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Abstract

When can a unimodular random planar graph be drawn in the Euclidean
or the hyperbolic plane in a way that the distribution of the random drawing
is isometry-invariant? This question was answered for one-ended unimodular
graphs in [BT21], using the fact that such graphs automatically have locally
finite (simply connected) drawings into the plane. For the case of graphs with
multiple ends the question was left open. We revisit Halin’s graph theoretic
characterization of graphs that have a locally finite embedding into the plane.
Then we prove that such unimodular random graphs do have a locally finite
invariant embedding into the Euclidean or the hyperbolic plane, depending
on whether the graph is amenable or not.

1 Introduction

Consider a random planar map embedded in the Euclidean or hyperbolic plane M
with an isometry-invariant distribution. Simple examples include a lattice shifted
by a suitable random isometry or a Voronoi tessellation coming from some invariant
point process in M [Mol12, BS01]. If the expected number of vertices in a unit area
is finite, then one can condition on having a vertex in a fixed point 0 ofM , and define
the Palm version, which is hence a random rooted graph embedded in the plane. This
rooted graph is always unimodular (in the sense defined by Aldous and Lyons in
[AL07]), even if the embedding is also taken into account as a decoration (marking)
of the rooted graph. (For Euclidean spaces a proof using the terminology of this
present paper can be found in [BT21], but this is a basic result in the theory of point
processes, where unimodularity is replaced by point-stationarity [HL05, CSKM13].)
It is natural to ask whether the converse is true: does every unimodular random
planar graph (G, o) have an isometry-invariant embedding into M , with a suitable
choice of M as the Euclidean or hyperbolic plane? By a unimodular random planar
graph (URPG) we mean a unimodular random graph that is planar (has a proper
embedding in the plane) almost surely.

To break the above question into two parts, when does (G, o) have a unimodular
embedding into M (where a unimodular embedding, to be formally defined later, is
one where the embedding as a decoration of the graph makes it a unimodular dec-
orated graph), with the root o is embedded at the origin 0 ∈ M? And can such an
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embedding be used to define an isometry-invariant embedding? The present paper
fully answers both questions. In [BT21], the question of unimodular embeddings of
one-ended URPG’s was answered, always in the affirmative, with amenable G’s em-
beddable into the Euclidean plane and nonamenable G’s into the hyperbolic plane.
Our main contribution here is the solution of the question of unimodular embed-
dings of URPG’s with two or infinitely many ends, whenever it is possible. We also
construct isometry invariant embeddings from unimodular ones, which settles the
question for invariant embeddings.

The problem in the present setup is somewhat more delicate than in the one-
ended case, because the existence of an embedding depends on the graph struc-
ture. We mention that 2-ended unimodular random graphs are always invariantly
amenable, while infinitely ended ones are always invariantly non-amenable. (See the
next section for the definitions of invariant amenability/non-amenability, which will
nevertheless not be needed until Section 6.) This will imply that in the former case
embeddings into the Euclidean plane are meant, while in the latter case embeddings
into the hyperbolic plane.

For the special situation when G is transitive, the expression of “an isometry-
invariant embedding of G” makes sense right away: we want the random embedded
graph to be isomorphic to this fixed graph almost surely. (This is how the term is
used in [Tim21].) However, when the given rooted graph (G, o) is in fact random,
one has to assign a root to the embedded graph to be able to ask for an almost
sure rooted isomorphism. This is why it was essential to introduce the Palm version
above, and for that definition to work, we need the set of embedded vertices, as a
point process, to have finite intensity. If the vertices of a random embedded graph
have some accumulation point, then the corresponding invariant point process has
infinite intensity. In particular, if every embedding of a given URPG has some
accumulation point, then the above question of isometry-invariant embeddings is not
defined for that graph. Let us mention that there exist random graphs embedded
in the Euclidean plane in an invariant way such that it is not possible to assign to
them a root so that the resulting rooted graph is unimodular. See Example 2.4. This
shows that defining an invariant embedding of a URPG through the Palm version
and hence the requirement of finite intensity, is not the artifact of a possibly wrongly
chosen definition, but seems to be the most general and natural choice.

Say that an embedding into a surface is locally finite if every compact set is
intersected by only finitely many embedded edges. A point of the surface is an
accumulation point if all its neighborhoods intersect infinitely many embedded edges.
As we will see later, it is easy to find examples of URPG’s that do not have a locally
finite embedding into the plane, and even for those that do, it is a priori unclear
whether such an embedding can be chosen to be unimodular. We are led to the
following questions:

1. Give some combinatorial characterization of infinite locally finite graphs that
have a locally finite embedding in the plane.

2. Characterize those unimodular random planar graphs where there is a unimod-
ular embedding into R2 or H2 with the above property, and construct such an
embedding. Similarly, find an isometry-invariant embedding.

We will fully answer both questions. For the first one, a characterization is given not
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only for the plane, but other orientable surfaces as well (Theorem 9). The planar
case itself (Theorem 2) was already characterized by Halin [Hal66]. These results
are analogues of Kuratowski’s theorem with minors replaced by “minors that can
use infinity”.

For the second problem, having a locally finite (not necessarily unimodular)
embedding will turn out to be equivalent to having a unimodular combinatorial
embedding in the plane with no accumulation points (a notion yet to be defined
in the context of combinatorial embeddings), see Theorem 5. These are further
equivalent to having a locally finite unimodular embedding into the Euclidean plane
or the hyperbolic plane, which will be equivalent to having an isometry-invariant
embedding (Theorem 1). Another variant of our result says that having a one-
ended URPG as a unimodular supergraph is equivalent to having a (locally finite)
invariant embedding into the Euclidean or hyperbolic plane (combine Theorem 4
with Theorem 1 for one direction, and Proposition 1.1 for the other).

When there is a positive answer to the second problem, our starting point is the
construction in [Tim23] for a unimodular combinatorial embedding of a URPG. A
combinatorial version of “locally finite” has to be introduced, and we modify the
construction of [Tim23] to make sure that the unimodular combinatorial embedding
is locally finite whenever G has a locally finite embedding at all (Theorem 5). After
obtaining the unimodular locally finite combinatorial embedding, one has to realize
it as an actual locally finite embedding into the plane. At this point, the metric
imposed on the plane needs to be clarified, to make sense of what is meant by the
embedding to be unimodular. The two natural choices are the Euclidean and the
hyperbolic metric. Then a dichotomy result holds (Theorem 1), similarly to [BT21].

1.1 Our main results

As before, let M denote either R2 or H2. A drawing of a graph G on M is a locally
finite embedding ι of G to M , viewed up to isometries of M . A rooted drawing is
a drawing together with a distinguished vertex. We denote by RD(M) the space
of rooted drawings of locally finite graphs on M , with a suitable topology given by
“local closeness” in a neighborhood of the root. A probability measure µ on RD(M)
is unimodular, if it satisfies the appropriate Mass Transport Principle. We give the
detailed definitions in Subsection 2.4.

A unimodular embedding of a URPG (G, o) intoM is a unimodular measure µ on
RD(M), such that forgetting the embedding of a µ-random element (and taking the
rooted-isomorphism class of the resulting rooted graph) gives (G, o) in distribution.
This was first defined in [AHNR18]; a related notion of unimodular discrete spaces
is studied in [BHMK21].

Let G denote a random embedded unrooted graph onM with Isom(M)-invariant
distribution. (Both the graph and its embedding can be random.) The intensity
of G is p(G) = E[|V (G) ∩ B|], where B ⊂ M is an arbitrary measurable set of
area 1. When the intensity is finite, one can define the Palm version G∗ of G, by
conditioning on 0 ∈ V (G)), where 0 is the origin in M . By standard theory of point
processes this makes sense ([LP17, Chapter 9]), and G∗ defines a random rooted
drawing, with the distinguished vertex at 0.

An invariant embedding of a URPG (G, o) intoM is an invariant random locally
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finite embedded unrooted graph G such that the Palm version of G is a unimodular
embedding of (G, o). So when invariant embeddings of URPG’s are considered, finite
intensity is inherent.

It is clear that in order to find either a unimodular or an invariant embedding
of a URPG without accumulation points, we need to assume that it is supported
on graphs that have a locally finite planar embedding. We show that under this
assumption a URPG has an invariant or unimodular embedding of finite, positive
intensity into either the Euclidean or the hyperbolic plane, depending on whether it
is (invariantly) amenable or not. (So far intensity only has a meaning for invariant
embeddings, but the intensity of a unimodular embedding will also be defined, in
Subsection 2.6.) We say that a URPG (G, o) has finite expected degree if the expected
degree of o is finite.

