Z (introduced in Notation
5.5), and hence the claim follows from Proposition 5.6. �

Proposition 5.8. Assume that n = 3 and the embedding problem B(φ ◦ ρ) has a
solution ψ. In addition suppose that one of the following conditions is also true:

(a) the embedding problem E3(α) has a solution,
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(b) either α1 = 0 or α3 = 0,
(c) we have p = 2 and α1 = α3.

Then the embedding problem B(φ) has a solution for H.

Proof. First assume that (a) holds and let ω : G → U4(p) be a solution to E3(α).
The direct product ω × idG : G → U4(p) × G maps G into H . The composition
ρ ◦ (ω × idG) is the identity, therefore the composition σ ◦ (ω × idG) is a solution
to B(φ). Next assume that (b) is true. It will be enough to show that E3(α) has
a solution by the above. Let υ1 : U3(p) → U4(p) and υ3 : U3(p) → U4(p) be the
homomorphisms given by the rules:



1 a b
0 1 c
0 0 1


 7→




1 0 0 0
0 1 a b
0 0 1 c
0 0 0 1


 and



1 a b
0 1 c
0 0 1


 7→




1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1


 ,

respectively. First suppose that α1 = 0. Since D3(α) is solvable there is a homo-
morphism σ : G→ U3(p) such that (α2, α3) = ζ3 ◦ σ. Then the composition σ ◦ υ1
is a solution for E3(α).

The proof in the case when α3 = 0 is similar. Since D3(α) is solvable there is a
homomorphism σ : G → U3(p) such that (α1, α2) = ζ3 ◦ σ. Then the composition
σ ◦ υ3 is a solution for E3(α). Finally we assume that (c) is true. Since D3(α) is
solvable there is a homomorphism σ : G→ U3(p) such that (α1, α2) = ζ3 ◦ σ. Then
the composition χ ◦ σ, where χ : U3(2) → U4(2) is the homomorphism in Lemma
4.17, is a solution for E3(α). �

Now let β : G→ (Z/p)2 be a homomorphism.

Proposition 5.9. Assume that the embedding problem E2(β ◦ ρ) has a solution.
Then E2(β) has a solution, too.

Proof. Note that the class E2 has abelian kernel. Therefore the claim holds when
n ≥ 4 by Proposition 5.7. So we may assume that n = 3 without the loss of
generality. We may also suppose that α3 6= 0 by Proposition 5.8. Therefore there
is a g ∈ G such that α3(g) = 1. Choose a u ∈ U4(p) such that φ4(u) = α(g). Then
(u, g) ∈ H and (I + E13, 1) ∈ H (where 1 is the unit of G), while

[(I + E13, 1), (u, g)] = ([I + E13, u], [1, g]) = (I + E14, 1)

using Lemma 4.15. Let ψ : H → U3(p) be a solution to E2(β ◦ ρ). Then ψ((I +
E13, 1)) lies in Ker(ζ2), which is a central subgroup in U3(p). Therefore

ψ((I + E14, 1)) = ψ([(I + E13, 1), (u, g)]) = [ψ((I + E13, 1)), ψ((u, g))] = I.

The element (I + E14, 1) generates the subgroup Z introduced in Notation 5.5, so
by Proposition 5.6 the embedding problem E2(β) has a solution. �

Notation 5.10. For every 1 ≤ i < j ≤ m such that (i, j) 6= (1,m) let bij :

Um(p) → Uj−i+1(p) be the unique homomorphism such that the composition of

the quotient map ωm : Um(p) → Um(p) and bij is the homomorphism bij in
Definition 4.5. For every sequence c1, c2, . . . , cm ∈ H1(G) = Hom(G,Z/p) let
span(c1, c2, . . . , cm) ⊆ H1(G) denote the Z/p-linear span of these elements. Now
let γ : G→ (Z/p)4 be a homomorphism with coordinates γ = (γ1, γ2, γ3, γ4).
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Proposition 5.11. Assume that p = 2, the embedding problem D4(γ ◦ ρ) has a
solution ψ, but the problem D4(γ) does not. Then n = 3 and one of the following
is true:

(14) we have Ker(b14 ◦ ψ) ∩ Z = {1} and span(α1, α3) = span(γ1, γ3),
(25) we have Ker(b25 ◦ ψ) ∩ Z = {1} and span(α1, α3) = span(γ2, γ4),

where Z ⊆ H is the subgroup introduced in Notation 5.5.

Proof. Note that the class D4 has abelian kernel. Therefore n = 3 by Proposition
5.7. We also know that α1 6= 0 and α3 6= 0 by part (b) of Proposition 5.8. If
span(α1, α3) is one-dimensional then α1 = α3, and hence D4(κ5 ◦ ρ) has a solution
by part (c) of Proposition 5.8. This is a contradiction, so span(α1, α3) is two-
dimensional.

If Ker(ψ)∩Z 6= {1}, then Ker(ψ) ⊇ Z, where Z ⊆ H is the subgroup introduced
in Notation 5.5, since this subgroup is of order 2. By Proposition 5.6 the latter is
not possible, so Ker(ψ) ∩ Z = {1}. Since b14 × b25 : U5(2) → U4(2) × U4(2) is
injective, we get that either Ker(b14 ◦ ψ) ∩ Z = {1} or Ker(b25 ◦ ψ) ∩ Z = {1}.
Let’s consider the first case; the second can be handled similarly. We will show
that (14) holds. Since span(α1, α3) is two-dimensional, it will be sufficient to show
that α1, α3 ∈ span(γ1, γ3) in order to conclude the proof.

First assume to the contrary that α1 6∈ span(γ1, γ3). Then there is a g ∈ G such
that (γ1, γ2, γ3)(g) = (0, ∗, 0) and α(g) = (1, ∗, ∗). Choose a u ∈ U4(p) such that
φ4(u) = α(g). Then (u, g) ∈ H and (I + E24, 1) ∈ H , while

[(u, g), (I + E24, 1)] = ([u, I + E24], [1, g]) = (I + E14, 1)

using Corollary 4.15. On the other hand

b14 ◦ ψ((I + E14, 1)) =b14 ◦ ψ([(u, g), (I + E24, 1)])

=[b14 ◦ ψ((u, g)),b14 ◦ ψ((I + E24, 1))] = I

using Corollary 4.15 and φ4 ◦ b14 ◦ ψ((u, g)) = (γ1, γ2, γ3)(g). Since (I + E24, 1)
generates Z, this is a contradiction, so α1 ∈ span(γ1, γ3).

Now suppose that α3 6∈ span(γ1, γ3). Then there is a g ∈ G such that α(g) =
(∗, ∗, 1) and (γ1, γ2, γ3)(g) = (0, ∗, 0). Choose a u ∈ U4(p) such that φ4(u) = α(g).
Then (u, g) ∈ H and (I + E13, 1) ∈ H , while

[(I + E13, 1), (u, g)] = ([I + E13, u], [1, g]) = (I + E14, 1)

using Corollary 4.15 and and φ4 ◦ b14 ◦ ψ((u, g)) = (γ1, γ2, γ3)(g). On the other
hand using the same computation as above we get

b14 ◦ ψ((I + E14, 1)) = b14 ◦ ψ([(I + E13, 1), (u, g)]) = I.

This is a contradiction, so α3 ∈ span(γ1, γ3). �

Notation 5.12. let θn+1 : Un+1(p) → Un+1(p) denote the quotient map. For

every 1 ≤ i < j ≤ m such that j ≤ i + 3 let cij : Um(p) → U j−i+1(p) be
the unique homomorphism such that cij ◦ ̟n+1 = ωj−i+1 ◦ bij . For every m let

(κ1m, κ
2
m, . . . , κ

m−1
m ) denote the coordinates of κm : Um(p) → (Z/p)m−1. Let G2

denote the double (or iterated) fibre product:

{(u, g, v) ∈ U4(p)×U5(p)×U4(p) | φ4(u) = (κ15, κ
2
5, κ

3
5)(g), φ4(v) = (κ25, κ

3
5, κ

4
5)(g)}.

Let ρ : G2 → U5(p) denote the projection onto the second, middle factor.
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Proposition 5.13. The embedding problem D4(κ5 ◦ ρ) has no solution for G2.