Theorem 1. Let (G, o) be a URPG with finite expected degree, and assume that G
has a locally finite embedding into the plane with probability one. Then (G, o) has
an invariant embedding and also a unimodular embedding with positive intensity and
no accumulation point into

• the Euclidean plane if and only if (G, o) is invariantly amenable;

• the hyperbolic plane if and only if (G, o) is invariantly non-amenable.

Theorem 1 is an extension of similar results in [BT21]. Here we do not require
our URPG to be one-ended, replacing that assumption with having a locally finite
embedding. Furthermore, the invariant embedding in the non-amenable case was
not investigated in [BT21] (and the method of obtaining an invariant embedding
from a unimodular one in the hyperbolic plane is not straightforward).

To better understand the assumptions of Theorem 1, one can ask for a graph
theoretic characterization of infinite locally finite graphs that have a locally finite
embedding in the plane. Such a characterization is given by Halin in [Hal66], see
[BR03, Theorem 1.1] for a statement in English. Suppose G is infinite. Loosely
speaking, we say that a finite graph H is a ∗-minor of G if we can find H as a minor
of G with one of the vertices of H being “at infinity” in G. See Definition 3.5.

Theorem 2 (Halin). An infinite locally finite planar graph has a locally finite planar
embedding if and only if it does not have K3,3 or K5 as a ∗-minor.

In fact we proved a version of this statement for embedding graphs in orientable
surfaces, and only found Halin’s theorem upon review of the present paper. See
Theorem 9 for our more general result.

For completeness, let us state the ∗-minor characterizations of invariant/unimodular
embeddability as a separate theorem. This is straightforward from Theorem 2 and
Theorem 1.

Theorem 3. Let (G, o) be an invariantly amenable (respectively, invariantly non-
amenable) URPG with finite expected degree. Then

• (G, o) has a unimodular embedding of finite positive intensity into R2 (respec-
tively, into H2) if and only if it does not have K3,3 or K5 as a ∗-minor.
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• It has an invariant embedding of positive intensity into R2 (respectively, into
H2) if and only if it does not have K3,3 or K5 as a ∗-minor.

• It has no unimodular embedding of positive intensity and no invariant embed-
ding into H2 (respectively, into R2).

As mentioned at the beginning, most of Theorem 1 was already proved in [BT21]
for the case when G is almost surely one-ended. Our next theorem shows that one-
endedness is, in a sense, the real reason for a graph to be unimodularly/invariantly
embeddable in the plane.

Theorem 4. Let (G, o) be a URPG with finite expected degree. Then the following
are equivalent.

(1) G has a locally finite planar embedding almost surely, and hence Theorem 1
applies.

(2) G has a unimodular one-ended planar supergraph.

Proof. It is a straightforward corollary of Proposition 1.1 below.
Our constructions for the embeddings in Theorem 1 will follow the strategy

adopted in [BT21], once the following is established.

Proposition 1.1. Let (G, o) be a URPG with finite expected degree that has a locally
finite planar embedding almost surely. Then there is a decorated URPG (G+, o+;S),
with a connected, positive density subgraph S of G+, such that (G+, o+) is a planar
triangulation of finite expected degree, and G+ has one end. (Positive density means
P[o+ ∈ S] > 0.) Furthermore, conditioned on o+ ∈ S, (S, o+) is distributed as
(G, o), and (G+, o+) is invariantly amenable if and only if (G, o) is.

The definition of unimodularity for decorated graphs is introduced in Subsection
2.1. Proposition 1.1 is a generalization of Theorem 2.2 in [BT21]. It will follow from
Theorem 5 presented below, which is the main novelty and most laborsome result
of this paper.

Already in the one-ended case a key ingredient of the proof is to construct com-
binatorial embeddings for URPG’s in a unimodular way, see [Tim23]. Combinatorial
embeddings are thoroughly discussed in Section 2. For now it is enough to know
that a combinatorial embedding is a decoration of the vertices by finite sets of la-
bels, where each label describes the cyclic order of edges around the vertex in an
embedding, and together the labels encode the embedding of the graph up to home-
omorphisms. We will also define the number acc(G, π) of accumulation points of
a graph G with a combinatorial embedding π, see Definition 4.1. The difficulty
in our case is coming from the fact that the unimodular combinatorial embedding
constructed in [Tim23] can have acc(G, π) > 1 for graphs with more than one end.
Here we give a different, more careful construction.

Theorem 5. Let (G, o) be a URPG with finite expected degree, which has a lo-
cally finite planar embedding almost surely. Then (G, o) has a unimodular random
combinatorial embedding π with acc(G, π) ≤ 1 almost surely.
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The paper is structured as follows. Definitions are introduced in Section 2,
together with some notation. Section 3 contains a graph theoretic characterization
of infinite graphs that have some embedding into a given surface with only one
accumulation point, yielding a proof of Theorem 2 as a special case.

The proof of our main Theorem 1, presented in Section 5, can be broken down
into parts. In the Euclidean case we construct an invariant embedding first, which
can be trivially used to define a unimodular embedding (similarly to [BT21]). In the
hyperbolic case we are able to construct a unimodular embedding first. Obtaining an
invariant embedding from the unimodular one is the nontrivial direction, we prove
the necessary Theorem 7 in Subsection 2.6. Our first step towards a unimodular em-
bedding in the hyperbolic case is to find unimodular combinatorial embeddings into
the plane with one combinatorial accumulation point. That is, we prove Theorem 5
in Section 4. This is the lengthiest and most laborsome section of our paper.

A unimodular combinatorial embedding as above can then be used to define an
actual unimodular embedding of positive intensity into H2 when the graph is in-
variantly non-amenable. This was known before, via circle packings, and we briefly
summarize the method in Section 5. Here we also prove Proposition 1.1 as a con-
sequence of Theorem 5, and the construction parts of Theorem 1 using Proposition
1.1 and Theorem 7. Finally in Section 6 we prove the other direction, the necessary
conditions of our embeddability theorems.

2 Preliminaries

Our focus in this paper is planar graphs and unimodularity. Nevertheless, through-
out Sections 2 and 3 we will keep our setup more general, and consider embeddings
of arbitrary graphs into orientable surfaces. The proof of Theorem 5 and as a con-
sequence Theorem 1 will not make use of any of this general setup.

All graphs studied are assumed to be connected with at least 2 vertices. Discon-
nected graphs only appear when we delete subgraphs to study how the components
of the remainder behave. CG(x) denotes the connected component of the vertex x
in the graph G.

Let H ′ ⊆ H be a subgraph. The graph H \ H ′ is obtained by removing the
vertices of H ′ and all adjacent edges from H. For a vertex v ∈ V (H) let NH(v)
denote the neighbors of v in H.

To remove a set of edges E ⊆ E(H) we also write H \E. In this case all vertices
of H are kept, only the edges are deleted.

2.1 Unimodular random graphs

A random rooted graph is a probability measure ν on G•, the space of rooted, con-
nected, locally finite graphs, considered up to rooted isomorphisms. The set G• is
a locally compact Polish space, the topology is defined by the rooted distance dr,
where

dr
(
(G1, o1), (G2, o2)

)
=

1

2k+1
, where k = sup

{
i ∈ N

∣∣ BG1(o1, i)
∼= BG2(o2, i)

}
.

We say ν is unimodular, if it satisfies the Mass Transport Principle [AL07]. That
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is, for any measurable function f : G•• → [0,∞) on the space G•• of connected,
locally finite birooted graphs (up to birooted isomorphisms) we have∫

(G,o)

∑
u∈V (G)

f(G, o, u) dν(G, o) =

∫
(G,o)

∑
u∈V (G)

f(G, u, o) dν(G, o).

The definition can be repeated when vertices or edges of the graph are decorated
by elements of a complete separable metric space. See [AL07] or [Lov12, Chapter
18.3] for details. Usually we write (G, o) for a unimodular random rooted graph,
meaning implicitly that its distribution is a unimodular measure. When a decora-
tion, like a function f on edges or vertices, or a subset U of edges or vertices is
present, we write (G, o; f) or (G, o;U). An equivalent formulation of unimodular-
ity is by involution invariance. Assume (G, o) has finite expected degree, and let
(G′, o′) result from (G, o) after biassing by the degree of o. Let (G′, o′, o′′) denote the
random birooted graph obtained by taking a uniform random neighbor o′′ of o′ in
G′. The random rooted graph (G, o) is unimodular if and only if the distribution of
(G′, o′, o′′) is the same as the distribution of (G′, o′′, o′). The same equivalence holds
for decorated graphs.