Proof. Assume to the contrary that ψ : G2 → U5(p) is a solution of D4(κ5 ◦ ρ).
Let V ⊆ G2 be the subgroup:

{(u, g, v) ∈ U4(p)× U5(p)× U4(p) | ω4(u) = c14(g), ω4(v) = c25(g)}.
It is isomorphic to U5(p), indeed

b14 × θ5 × b25 : U5(p)→ U4(p)× U5(p)× U4(p)

maps U5(p) isomorphically onto V . Note that κ5◦ρ|V is ζ5 under this identification,
and hence it is surjective. Since the kernel of ζ5 is U5(p)

′, we get that the composi-
tion of ψ|V and the quotient map U5(p)→ U5(p)/U5(p)

′ is surjective. Since U5(p)
is a p-group, we get that ψ|V is surjective. But V and U5(p) have the same order,
as they are isomorphic, therefore ψ|V is an isomorphism.

Notation 5.14. Let N denote the kernel of ψ. Let C = Z4(p)×{1}×Z4(p) ⊆ G2

and L = K4(p)×Ker(κ5)×K4(p) ⊆ G2. Let σ1 : G2 → U4(p) and σ3 : G2 → U4(p)
denote the projection onto the first and the third factor, respectively.

Lemma 5.15. The following hold:

(a) the order of N is p4.
(b) the intersection N ∩ C is trivial,
(c) we have N ⊆ L,
(d) the map η4 ◦ σ1 × η4 ◦ σ3 : N → (Z/p)2 × (Z/p)2 is non-trivial.

Note that the homomorphism η4◦σ1×η4◦σ3|N in part (d) is well-defined because
of part (c).

Proof. As ψ|V is an isomorphism the map ψ is surjective. The order of U5(p) is p
9,

while the order of G2 is p13, so (a) holds. As C is a subgroup of V , and ψ|V is an
isomorphism, part (b) is clear. Since ζ5 ◦ψ = κ5 ◦ρ, the subgroup N must lie in the
kernel of κ5 ◦ ρ, which is L, so (c) is true. Assume now that η4 ◦ σ1 × η4 ◦ σ3|N is
trivial. The kernel of η4◦σ1×η4◦σ3 in L is the direct sum of C and L∩Ker(σ1×σ3).
Since N∩C is trivial by part (b), the groupN injects into L∩Ker(σ1×σ3). However
L ∩ Ker(σ1 × σ3) ∼= Ker(κ5) via ρ, so its order is p3. But the order of N is p4 by
part (a), a contradiction. So (d) holds. �

Assume now that η4 ◦ σ1|N is non-trivial; the case when η4 ◦ σ3|N is non-trivial
can be handled similarly. Let g = (g1, g2, g3) ∈ N be an element such that η4◦σ1(g)
is non-trivial. Then either the first or the second coordinate of η4◦σ1(g) is non-zero.
Let’s first assume the former. By taking a suitable power of g, if this is necessary,
we may assume without the loss of generality that η4 ◦ σ1(g) = (1, ∗). Note that
(I + E34, ̟5(I + E34), I + E23) ∈ G2 and

[(g1, g2, g3), (I + E34, ̟5(I + E34), I + E23)] =

([g1, I + E34], [g2, ̟5(I + E34)], [g3, I + E23]) =(I + E14, 1, 1) ∈ N
using Corollary 4.15 and part (c) of Lemma 5.15. Since (I + E14, 1, 1) ∈ C, this
contradicts part (b) of Lemma 5.15.

Now suppose the latter. We may assume without the loss of generality that
η4 ◦ σ1(g) = (∗, 1), as above. Note that (I + E12, I, I) ∈ G2 and

[(I + E24, I, I), (g1, g2, g3)] = ([I + E12, g1], [I, g2], [I, g3]) = (I + E14, 1, 1) ∈ N



20 Ambrus Pál and Endre Szabó

using Corollary 4.15 and part (c) of Lemma 5.15. Since (I + E14, 1, 1) ∈ C, this is
again a contradiction. �

6. Massey envelopes

Definition 6.1. We say that G satisfies weak Massey vanishing for n if for every
homomorphism a : G → (Z/p)n such that the embedding problem Dn(a) has a
solution, the problem En(a) also has a solution. We say that G satisfies strong
Massey vanishing for n if for every homomorphism a : G → (Z/p)n such that the
embedding problem Cn(a) has a solution, the problem En(a) also has a solution.