We say a unimodular random graph (G, o) is invariantly amenable, if for every
ε > 0 there is a random subset U ⊆ V (G) such that (G, o;U) is unimodular,
every component of G \ U is finite, and P[o ∈ U ] < ε. (See [AL07] for equivalent
definitions.) Otherwise it is called invariantly non-amenable. For simplicity from
now on we will refer to these as amenable and non-amenable. As we only consider
unimodular random graphs in this paper, this should cause no confusion.

2.2 Embeddings of arbitrary graphs

For the rest of this Section 2 let G be a connected, locally finitely graph and Σ a
closed, connected, and orientable surface. An embedding of G into Σ is a map ι
that maps vertices of G to distinct points of Σ and edges e with endpoints x and y
to arcs between ι(x) and ι(y) such that no inner point of these arcs is contained in
another arc. We denote by ι(G) the union of all these vertices and arcs in Σ. We
call the connected components of Σ \ ι(G) the topological faces of ι(G). We say the
embedding is amicable, if for any finite subgraph F of G, the topological faces of
ι(F ) are the interiors of compact orientable surfaces with boundary. All embeddings
considered in this paper are assumed to be amicable. For planar embeddings in this
paper we also assume amicability, by which we mean amicability of the embedding
as viewed to be mapping into the one-point compactification S2.

A few remarks are in order:

• We do not require the the embedding to be cellular, i.e. the topological faces
of F do not have to be disks. In the planar case, which is our main interest,
amicable embeddings are automatically cellular. In general however, topolog-
ical faces of F are assumed to be of the form Σ′ \ (D1∪ . . .∪Dk), where Σ

′ is a
closed orientable surface and the Dj ⊆ Σ′ are disjoint closed disks. This makes
our setup somewhat different from the ones discussed in [LZ13] and [MT01].
The reason for our choice is that we want to make sure that graphs that can
be embedded into a fixed surface form a minor-closed family. This is not the
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case if we require all topological faces to be disks. The only place where this
remark applies is Theorem 9, where we go beyond the planar setup.

• In the definition of amicability, we do not impose our topological requirement
on topological faces of infinite subgraphs, because we want to allow examples
with “infinite faces”, like the natural embedding of Z into R2. The comple-
ment of Z on S2 is connected, but not homeomorphic to an open disk. The
requirement on the finite subgraphs will give us the right generality and enough
control.

• When considering planar embeddings of infinite graphs on S2, the embedding
is of course not locally finite anymore. Nevetheless, such locally finite planar
embeddings are in one-to-one correspondence with embeddings into S2 with
exactly one accumulation point (which point is not in the image of any edge
or vertex by the embedding). We will reserve the term simply connected, for
such embeddings into S2. So “simply connected” and “locally finite planar”
embeddings are the same, but we will use the two terminologies to indicate
the space we are embedding into.

The graph boundary of a topological face of G (with respect to ι) is the subgraph
that is mapped onto the topological boundary of the face by ι. So while a topological
face of G is a domain in Σ, the graph boundary of a topological face in G is a
subgraph of G. (The term “simply connected”, frequently used in the literature,
indicates that the union of the closures of the topological faces with finite graph
boundary is a simply connected topological space.)

2.3 Combinatorial embeddings

In this subsection we introduce some notions from the theory of graphs on surfaces.
See [LZ13, Chapter 1.3.3], [MT01, Chapter 3.1] or [BWGT09] for more details on
the topic, but keep in mind that our setup is slightly different, because we do not
assume embeddings to be cellular.

Fix an embedding ι of G into Σ. For each edge e of G introduce two oriented
edges −→e and ←−e , or darts in opposite directions. We denote by s(−→e ) and t(−→e ) the
source and terminal vertex of a dart. When the edge is a loop it still gives two
opposing darts, but in this case the source and terminus are the same.

The orientation of the surface defines a cyclic permutation πv at every vertex
v ∈ V (G) of the darts leaving that vertex. The collection of all these permutations
(πv)v∈V (G) is the combinatorial embedding of G corresponding to ι. In general such
a collection of cyclic permutations is called a combinatorial embedding, if there is
some ι that realizes it.

We go on to explore how this combinatorial data can be used to reconstruct the
embedding when G is finite.

Given a graph G with a combinatorial embedding (πv)v∈V (G) into Σ we can define
the combinatorial faces of G. A combinatorial face is a cyclically ordered tuple of
darts (−→e 1, . . . ,

−→e n) with t(
−→e i) = s(−→e i+1) = vi and such that the dart −→e i+1 is the

successor of the dart ←−e i according to the permutation πvi . We understand i + 1
cyclically, so −→e n+1 = −→e 1. We can think of a combinatorial face as a returning
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walk along oriented edges, always continuing on the unique succeeding dart at every
vertex. Note that a combinatorial face might contain both darts belonging to the
same edge. When G is finite, for every dart −→e there is a unique combinatorial face
that contains it. We will revisit the infinite case in subsection 4.10.

When Σ = S2 the embedding is automatically cellular, so each combinatorial
face is the graph boundary of a topological face, and these topological faces are all
homeomorphic to the open disk. So gluing disks to the combinatorial faces of the
combinatorial embedding π reconstructs an embedding that realizes π. In particular
if two embeddings ι1 and ι2 define the same combinatorial embedding, then they are
the same up to a homeomorphism of S2. That is, there exists a homeomorphism
φ : S2 → S2 such that ι1 = φ ◦ ι2.

When Σ is some other orientable surface the picture is more complicated. The
cyclic graph Cn can be embedded in the torus T 2 two different ways that are not
the same up to homeomorphisms, yet define the same (and only) combinatorial
embedding of Cn. (Neither of these embeddings is cellular.) To be able to reconstruct
an embedding from the combinatorial data we further need to record the genus of the
topological faces of G, as well as the number of closed disks removed (see Example
2.1). Each topological face Fi is of the form Σi \ (Di

1 ∪ . . . ∪ Di
ki
), where Σi is an

orientable surface and the Di
j ⊆ Σi are disjoint closed disks (ki ≥ 1).

The graph boundary ∂Fi is a union of combinatorial faces of G. Each combina-
torial face is part of the graph boundary of exactly one topological face. So we get
a partition of the combinatorial faces Fc(G, π) of (G, π) into sets Pi ⊆ Fc(G, π). We
have Pi ∩ Pj = ∅ for i ̸= j and ∪iPi = Fc(G, π). To each subset Pi we record the
genus gi of Σi. Note that gi ≤ g(Σ).

To summarize, we collected the data π = (πv)v∈V (G), the partition (Pi) of Fc(G, π)
and for each Pi the number gi. This information is sufficient to reconstruct the
embedding ι by gluing Σi \ (Di

1 ∪ . . . ∪ Di
ki
) to G along the combinatorial faces

collected in Pi, where Σi is the surface of genus gi. Here ki = |Pi|. If two embeddings
give the same combinatorial data, they are the same up to homeomorphisms. Note
that the correspondence between the combinatorial faces in Pi and the Di

j need not
be recorded for the reconstruction of the embedding, as any bijective mapping gives
the same embedding up to homeomorphisms.

Corollary 6. Let the finite graph G and the orientable surface Σ be fixed. There
are finitely many embeddings of G into Σ up to homeomorphisms.

Proof. There are finitely many choices for the combinatorial data π, (Pi) and (gi),
with gi ≤ g(Σ).

Example 2.1. For the cycle Cn let π denote its only combinatorial embedding
(which is an involution of the two outgoing darts at every vertex). Let E and E ′

denote the two combinatorial faces. When embedding Cn into T 2 the two distinct
embeddings produce the combinatorial data (π, P1 = {E,F}, g1 = 0) and (π, P1 =
{E}, P2 = {F}, g1 = 0, g2 = 1).

Remark 2.2. Not all possible choices of π, (Pi) and (gi) with gi ≤ g(Σ) will give
an embedding into Σ. Even in the cellular case (meaning each Pi is a singleton and
all gi are 0), the genus of the surface created by the gluing procedure might vary
depending on π. See [BWGT09, Chapter 3] where the enumeration of cellular maps
into surfaces of different genus is discussed.
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2.4 Unimodular embeddings

We study invariant and unimodular embeddings in the planar case, that is graphs
embeddable into Σ = S2. In the previous subsections we considered embeddings
up to homeomorphisms. As we mentioned before, the difference between amenable
and non-amenable URPG’s becomes apparent when we specify the metric on the
punctured sphere, and consider embeddings up to isometries.

As in the Introduction, let M denote either R2 or H2. We denote by G(M) the
space of graphs amicably embedded into M . Elements of G(M) are denoted by
typewriter font letters like G. G(M) carries a standard Borel structure by requiring
all edge- and vertex-counting functions over Borel subsets of M to be measurable.
The group Γ = Isom(M) acts on G(M) measurably by shifting the vertices and
edges. The shift of G ∈ G(M) by φ ∈ Γ is denoted φ.G. We denote by G0(M) the
subspace of embedded graphs that have a vertex at the origin 0 ∈ M ; this is again
a standard Borel space. We denote by G•(M) = {(G, o) | G ∈ G(M), o ∈ V (G)} the
set of rooted embedded graphs.

A drawing of a graph on M is an equivalence class of locally finite, amicably
embedded graphs, where two such embeddings are equivalent if they are the same
up to an element of Γ. The set of such drawings is denoted D(M). The equivalence
class of an embedded graph G ∈ G(M) is denoted by [G].

A rooted drawing is a drawing together with a distinguished vertex. More pre-
cisely, the space of rooted drawings RD(M) is G•(M)/Γ. The equivalence class of
(G, o) ∈ G•(M) is denoted by [G, o]. Equivalently, a rooted drawing can be thought of
as a rooted graph embedded into M with the root at the origin 0 ∈M , up to isome-
tries of M fixing 0. Therefore RD(M) is in fact in bijection with G0(M)/StabΓ(0).
We use this correspondence to define the Borel structure: as RD(M) is a factor
of a standard Borel space by a compact subgroup it is itself standard Borel. The
embedded graph G ∈ G0(M) represents the class [G, 0].

We say a probability measure µ on RD(M) is unimodular, if it satisfies the
appropriate Mass Transport Principle. Namely, one defines the space BRD(M)
of birooted drawings of graphs on M similarly to RD(M), the equivalence class
of a (G, u, v) is denoted by [G, u, v]. A payment function is a measurable function
f : BRD(M) → [0,∞). We say µ is unimodular if the expected income of the root
of a µ-random rooted drawing is equal to the expected outpay, for any payment
function f :

∫
RD(M)

∑
u∈V (G)

f([G, o, u]) dµ([G, o]) =

∫
RD(M)

∑
u∈V (G)

f([G, u, o]) dµ([G, o]).

In the formula we have to choose a representative (G, o) of [G, o] to compute
the sum over V (G), even though we integrate over [G, o]. This is still well-defined
because the value of the sum does not depend on the choice of representative. This
problem of having to choose representatives for formulas to make sense is a recurring
phenomenon in this section; our intention is to keep the notation reasonably clean
and intuitive. We will point this out whenever it might cause confusion.

When defining unimodular and invariant embeddings of URPG’s, we are inter-
ested in random variables with values in the spaces G(M) and RD(M). We will use
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gothic letters like G to denote them. A unimodular embedding of a URPG (G, o) into
M is a random rooted drawing [G, o] such that its distribution µ is unimodular, and
forgetting the embedding of any representative (G, o) gives (G, o) in distribution.

Remark 2.3. It is standard to take random rooted graphs themselves as equiva-
lence classes of rooted graphs up to rooted isomorphism. (As we implicitly did in
subsection 2.1.) One could ask why we never highlighted this in our notation, yet
keep emphasizing the difference between classes and representatives when it comes
to rooted drawings. The reason is that, in the case of drawings, equivalence is up to
an isometry of the ambient space. This is much less intuitive from the name “rooted
drawing” than the usual identification of isomorphic rooted graphs.

2.5 Invariant embeddings

In a moment we will define invariant embeddings through unimodularity of their
Palm versions. Before that we would like to note that properties of Palm versions
of invariant point processes are thoroughly studied in the literature, but conditions
on point processes that inherently characterize them to be the Palm version of
some invariant point process are much less frequent. Nevertheless, in the Euclidean
setting such techniques have been elaborated (see [HL05], and also [Nev77, Propo-
sition II.12]). The theory was also extended to Abelian locally compact groups (see
[LT09]), and then to homogeneous spaces of general locally compact groups, in par-
ticular covering the hyperbolic case. The work of Last [Las10] covers the theory
introduced in the present and consequent subsections in this generality, while much
of what we need here is already present in [RZ90].

Recall that Γ = Isom(M), and G(M) is the space of amicably embedded graphs.
A random embedded unrooted graph G is a random variable with values in G(M).
When G is Γ-invariant in distribution, the intensity is p(G) = E[|V (G)∩B|], where
B ⊂M is an arbitrary measurable set of area 1. The value p(G) does not depend on
the choice of B because of the Γ-invariance. Notice that the intensity cannot be 0,
but it can be ∞. For G with finite intensity, let G∗ denote its Palm version. Then
the distribution of [G∗, 0] is a unimodular measure on RD(M), see e.g. Example
9.5 in [AL07]. We say G is an invariant embedding of the URPG (G, o) into M , if
[G∗, 0] is a unimodular embedding of (G, o). To sum up, an invariant embedding
of a given URPG is a Γ-invariant random embedded unrooted graph, whose Palm
version rooted at 0 gives back the URPG after forgetting the embedding.

Notice that we assume finite intensity of G to be able to choose a root in the
graph, giving rise to a unimodular random rooted graph: the choice is provided
by the Palm version. The next example indicates that the requirement of finite
intensity is necessary.

Example 2.4. Consider an invariant point process of finite intensity in the Eu-
clidean plane; let ω be the corresponding random point set. For every x ∈ ω, let
px,i be a uniformly chosen point from the ball of radius 2−i around x. Define the
Voronoi tessallation for the set {px,i, x ∈ ω, i = 1, 2 . . .}. Connect two points if their
Voronoi cells are adjacent. The resulting graph has countably infinitely many ends,
hence it is not unimodular with any choice of root. (Like transitive graphs, uni-
modular random rooted graphs have 0, 1, 2 or uncountably many ends, see [AL07,
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Proposition 6.10].) On the other hand it is a random graph drawn in the plane with
an isometry-invariant distribution.

2.6 Invariant embeddings from unimodular ones

Assume as before that G is a Γ-invariant embedded unrooted graph with p(G) <∞,
and therefore [G∗, 0] is unimodular. If λ denotes the area in M and Vor(G∗, 0) the
Voronoi cell of 0, then

EG∗
[
λ
(
Vor(G∗, 0)

)]
=

1

p(G)
. (1)

Equation (1) is very intuitive, and a basic corollary of the Voronoi inversion formula,
a basic tool in the theory of point processes, at least in the Euclidean case ([LP17,
Section 9.4]). For homogeneous spaces [Las10] covers the theory.

Inspired by (1) we introduce the intensity of a unimodular embedding [G0, o] as

p
(
[G0, o]

)
= E[G0,o]

[
λ
(
Vor(G0, o)

)]−1
.

The reason for this less direct definition is that a priori fixing a measurable subset
B of the space is not possible (as it was in the definition of intensity of an invariant
embedding), since in this context everything is understood up to isometries. The
value λ

(
Vor(G0, o)

)
is well defined, it does not depend on the choice of representative

of [G0, o]. Notice that we allow the intensity of a unimodular embedding to be 0
(when E[G0,o]

[
λ
(
Vor(G0, o)

)]
is infinite), but not ∞.

Moreover, the intensity of G can be measured using any factor allocation (to be
defined next), not just the Voronoi. An allocation scheme is a method of partitioning
the space M (up to measure 0) into measurable pieces, given a discrete subset
ω ⊂ M , such that the measurable pieces are bijectively associated to the points
in ω. One also assumes that the partition depends on ω in a measurable way. For
example in the Voronoi allocation scheme each point of ω is associated to its Voronoi
cell. We denote the piece associated to a point v ∈ ω by Ψω(v).