Now we will concentrate on the case p = 2. The main result of this section is:

Theorem 6.2. There is a pro-2 group G which satisfies weak Massey vanishing for
n ≥ 3, but does not satisfy strong Massey vanishing for n = 4.

The proof will occupy the rest of this section.

Definition 6.3. Let D≤n(G) denote the union
⋃

3≤k≤nDk(G). When G is finite,

the set D≤n(G) is also finite. Every homomorphism α : G→ H of pro-finite groups
induces a map α∗ : D≤n(H) → D≤n(G) via composition with α which is injective
when α is surjective. We will identify D≤n(H) with its image under α∗ in this
case. Finally for every β ∈ D≤n(G) let d(β) denote the unique integer such that
β ∈ Dd(β)(G). For every set S let |S| denote its cardinality, that is, the minimal
ordinal in bijection with S.

Lemma 6.4. For every non-trivial finite p-group G and n ≥ 3 we have |D≤n(G)| ≥
n.

Proof. It will be sufficient to show that |Dn(G)| ≥ 3 for every n ≥ 3, as 3(n−2) ≥ n
when n ≥ 3. Since G is a finite p-group there is a non-zero homomorphism µ : G→
Z/p. Now let mi : G → (Z/p)n be the homomorphism whose i-th coordinate is µ
and all other coordinate is the zero map for every i = 1, 2, . . . , n. These maps are
pairwise different, so |Dn(G)| ≥ n ≥ 3. �

Definition 6.5. Now let G be a non-trivial p-group. We can construct three
sequences of objects of the following kind:

(a) a finite group Gk for every k = 0, 1, . . .,
(b) a surjective homomorphism πk : Gk → Gk−1 for every k = 1, 2, . . .,
(c) a bijection ιk : D≤k+3(Gk)→ |D≤k+3(Gk)| for every k = 0, 1, . . .,

with the following properties:

(i) we have G0 = G,
(ii) we have Gk = Ud(α)+1(p) ×φd(α)+1,α Gk−1, where α ∈ D≤k+2(Gk−1) is the

pre-image of k − 1 with respect to ιk−1 for k ≥ 1,
(iii) the map πk : Gk → Gk−1 is the projection onto the second factor of the

fibre product Gk for k ≥ 1,
(iv) the restriction of ιk onto D≤k+2(Gk−1) ⊂ D≤k+3(Gk) (where the inclusion

is with respect to πk) is ιk−1 for k ≥ 1.

In the construction we only have some freedom in the choice of ιk. Note that we
can perform the construction in (ii) as |D≤k+2(Gk−1)| ≥ k + 2 by Lemma 6.4, so
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k − 1 is in the image of ιk−1. Also note that πk is surjective since φn is, for every
n. Given a sequence above, letM(G) denote the projective limit of the system:

· · · πk+1
// Gk

πk
// Gk−1

πk−1
// · · ·

by slight abuse of notation. We will call M(G) a Massey envelope of G. It is
equipped with a surjective homomorphism πk :M(G)→ Gk for every k = 0, 1, . . ..
We will let π denote this map when k = 0.

Remark 6.6. If G is a p-group, then it is easy to prove using induction that Gk
is a p-group, too. Indeed p-groups are closed under direct products and taking
subgroups, so under fibre products, too. As a consequence we get thatM(G) is a
pro-p group in this case.

Lemma 6.7. The Massey envelopeM(G) satisfies weak Massey vanishing for every
n ≥ 3.

Proof. Let α ∈ Dn(M(G)) for some n ≥ 3. Then there is an index k such that
α is already an element of (πk)∗(Dn(Gk)) ⊂ Dn(M(G)). By Lemma 6.4 we may
assume that α is the pre-image of k with respect to ιk without the loss of gen-
erality by enlarging k, if this is necessary. Therefore Gk+1 is the fibre product
Ud(α)+1(p)×φd(α)+1,αGk. Clearly Ed(α)(α) is solvable over Gk+1, the solution being
the projection of this fibre product onto its first factor. Therefore the pull-back of
this embedding problem is solvable overM(G), too. �

Lemma 6.8. Let H be a pro-finite group which satisfies weak Massey vanishing
for every n ≥ 3 and let χ : H → G be a homomorphism, where G is a non-zero
p-group. Then there is a homomorphism χ̃ : H →M(G) such that χ = π ◦ χ̃.
Proof. We are going to construct a sequence of homomorphisms χk : H → Gk by
induction on k such that

(i) we have χ0 = χ,
(ii) we have πk ◦ χk = χk−1 for every k = 1, 2, . . ..