The allocation is a factor allocation if it is equivariant, i.e., for any isometry
g of M we have Ψg.ω(g.v) = g.Ψω(v). If the random point set ω is defined as the
embedded vertices of some URPG by a unimodular embedding, which is by definition
only defined up to rooted isometries of M , the property of equivariance guarantees
that such an allocation scheme provides a well-defined allocation to the points of
these ω almost surely. Hence factor allocations are automatically well-defined for
unimodular embedded graphs (even the 0 intensity ones). We denote the scheme
itself by Ψ.

If G is Γ-invariant random, then for any factor allocation Ψ we have the analogue
of (1),

EG∗
[
λ
(
ΨV (G∗)(0)

)]
=

1

p(G)
.

The following theorem allows us to reverse this correspondence.

Theorem 7 (Theorem 7.1 in [Las10] and Theorem 3 in [RZ90]). Let [G0, o] be a
unimodular random rooted drawing, and Ψ a factor allocation scheme such that the
expected area of the cell of o is finite, that is E[G0,o]

[
λ
(
ΨV (G0)(o)

)]
<∞. Then there
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is a Γ-invariant random embedded unrooted graph G of finite intensity such that
[G∗, 0] is the same as [G0, o] in distribution.

In particular if a URPG (G, o) has a unimodular embedding of positive intensity,
it also has an invariant embedding of finite intensity.

For the sake of completeness and full agreement with our terminology and nota-
tion, we include the proof of Theorem 7 in the Appendix.

The Palm version of an invariant process determines the process, therefore as a
corollary of Theorem 7 one gets the following.

Corollary 8. Let [G0, o] be a unimodular random rooted drawing into M . Then for
any factor allocation schemes Ψ and Ψ′ we have

E[G0,o]

[
λ
(
ΨV (G0)(o)

)]
= E[G0,o]

[
λ
(
Ψ′

V (G0)(o)
)]
.

Remark 2.5. Again, there is a slight abuse of notation in the corollary above. A
unimodular random rooted drawing only gives an equivalence class, so the cell of
the root is not defined as a subset of M . Nevertheless, as both allocation schemes
are factors, the area of the cell of the root is well-defined.

3 Surface graphs with 1 accumulation point

Fix a compact orientable surface Σ. Let GΣ denote the family of locally finite, con-
nected graphs that can be embedded in Σ. Let GfΣ denote the family of finite graphs
in GΣ. As GfΣ is minor closed, by the Robertson-Seymour graph minor theorem (see
[RS04] and references therein, or Chapter 12.5 in [Die17]) it can be characterized by
a finite set of forbidden minors MΣ = {H1, . . . , Hn}.

GfΣ = {G finite, connected | Hi is not a minor of G, ∀ 1 ≤ i ≤ n}.
This characterization extends to GΣ almost automatically:

Lemma 3.1. Let G be a locally finite graph, and G1 ⊆ G2 ⊆ . . . an exhaustion of G
by finite graphs. If all Gi can be embedded in Σ, then G can also be embedded in Σ.

Proof. By Corollary 6 each Gi has finitely many embeddings into Σ up to home-
omorphisms. Hence, by Konig’s lemma, we can find a coherent sequence of em-
beddings of the Gi into Σ. That is, embeddings ιi of Gi and homeomorphisms
φi : Σ→ Σ such that ιi = φi ◦ ιi+1|Gi

.
Then we define an embedding ι of G by setting ι|Gi

= φ1 ◦ . . . ◦ φi−1 ◦ ιi. This
is well defined since it stabilizes for every edge, and indeed an embedding, because
any unwanted intersection of arcs would be witnessed in some Gi.

We can now characterize GΣ using minors. The possibly infinite, locally finite
graphH is said to be a minor of the locally finite graph G if we can contract (possibly
infinitely many) edges and delete edges and isolated vertices of G to obtain H.

Remark 3.2. Note that contracting infinitely many edges of G can result in graphs
that are not locally finite. We however restrict our definition to the case where
the minor H is also locally finite. When H is actually finite the situation is more
straightforward, H is a minor of G if and only if it is a minor of a finite subgraph
of G in the traditional sense.

13



Lemma 3.3. The family GΣ consists of all locally finite graphs not having a minor
in MΣ.

GΣ = {G locally finite, connected | H is not a minor of G, ∀H ∈MΣ}.

Proof. Let G be a locally finite graph, G1 ⊆ G2 ⊆ . . . be an exhaustion of G by
finite graphs. A finite graph H is a minor of G if and only if H is a minor of some
Gi. By Lemma 3.1 G ∈ GΣ if and only if Gi ∈ GfΣ for all i.

We now turn to embeddings with 1 accumulation point.

Definition. Let G∗Σ denote the family of graphs in GΣ that can be embedded in Σ
with at most 1 accumulation point.

Remark 3.4. It is clear that G∗Σ is minor closed, yet this does not imply it can be
characterized by a finite set of forbidden minors, because the Robertson-Seymour
theorem applies to finite graphs, and it is an open question whether it extends to
countable graphs [Die17, Chapter 12.7].

Recall that for finite graphs, H is a minor of G if and only if we can find |H|-many
pairwise disjoint subtrees of G such that contracting the subtrees gives a supergraph
of H. Our definition of ∗-minor follows this formulation.

Definition 3.5. Let |H| = n. H is a ∗-minor of G if we can find n−1 finite subtrees
X1, . . . , Xn−1 and a subforest Xn with all connected components infinite such that

1. The vertex sets V (Xi), 1 ≤ i ≤ n, partition V (G).

2. H is isomorphic to a subgraph of the graph we get from G by contracting all
edges of the Xi and identifying all the points obtained from distinct connected
components of Xn to a single one.

The graph obtained in part 2 might have infinitely many loops at the vertex
coming from Xn. This makes no difference for us.

Remark 3.6. Note that a minor of G is not necessarily a ∗-minor of G. In fact,
finite graphs have no ∗-minors at all. See Figure 1 for an infinite graph with K3,3

as a ∗-minor. The blue ∗ indicates the point of K3,3 “at infinity”.

Lemma 3.7. H is a ∗-minor of G if and only if G has an infinite, locally finite
minor G′ such that

1. G′ has a subgraph isomorphic to H \ v for some v ∈ V (H). By slight abuse of
notation (H \ v) ⊂ G′.

2. For all vertices u ∈ NH(v) ⊆ (H \ v) there is an infinite path starting at u in
the graph G′ \ (H \ v).

Proof. Contracting the finite trees in the definition gives G′ and vice versa. If
G′ \ (H \ v) has some finite connected components, then we can contract them into
(H \ v) to ensure that we get a partition of the vertices.

We are now ready to state the main result of this section. Let Σg denote the
orientable closed surface with genus g (which is unique up to homeomorphisms).
Clearly GΣg ⊂ GΣg+1 .
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Figure 1: An infinite graph that has K3,3 as a ∗-minor

Theorem 9. A planar graph is in G∗S2 if and only if it does not have K3,3 or K5 as
a ∗-minor. For a positive genus g ≥ 1 a graph G ∈ (GΣg \ GΣg−1) is in G∗Σg

if and
only if it has no ∗-minors in MΣg .

Remark 3.8. Note that because of the G ∈ (GΣg \GΣg−1) condition the theorem only
deals with the case when an infinite graph is embedded into a surface of minimal
genus possible. This assumption is indeed necessary. The planar graph K3 × Z
has no embedding into the torus T 2 with a single accumulation point. Still it does
not have ∗-minors in MT 2 , because all its ∗-minors are embeddable into T 2. To see
this, consider the embedding β to the torus [0, 1)2 (with [0, 1) understood with 0
and 1 identified) that maps (x, n) ∈ V (K3 × Z) to (b1(x), b2(n)), where b1 is some
bijection between V (K3) and {0, 1/3, 2/3}, and b2 : Z→ (0, 1) is a strictly increasing
function with limn→−∞ b2(n) = 0 and limn→−∞ b2(n) = 1. Edges are embedded into
geodesics between their endpoints. If H is a finite graph that arises as a ∗-minor of
G, then, using Definition 3.5, we can make β(Xn) connected by adding some broken
line segments to it that are disjoint from ∪e∈E(K3×Z)β(e) \ ∪v∈V (K3×Z)β(v). This set
together with the β(Xi), i = 1, . . . , n− 1 can be used to represent the vertices of H
(see the equivalent formulation of minors before Definition 3.5) for an embedding,
with edges between them coming from β(K3 × Z).