The limit χ̃ of the homomorphisms χk will have the required properties. Assume
now that χk−1 has been constructed already. Let α ∈ D≤k+2(Gk−1) be the pre-
image of k − 1 with respect to ιk−1, as above. Then α ◦ χk−1 ∈ D≤k+2(H), and
hence the embedding problem Ed(α)(α ◦ χk−1) has a solution σ : H → Ud(α)+1(p)
by our assumptions. The direct product σ × χk−1 : H → Ud(α)+1(p) × Gk−1
lands in the fibre product Gk = Ud(α)+1(p)×φd(α)+1,α Gk−1, since σ is a solution of

Ed(α)(α◦χk−1), and so it furnishes a homomorphism χk : H → Gk. By construction
the composition of χk and the projection πk of Gk onto its second factor is χk−1. �

Lemma 6.9. Assume that the embedding problem D4(κ5 ◦ π) has a solution, and
let H be a pro-finite group which satisfies weak Massey vanishing for every n ≥ 3

equipped with a homomorphism φ : H → U5(p). Then the embedding problem
D4(κ5 ◦ φ) is solvable.

Proof. By Lemma 6.8 there is a homomorphism φ̃ : H →M(G) such that φ = π◦φ̃.
According to our assumptions we also have a solution σ : M(G) → U5(p) to

D4(κ5 ◦ π). Then σ ◦ φ̃ is a solution of D4(κ5 ◦ φ) = D4(κ5 ◦ π ◦ φ̃). �

Theorem 6.10. The embedding problem D4(κ5 ◦π) has no solution for the Massey

envelope M(U5(2)).
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By Lemma 6.7 this result implies Theorem 6.2, sinceM(U5(2)) is a 2-group, as
we already noticed in Remark 6.6. We will need some lemmas.

Lemma 6.11. The embedding problems E2((κ
1
5, κ

3
5)) and E2((κ

2
5, κ

4
5)) have no so-

lutions for U5(p).

Proof. It will be enough to prove that the embedding problems E2((φ
1
5, φ

3
5)) and

E2((φ
2
5, φ

4
5)) have no solutions for U5(p). By Dwyer’s theorem it will be sufficient

to show that the cup products φ15 ∪ φ35 and φ25 ∪ φ45 are non-zero. By Lemma 4.3
the elements I +E12 and I+E34 commute, and are also p-torsion, so the subgroup
A they generate is isomorphic to (Z/p)2. The pull-back of φ15 ∪ φ35 onto A is non-
zero by the Künneth formula for cohomology with coefficients in Z/p. Therefore
φ15 ∪ φ35 is non-zero, too. We can argue similarly for φ25 ∪ φ45 by pulling it back to
the subgroup generated by I + E23 and I + E45. �

In the next two lemmas G is an arbitrary group.

Lemma 6.12. Let α1, α2, α3 ∈ H1(G) and γ1, γ2, γ3 ∈ H1(G) be such that

span(α1, α3) = span(γ1, γ3) and 〈α1, α2, α3〉 ∩ 〈γ1, γ2, γ3〉 6= ∅.
Then 〈α1, α2, α3〉 = 〈γ1, γ2, γ3〉.
Proof. Recall that for every β1, β2, β3 ∈ H1(G) the Massey product set 〈β1, β2, β3〉,
if it is non-empty, is a coset of the subgroup β1 ∪ H1(G) +H1(G) ∪ β3 ⊆ H2(G).
However

α1 ∪H1(G) +H1(G) ∪ α3 = γ1 ∪H1(G) +H1(G) ∪ γ3,
since span(α1, α3) = span(γ1, γ3) and the cup product is bilinear and alternating.
We get that both 〈α1, α2, α3〉 and 〈γ1, γ2, γ3〉, being non-empty, are cosets of the
same subgroup, and as their intersection is non-empty, they are equal. �

Notation 6.13. Let Fn denote the class of embedding problems given by the
homomorphism ωn+1 : Un+1(p)→ Un+1(p). Since Un+1(p) is a central extension of
Un+1(p), for every group homomorphism φ : G→ Un+1(p) the embedding problem
Fn(φ) is central. Since Ker(ωn+1) = Zn+1(p) ∼= Z/p, the obstruction class o(Fn(φ))
lies in H2(G). Let (α1, α2, . . . , αn) : G→ (Z/p)n be an arbitrary homomorphism.