Remark 3.9. Halin’s original theorem [Hal66] is not stated using ∗-minors, but
instead lists the 4 infinite graphs that, if minors of G, can be witnesses of K3,3 or
K5 being a ∗-minor of G. Such a translation is theoretically possible in the higher
genus case as well. If one knew the graphs in MΣg , one could construct the finitely
many infinite graphs that are minor-obstructions to G being in G∗Σg

.

Proof. Suppose that G ∈ G∗Σg
, and assume towards contradiction that some H ∈

MΣg is a ∗-minor of G. Carrying out the minor operations on the embedded G we
can find an embedded G′ with (H \ v) ⊂ G′ for some v ∈ V (H). This gives an
embedding of H \ v into Σg.

We claim that with this embedding, all u ∈ NH(v) are on the topological bound-
ary of the same topological face of (H \ v), namely the one containing the accumu-
lation point of the embedded G′. Indeed, all these u are part of an infinite path in
G′ \ (H \ v), and in the embedding of G′ all these infinite paths have to accumulate
at the unique accumulation point.

Since all the vertices of NH(v) are on the topological boundary of the same
topological face, we can place a vertex v anywhere on that topological face, and
connect it with NH(v) without intersections. We found an embedding of H ∈ MΣg

into Σg which is a contradiction.
For the other implication, suppose that G has no ∗-minors in MΣg . Let G1 ⊂

G2 ⊂ . . . ⊂ G be an exhaustion of G by finite graphs. By increasing each Gi if
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necessary, we can assume that all components of G\Gi are infinite. We also assume
that NG(V (Gi)) ⊆ Gi+1.

For each Gi let V
∗(Gi) denote the set of vertices v ∈ V (Gi) that are adjacent to

(an infinite component of) G \Gi. By our second assumption V ∗(Gi+1) ∩ V (Gi) =
∅. We construct the graph G+

i by wiring together all vertices in V ∗(Gi) using an
additional vertex. That is V (G+

i ) = V (Gi)∪{pi} where pi is an auxiliary point. For
the edges we have E(G+

i ) = E(Gi) ∪ {(pi, u) | u ∈ V ∗(Gi)}.
The graph G+

i can be embedded in Σg. Indeed, if H ∈MΣg were a minor of G+
i ,

then H would be a ∗-minor of G. Equivalently, Gi can be embedded in a way that
all vertices in V ∗(Gi) are on the topological boundary of the same topological face
Fi of Gi. This holds for all i.

For each Gi there are finitely many such embeddings up to homeomorphisms. By
compactness we can choose consistent embeddings for the Gi. That is, restricting the
embedding of Gi to Gj (j ≤ i) agrees with the embedding of Gj. The embeddings of
the Gi together give an embedding ι of G, as shown in Lemma 3.1. Since all vertices
of Gi connected to infinity are along the same topological face Fi, we will be able
to make sure that there is only one accumulation point, by choosing Fi such that
limFi = {x} for some point x ∈ Σg.

In the case of planar graphs the intuition is very clear: each finite part gets
embedded such that all vertices connected to infinity are along the outer face. We
then claim that we can keep extending this embedding in a way that no accumulation
point (besides infinity) is created.

To be precise, we argue as follows. For some i large enough, Gi cannot be
embedded in a surface of smaller genus, which implies that all topological faces
must be disks. In particular the topological face Fi is a closed disk Di. Fix a
homeomorphism between Di and the unit disk in the Euclidean plane. This allows
us to metrize Di such that it has radius 1.

By changing the embedding of Gi+1 by a homeomorphism only inside Di, we can
assume that all vertices in V (Gi+1) \ V (Gi) lie in the region Di \Di+1, where Di+1

is the disk concentric to Di with radius 1/2. Moreover we make sure that V ∗(Gi+1)
lies on the topological boundary of Di+1.

Repeating this for all k ≥ 0, we achieve that V (Gi+k+1) \ V (Gi+k) is mapped
in the region Di+k \Di+k+1, where Di+k is concentric to Di with radius 1/2k, while
making sure that V ∗(Gi+k) lies on the topological boundary of Di+k. Note that at
each step we only change the embedding inside Di+k so for every vertex and edge
the embedding eventually stabilizes. The resulting embedding has 1 accumulation
point, the center of Di.
Proof of Theorem 2. This is a special case of the first claim in Theorem 9.

4 Unimodular combinatorial embeddings of URPG’s

From now on we only consider embeddings into S2.
In this section we prove Theorem 5. The titles of the subsections are meant

to provide a sketch of the proof. The first three subsections give the necessary
definitions and earlier results that we will be relying on.
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4.1 Accumulation points of planar combinatorial embed-
dings

Let G be an infinite, locally finite graph. Given a combinatorial embedding of G,
can we identify accumulation points that will be present for any actual embedding
representing this combinatorial embedding?

In Section 2.3 we argued that for general surfaces a combinatorial embedding is
not enough to reconstruct an embedding even up to homeomorphisms. In the case
of S2, however, the reconstruction is possible when the graph is finite, because all
combinatorial faces bound a topological face homeomorphic to a disk.

Unfortunately this does not hold for infinite graphs. Indeed, there are embed-
dings of Z in S2 with 1 or with 2 accumulation points, while both embeddings define
the same combinatorial embedding. This means that for a combinatorial embedding
(πv)v∈V (G) the number of accumulation points of an embedding ι realizing π is not
well defined. We are, however, interested in embeddings with as few accumulation
points as possible.

We proceed to define acc(G, π), the number of accumulation points of a combina-
torial embedding, using only the combinatorial data. It will turn out that acc(G, π)
is exactly the minimal number of accumulation points needed to realize π.

Given a cycle on darts we define the inside of that cycle. Let C be a cyclically
ordered tuple of distinct darts (−→e 1, . . .

−→e n) such that t(−→e i) = s(−→e i+1) = vi+1 for
1 ≤ i ≤ n. Let −→e /∈ C be a dart with s(−→e ) = vi. We say that −→e is inside C if −→e
is somewhere between ←−e i−1 and −→e i in the cyclic order πvi . If t(−→e ) /∈ {v1, . . . , vn}
(i.e. −→e is not a chord of C), then the whole connected component of t(−→e ) in the
graph G \C is said to be inside C. This definition does not depend on the choice of
−→e connecting the component to C.

The outside of a cycle is defined analogously. Note that inverting all darts along
the cycle also inverts the notion of inside and outside. When the graph is finite,
a combinatorial face is a cycle that has nothing inside it. We will say a part of a
graph is surrounded by a cycle if it is inside that cycle.

Consider a finite connected subgraph H ⊂ G. It is endowed with the combina-
torial embedding inherited from G. The cyclical order πH

v at a vertex v ∈ V (H)
on the adjacent H-darts is the restriction of the cyclical order πv on the adjacent
G-darts. Hence one can also define the faces of H, inherited from the combinatorial
embedding of G. These may not be faces of G, of course.

For a connected component of G \H there is a unique face of H that surrounds
it. Let aπH denote the number of faces of H that surround at least one infinite
component of G \H. It is straightforward to check that if H ⊆ H ′, where H ′ is also
finite, then aπH ≤ aπH′ . This leads us to the following.

Definition 4.1. Let H1 ⊂ H2 ⊂ . . . ⊂ G be an exhaustion of G by finite graphs. We
define acc(G, π) = sup aπHi

. The value of acc(G, π) does not depend on the particular
exhaustion because of the monotonicity. When the combinatorial embedding is clear
from context, we write acc(G).

Any embedding of G into S2 that realizes π has at least acc(G, π) accumulation
points. On the other hand when acc(G, π) is finite, there exists an embedding
realizing π with exactly acc(G, π) accumulation points. Indeed, suppose that aπHi
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stabilizes at i0. We can make sure that accumulation points only occur at the centers
of the acc(G, π)-many topological faces of Hi0 that surround infinitely many points
of G \Hi0 . The reasoning is the same as the last part of the proof of Theorem 9.

4.2 The general strategy

In [Tim23] the first author shows that URPG’s have unimodular combinatorial em-
beddings into the plane. Notice that when the URPG has one end, any combinatorial
embedding into S2 gives acc(G) = 1.

Here, in Theorem 5, we show that as long as the URPG (G, o) is supported
on G∗S2 , it has a unimodular random combinatorial embedding into the plane with
acc(G) ≤ 1 almost surely.

Recall that an embedding with one topological accumulation point is called sim-
ply connected. For example the d-regular tree Td (d ≥ 2) has continuum many ends,
but admits simply connected embeddings into S2. On the other hand K2 × T3 does
not.