Lemma 6.14. We have

〈α1, α2, . . . , αn〉 = {o(Fn(φ)) | φ is a solution of Dn((α1, α2, . . . , αn))}.
Proof. Recall that for every solution φ ofDn((α1, α2, . . . , αn)) the obstruction class
o(Fn(φ)) is the n-fold Massey product with respect to the defining system cor-
responding to φ in Dwyer’s theorem. Therefore the lemma is just a convenient
reformulation of the latter. �

Proof of Theorem 6.10. Consider the projective system:

· · · πk+1
// Gk

πk
// Gk−1

πk−1
// · · ·

constructed in Definition 0.9 for G0 = U5(2). Set ρ0 be the identity map of G0 and
for every k ≥ 1 let ρk : Gk → G0 denote the composition:

π1 ◦ · · · ◦ πk−1 ◦ πk.
We are going to show by induction on k that E2((κ

1
5, κ

3
5) ◦ ρk), E2((κ

1
5, κ

3
5) ◦ ρk)

and D4(κ5 ◦ ρk) have no solutions for Gk. Since every group homomorphism
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M(U5(2))→ U5(2) factors through π
k for some k, this implies the theorem. With

all our preparations it is easy to prove that E2((κ
1
5, κ

3
5)◦ρ) and E2((κ

1
5, κ

3
5)◦ρ) have

no solutions for Gk. Indeed the k = 0 case is just Lemma 6.11, while the induction
step follows at once from Proposition 5.9.

Next we prove that D4(κ5 ◦ ρk) has no solutions for Gk. Note that Lemmas
6.7 and 6.9 together imply if D4(κ5 ◦ ρk) has no solutions for a particular Massey
envelope, then it does not have solutions for all such envelopes. Therefore we may
assume without the loss of generality that ι0((κ

1
5, κ

2
5, κ

3
5)) = 0 and ι0((κ

2
5, κ

3
5, κ

4
5)) =

1. In this caseG2 is the groupG2 introduced in Notation 5.12. ThereforeD4(κ5◦ρ2)
has no solutions for G2 by Proposition 5.13. (Since G0 and G1 are quotients of G2,
we also get that D4(κ5 ◦ ρ0) and D4(κ5 ◦ ρ1) have no solutions, either.)

Now assume that D4(κ5 ◦ ρk) has no solutions for some k ≥ 2 and let’s prove
that D4(κ5 ◦ ρk+1) has no solutions, either. We will prove the claim indirectly, so
let’s suppose that D4(κ5 ◦ ρk+1) has a solution ψ. Write α = (α1, α2, . . .) for the
pre-image of k with respect to ιk. By Proposition 5.11 we have n = 3. The key
fact we need to show is the following

Proposition 6.15. The Massey product 〈α1, α2, α3〉 contains zero.

Indeed, the proof of Therem 6.10 is now easy; by Proposition 6.15 and Dwyer’s
theorem the embedding problem E3(α) has a solution. Therefore D4(κ5 ◦ ρk) has
a solution by part (a) of Proposition 5.8. But this is a contradiction. It remains to
show Proposition 6.15, which we will do in several steps. By Proposition 5.11 either
span(α1, α3) = span(κ15, κ

3
5) and Ker(b14 ◦ψ)∩Z = {1}, or we have span(α1, α3) =

span(κ25, κ
4
5) and Ker(b25 ◦ ψ) ∩ Z = {1}, where Z ⊂ Gk+1 is the subgroup

Z = {(a, b) ∈ U4(2)×φ4,α Gk | a ∈ Z4(2), b = 1}.
Let us consider the first case; the second can be handled similarly.

Lemma 6.16. The homomorphism b14 ◦ ψ maps Z into Z4(2) ⊂ U4(2).