Throughout this Section we consider graphs of increasing generality and build
up to a proof of Theorem 5. As in [Tim23], we construct the random embedding by
decomposing our graph into 2-connected, and then further into 3-connected compo-
nents. We choose random combinatorial embeddings for those parts and glue them
together to form a combinatorial embedding of the whole graph.

The main reason why our construction works is that multi-ended infinite 2-
connected components essentially have a unique combinatorial embedding with 1
accumulation point whenever they have at least one. (See Lemma 4.6.) Technical
difficulties arise because we have to keep track of where ends get embedded.

4.3 Building blocks of graphs: Tutte and block-cut decom-
positions

The following are the main tools for constructing a random combinatorial embedding
in [Tim23, Section 2]. References and a more detailed introduction can be found
there, here we try to tighten the exposition.

4.3.1 3-connected components

The starting point of the construction is the fact (due to Whitney and Imrich)
that a 3-connected graph has a unique combinatorial embedding, up to inverting all
permutations, even in the infinite case.

Example 4.2. To find examples of 3-connected graphs with infinitely many ends
that have a locally finite embedding do the following. Start with any (possibly
unimodular random) graph with infinitely many ends and a locally finite planar em-
bedding, and assume for simplicity that it has no leaves (e.g. regular-, or unimodular
Galton-Watson trees). Perform the local operation shown in Figure 2 around every
vertex to turn it into a 3-connected graph while preserving the other properties.
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Figure 2: Local operation ensuring 3-connectedness

4.3.2 Tutte-decomposition

Any 2-connected graph G has a unique Tutte-decomposition into 3-connected com-
ponents, 3-links and cycles. A 3-link is a graph consisting of 3 parallel edges.

By the amalgam of two graphs along an edge we mean taking their disjoint
union, picking an edge in both (together with a bijection between their endpoints),
deleting those edges, and identifying the endpoints. Amalgamation of graphs A and
B is denoted by A+B, the edge will be clear from context.

Informally speaking, the Tutte decomposition describes a treelike way of obtain-
ing G by amalgamating 3-connected components and cycles, possibly keeping (1
copy of) the edge we are amalgamating along. We can achieve this by inserting a
3-link between two graphs during the amalgamating procedure whenever we want
to keep the common edge. See Figure 3 for the Tutte decomposition of the infinite
ladder.

· · · · · ·

Gα Gβ

f(α, β)

· · · · · ·

Figure 3: The Tutte decomposition of the infinite ladder

More precisely, the Tutte decomposition gives a tree T with vertices α ∈ VT
labelled by graphs Gα, and edges (α, β) labelled by functions f(α, β). The Gα are
3-connected, 3-links, or cycles, and the function f(α, β) picks an edge from Gα and
Gβ, and a bijection between their endpoints. Moreover, each edge of each Gα is
picked by at most one f(α, β). The order of amalgamations is arbitrary, and we
denote the graph obtained in the end by Γ(T ). We say an edge in some Gα is
virtual, if it is selected by some f(α, β). An edge of some Gα is present in Γ(T )
if and only if it is not virtual. As amalgams of cycles are cycles, we also assume
that cycles cannot be neighbors in the Tutte tree. This guarantees uniqueness of
the decomposition.
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4.3.3 Block-cut decompositions

Finally, if G is a locally finite, connected planar graph, it has a block-cut tree
decomposition into 2-connected components. The 2-connected components (blocks)
Ga are indexed by some set A. The cut vertices form the set C. The vertex set
of the block-cut tree T is A ∪ C, and a ∈ A is connected to v ∈ C by an edge if
v ∈ V (Ga). In T the vertices a, b ∈ A are at distance 2 if and only if Ga and Gb

have a (unique) common vertex.

4.4 2-connected graphs with full core

In this subsection we define the core of 2-connected infinite graphs, and investigate
combinatorial embeddings of such graphs with full core.

Definition. Let G be an infinite, 2-connected graph and T = (VT , ET ) the Tutte
tree with Γ(T ) = G. Let V∞ ⊆ VT denote the set of vertices that represent infinite 3-
connected Tutte components. Let core(T ) denote the convex hull of V∞ ∪Ends(T ).
That is, a vertex α ∈ VT is in core(T ) if and only if α is either contained in a
path between two vertices in V∞ (allowing also the case α ∈ V∞), or contained in
an infinite path starting at a vertex in V∞, or contained in a bi-infinite path. Let
core(G) = Γ(core(T )).

Remark 4.3. Note that core(T ) can be obtained by deleting all finite parts of T
that contain no vertices of V∞ and can be separated from T by deleting an edge.

Example 4.4. We have seen the Tutte decomposition of the infinite ladder in Figure
3. In this case the Tutte tree T is a bi-infinite path, so T = core(T ), and consequently
G = core(G).

Example 4.5. Another 2-connected example with infinitely many ends can be seen
in Figure 4. The core is the 4-regular-tree-like part drawn with black, while the rest
of the graph, consisting of finite components amalgamated at some places, is drawn
with red.

Lemma 4.6. Let G be an infinite, 2-connected planar graph such that core(G) = G.
Assume also that G has a simply connected embedding into S2. Then (up to inverting
all permutations) it has a unique combinatorial embedding with acc(G) = 1.

Proof. Let T denote the Tutte tree of G, so G = Γ(T ). Since G is planar, all the
Tutte components are planar. Also any amalgam of these obtained by performing
some amalgamations as prescribed by T is planar.

Most importantly, as it is proved in [Tim23, Lemma 12], a combinatorial embed-
ding πG of G is uniquely determined by its restrictions to the Tutte components.
We denote these restrictions (πα)α∈V (T ). For 3-connected components and 3-links
we have 2 possible combinatorial embeddings, while for cycles we have 1.

We know that G has a simply connected embedding. Pick one and let πG
+ de-

note the corresponding combinatorial embedding. Accordingly, the restrictions are
denoted πα

+. When Gα is a 3-connected component or a 3-link, let πα
− denote the

other combinatorial embedding of Gα. If Gα is a cycle, we put πα
− = πα

+. Let πG
−
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Figure 4: A 2-connected graph with infinitely many ends and a simply connected
embedding

denote the combinatorial embedding of G with restrictions πα
− for all α ∈ V (T ).

Since πG
− is obtained from πG

+ by inverting all permutations, it also belongs to a
simply connected embedding of G.

As we have said, to specify a combinatorial embedding πG of G one has to make
a choice between πα

+ and πα
− for all α ∈ V (T ). (For cycles this means no choice.) We

claim that from these possible collections of choices only two give acc(G, πG) = 1,
namely πG

+ where we choose πα
+ for all α, and πG

−, where we choose πα
− for all α.

Suppose πG is neither πG
+ nor πG

−. We aim to find a cycle in (G, πG) which
has infinitely many points both on the inside and outside. Such a cycle shows
acc(G, πG) ≥ 2. Now, we can find Gα and Gβ, 3-connected components or 3-links

in the Tutte decomposition such that πα = πα
+ and πβ = πβ

−. Moreover, we can
pick α and β to be neighbors in T , or at worst at distance two in T with some γ in
between, with Gγ a cycle. Assume first that α and β are neighbors. The proof will
not be essentially different when there is γ in between.

Consider the case when both Gα and Gβ are finite. Let e denote the virtual edge
of Gα that we use to amalgamate it to Gβ. As α ∈ core(T ), we have another virtual
edge of Gα, say f . Let Te and Tf denote the components of T \ α corresponding
to e and f . We know that Γ(Te) and Γ(Tf ) are both infinite by our assumption
that G = core(G) and consequently T = core(T ). Let E = (−→e ,−→e 2, . . . ,

−→e n) and

F = (←−e ,
−→
f 2, . . . ,

−→
f k) denote the two faces of Gα adjacent to e. Set v1 = s(−→e ) and

v2 = t(−→e ).
The only edge that E and F share is e, hence

C := E + F = (−→e 2, . . . ,
−→e n,
−→
f 2, . . . ,

−→
f k)

is a cycle in Gα. The cycle C surrounds e, therefore when Gβ is amalgamated to
Gα along e, the whole of Gβ \ e will be inside C.