Proof. Note that ρk is surjective, since it is a composition of surjective maps. Since
φ4 ◦ b14 ◦ ψ is (κ15, κ

2
5, κ

3
5) ◦ ρk, we get that it is surjective. Since the kernel of φ4

is U4(2)
′, we can conclude that the composition of b14 ◦ ψ and the quotient map

U4(2)→ U4(2)
′ is surjective. Since U4(2) is a 2-group, the latter implies that b14◦ψ

is surjective. Therefore it maps the centre of Gk+1 into the centre of U4(2), which
is Z4(2). Since Z lies in the centre of Gk+1, the claim is now clear. �

Definition 6.17. Let Km ⊆ Um(p) be the image of Km(p) under the quotient
map Um(p)→ Um(p). Let ηm : Km(p)→ (Z/p)m−2 be the unique homomorphism
such that the composition of the quotient map Km(p)→ Km(p) and ηm is ηm.

Let Gk+1 denote the fibre product U4(2) ×ζ4,α Gk. Note that the quotient of

Gk+1 by its normal subgroup Z is canonically isomorphic to Gk+1. Therefore by
Lemma 6.16 there is a unique homomorphism ψ : Gk+1 → U4(2) such that the

composition of the quotient map Gk+1 → Gk+1 and ψ is b14 ◦ ψ. Let K ⊆ Gk+1

denote the subgroup

K = {(a, b) ∈ U4(2)×φ4,α Gk | a ∈ K4(2), b = 1},
and let K ⊆ Gk+1 be its image under the quotient map Gk+1 → Gk+1.

Lemma 6.18. The map η4 ◦ ψ : K → (Z/2)2 is an isomorphism.
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Proof. Assume that the claim is false. Since K ∼= (Z/2)2 this means that the kernel
of η4 ◦ ψ|K is non-trivial. Let (g, 1) ∈ K be a lift of a non-zero element (g, 1) ∈
Ker(η4 ◦ ψ|K) with respect to the quotient map K → K. Then η4 ◦ σ((g, 1)) 6= 0,
where σ : Gk+1 → U4(2) is the projection onto the first factor, since g is non-zero.
Then either the first or the second coordinate of η4 ◦ σ(g) is non-zero.

Let’s first assume the former. Since p = 2 we have η4 ◦ σ((g, 1)) = (1, ∗). Let
h ∈ Gk be such that α(h) = (0, ∗, 1). This is possible since α1 and α3 are linearly
independent. Choose a u ∈ U4(2) such that φ4(u) = α(h). Then (u, h) ∈ Gk+1 and

[(g, 1), (u, h)] = ([g, u], [1, h]) = (I + E14, 1)

using Corollary 4.15. On the other hand

b14 ◦ ψ((I + E14, 1)) =b14 ◦ ψ([(u, g), (I + E24, 1)])

=[b14 ◦ ψ((u, g)),b14 ◦ ψ((I + E24, 1))] = I

using Corollary 4.15, since η4 ◦ b14 ◦ ψ((g, 1)) = η4 ◦ ψ(g, 1) = (0, 0). This is not
possible as I + E14 generates Z.

Now suppose the latter. Since p = 2 we have η4◦σ((g, 1)) = (∗, 1). Let h ∈ Gk be
such that α(h) = (1, ∗, 0). This is possible since α1 and α3 are linearly independent.
Choose a u ∈ U4(2) such that φ4(u) = α(g). Then (u, h) ∈ Gk+1 and

[(u, h), (g, 1)] = ([u, h], [h, 1]) = (I + E14, 1)

using Corollary 4.15. On the other hand using the same computation as above we
get

b14 ◦ ψ((I + E14, 1)) = b14 ◦ ψ([(u, h), (g, 1)]) = I.

This is a contradiction. �

By assumption D3(α) has a solution β : Gk → U4(2). Then the direct product
β× idGk

: Gk → U4(2)×Gk maps Gk into Gk+1. For the sake of simple notation let
γ ⋆β denote the composition γ ◦(β× idGk

) for every homomorphism γ : Gk+1 → H ,
where H is any group.

Lemma 6.19. There is a choice of β such that the obstruction class o(F4(ψ ⋆ β))
is non-zero.

Proof. Let σ1 : G2 = G2 → U4(2) be the projection onto the first factor, as in
the proof of Proposition 5.13. Then σ1 ◦ π2 ◦ · · · ◦ πk−1 ◦ πk is a solution to the
embedding problem E3((κ

1
5, κ

2
5, κ

3
5) ◦ ρk). Therefore 〈κ15 ◦ ρk, κ25 ◦ ρk, κ35 ◦ ρk〉 is the

set ρ∗k(κ
1
5) ∪ H1(Gk) + H1(Gk) ∪ ρ∗k(κ35). By Dwyer’s theorem ρ∗k(κ

1
5) ∪ ρ∗k(κ35) is

non-zero, since E2((κ
1
5, κ

3
5)◦ρk) has no solutions for Gk. So 〈κ15 ◦ρk, κ25 ◦ρk, κ35 ◦ρk〉

contains a non-zero element. Therefore it will be sufficient to show that every
solution of D3((κ

1
5, κ

2
5, κ

3
5) ◦ ρk) can be written in the form ψ ⋆ β for some choice of

β by Lemma 6.14.
Let B be a central class of embedding problems given by ǫ : Γ → ∆. If γ is a

solution of B(λ) for some group homomorphism λ : G→ ∆, then every solution of
B(λ) is of the form λ · δ for a unique group homomorphism δ : G → Ker(ǫ), and
conversely every such product is a solution of B(λ). Now fix a solution β of D3(α).
Since D3 is a central class of embedding problems, the solutions of D3(α) are of
the form β · δ, where δ : Gk → K4(2) is an arbitrary homomorphism, by the above.
Let µ : K4(2)→ K be the isomorphism given by the rule g 7→ (g, 1). Then

ψ ⋆ (β · δ) = (ψ ⋆ β) · (ψ ◦ µ ◦ δ)
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for every homomorphism δ : Gk → K4(2). The claim now follows from Lemma
6.18 and the fact that η4 is an isomorphism. �

Now we can conclude the proof of Proposition 6.15. Fix a choice of β such that
o(F4(ψ ⋆ β)) 6= 0 and let σ : Gk+1 → U4(2) be the projection onto the first factor.
If o(F4(σ ⋆ β)) is zero, then 〈α1, α2, α3〉 contains zero by Lemma 6.14. Therefore

we may assume that o(F4(σ ⋆β)) 6= 0 without the loss of generality. Let G̃k denote
the pre-image of β × idGk

(Gk) with respect to the quotient map Gk+1 → Gk+1.

Then the kernel of the induced projection τ : G̃k → Gk is Z. Since Z is a central
subgroup in Gk+1, the natural outer action of Gk on Z induced by conjugation is
trivial. Therefore the natural Gk-action on H∗(Z,Z/2) is trivial, too. In particular

the inflation-reflection exact sequence for the trivial module Z/2 over the pair Z⊳G̃k
is:

· · · // H1(Z,Z/2) // H2(Gk,Z/2)
τ∗

// H2(G̃k,Z/2).

Since Z ∼= Z/2, we get that H1(Z,Z/2) = Hom(Z,Z/2) ∼= Z/2, and hence the

kernel of τ∗ : H2(Gk,Z/2)→ H2(G̃k,Z/2) is at most one-dimensional.

Both F4((ψ⋆β)◦τ) and F4((σ ⋆β)◦τ) have a solution for G̃k, namely b14 ◦ψ|G̃k

and σ|G̃k
, respectively, where σ : Gk+1 → U4(2) is the projection onto the first

factor. Therefore by the naturality of obstruction classes both o(F4(ψ ⋆ β)) and

o(F4(σ ⋆ β)) lie in the kernel of τ∗ : H2(Gk,Z/2) → H2(G̃k,Z/2). Since both
o(F4(ψ⋆β)) and o(F4(σ⋆β)) are non-zero, and Ker(τ∗) is at most one-dimensional,

we get that o(F4(ψ ⋆ β)) = o(F4(σ ⋆ β)). Therefore by Lemma 6.12 we get that
〈α1, α2, α3〉 = 〈κ15 ◦ ρk, κ25 ◦ ρk, κ35 ◦ ρk〉. Since the latter contains 0, as we saw in
the proof of Lemma 6.19, we get that the former contains 0, too. �
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