Similar to Gα, the Tutte component Gβ also has at least one other virtual edge
f ′ apart from e. Clearly f ̸= f ′, as the only edge shared by Gα and Gβ is e. What
happens to the faces E and F when we amalgamate along e? Because Gβ is either
3-connected or a 3-link we can find three edge-disjoint paths in Gβ between the
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Figure 5: The faces E and F in Gα, π
α
+

endpoints of e. At least one of these avoids both e and f ′, let us denote it by
P = (−→p 1, . . . ,

−→p l). With slight abuse of notation we use v1 = s(−→p 1) and v2 = t(−→p l)
to denote the endpoints of e that are both in Gβ and Gα. Note that P might contain
other virtual edges of β, different from e and f ′, but that will not cause problems
for us.

In Gα +Gβ the edge e is deleted, so the Gα-faces E and F merge into the cycle
C = E + F , but the path P splits it into two cycles E ′ and F ′ in Gα +Gβ. (Recall
that P ⊆ Gβ is inside C.) To be precise let E ′ = (−→p 1, . . . ,

−→p l,
−→e 2, . . . ,

−→e n) and

F ′ = (←−p l, . . . ,
←−p 1,
−→
f 2, . . . ,

−→
f k).

We know that f ′ is inside C and not a part of P , so it is inside either E ′ or
F ′, depending on the choice of combinatorial embedding πβ. Assume that when we
amalgamate according to πβ

+ the β-edge f ′ falls inside the E ′ cycle, and when we

amalgamate according to πβ
− it falls inside F ′.

Figure 6: The amalgam (Gα +Gβ, π
α
+, π

β
+)

When we amalgamate according to πG
+, in Gα + Gβ the virtual edges f and f ′

must not be separated by a cycle, because that would indicate acc(G, πG
+) ≥ 2. This

means that f also has to be along the face E in Gα, otherwise E
′ would separate

them in Gα +Gβ. See Figure 6.
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We claim that f cannot be part of the face F in Gα. Indeed, in a 3-connected
planar graph one cannot find two edges that have two common faces. This also
holds for the 3-link. If f was incident to F , then e and f would be such edges.

We use the fact that f is not incident to F in Gα to establish acc(G, πG) ≥ 2
when we amalgamate according to πα

+ and πβ
−. In this case we have f ′ surrounded by

the cyclic walk F ′, see Figure 7. Therefore it is separated from f in Gα +Gβ, since
f is along E ′, outside F ′. Irrespective of the other choices of πG the two separated
virtual edges already indicate acc(G, πG) ≥ 2. This finishes the proof in the finite
case.

Figure 7: The amalgam (Gα +Gβ, π
α
+, π

β
−)

If at least one of Gα and Gβ is infinite, we can assume without loss of generality
that Gβ is infinite. In Gα, using the 3-connectedness (without assuming finiteness)

we find two disjoint directed paths
−→
P 1 and

−→
P 2 evading e from v2 to v1, and form

the two cycles E = (−→e ,
−→
P 1) and F = (←−e ,

←−
P 2). We proceed the same way as in

the finite case. We either find a virtual edge f of Gα, or Gα is infinite as well.
In this case it has infinitely many points, almost all of which have to fall inside

C = (
−→
P 1,
←−
P 2). The argument leads to F ′ separating infinitely many points of Gβ

from infinitely many points of Gα (or f).
Finally if α and β are at distance two with γ in between, we proceed almost

identically. We consider Gα and Gβ + Gγ, and since Gγ is a cycle, Gβ + Gγ is a
subdivision of Gβ. Let e be the common virtual edge of Gα and Gγ, and e′ the
common virtual edge of Gβ and Gγ. When choosing the path P in Gβ + Gγ to
replace e in the Gα-cycles E and F we first find the path P0 in Gβ evading e′ and
f ′, and then complement it with Gγ \ {e, e′} to get a path connecting the endpoints
of e.

4.5 General 2-connected planar graphs

Let G be a 2-connected planar graph with at least 2 ends that has a simply con-
nected embedding. Let T denote its Tutte tree. Then core(T ) is nonempty, and
core(G) also has a simply connected embedding. By Lemma 4.6 there are exactly
two combinatorial embeddings with acc(core(G)) = 1, using the fact that core(G) is
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always connected. As before, we denote the induced combinatorial embeddings on
the Tutte components by πα

+ and πα
− where α ∈ core(T ).

In general a combinatorial embedding πG gives acc(G, πG) = 1 if and only if
πα = πα

+ for all α ∈ core(T ), or πα = πα
− for all α ∈ core(T ). For the vertices

β ∈ V (T ) \ core(T ), in which case Gβ is always finite, the choice of πβ does not
influence acc(G, πG) = 1.

Example 4.7. Consider the 2-connected graph shown in Figure 4. Lemma 4.6
implies that the combinatorial embedding (with acc(G) = 1) is essentially unique
for the core. On the other hand at every red component we have a choice between
two possible ways of embedding, see Figure 8.

· · ·
...

· · ·

· · ·

...

· · ·

· · ·

...

...

· · ·

...

...

Figure 8: A 2-connected graph with infinitely many ends and a simply connected
embedding

Remark 4.8. Notice that when G has 1 end we have core(T ) = ∅ or it is a single
point. And indeed, any choice of combinatorial embeddings for the Tutte compo-
nents results in a combinatorial embedding of G with acc(G) = 1.

4.6 2-connected graphs with special vertices

When we later consider arbitrary planar graphs decomposed into 2-connected blocks,
there will be a need to treat certain special vertices of G, informally speaking, as if
they were ends of G. That is, as if they alone counted as infinitely many vertices,
and by themselves gave rise to an accumulation point in one of the incident faces.
The reason we did not include this technicality so far is that Lemma 4.6 - which
is the key ingredient of our construction - is simpler to present without it, and the
proof of Lemma 4.6 is heavy in notation as it is. Moreover, the need for these special
vertices arises further down the line, and their presence does not change the proof,
only complicates the exposition.

Nevertheless, to be precise, we now explain how the definition of core(G), acc(G),
and the statement and proof of Lemma 4.6 need to be modified in order to incor-
porate the special vertices. See the upcoming subsection 4.7 for an example where
the special vertices are crucial.

24



Assume that a set of vertices W ⊆ V (G) is specified to be special. Earlier V∞
stood for the set of Tutte components α where |Gα| = ∞, now we redefine V∞ so
that every α with V (Gα) ∩W ̸= ∅ is also included. Recall that core(G) is defined
as Γ(core(T )), where core(T ) is the convex hull of V∞ ∪ Ends(T ) in the Tutte tree
T . This definition remains the same, but with the updated V∞. Note that we
automatically have W ⊆ core(G).

The definition of acc(G, π) changes as well. When considering a finite subgraph
H ⊂ G, aπH denoted the number of combinatorial faces of H which surrounded
infinitely many vertices of G \ H. Now we update that definition by counting
combinatorial faces surrounding vertices from W as well. (Note that only ver-
tices from W \ V (H) can be surrounded by combinatorial faces of H.) We set
acc(G, π) = sup aπHi

as before, with H1 ⊂ H2 ⊂ . . . ⊂ G an exhaustion by finite
graphs as before.

Earlier in Lemma 4.6 we assumed that G has a simply connected embedding,
which means a unique accumulation point x ∈ S2. Let D denote the connected
component of x in S2 \ ι(G). In the plane D \ {x} is the infinite topological face
of the graph (which might be empty). When taking the special vertices W into
consideration, we need a stronger assumption in Lemma 4.6, namely that there
exists a simply connected embedding such that vertices in W are embedded on the
topological boundary of D. The implication remains that G has a unique (up to
inverting all permutations) combinatorial embedding with acc(G) = 1.

Lemma 4.9. Let G be an infinite, 2-connected planar graph with special vertices
W ⊆ V (G). Assume that core(G) = G, and that G has a simply connected embed-
ding into S2 which maps W onto ∂D. Then (up to inverting all permutations) G
has a unique combinatorial embedding with acc(G) = 1.

The proof of Lemma 4.9 is essentially the same as the proof of Lemma 4.6.
Earlier, contradictions arose because we could establish acc(G, π) ≥ 2 by finding
cycles with either infinitely many vertices, or virtual edges representing infinitely
many vertices both on the inside and the outside of the cycle. When the special
vertices W are present, finding such a vertex inside or outside the cycle also suffices
to show acc(G, π) ≥ 2.

4.7 An example with special vertices

Consider the graph G in Figure 9. The vertex v is a cut vertex, and let Ga denote
the infinite 2-connected component of G. We aim to illustrate that v needs to be
treated as a special vertex in Ga in order to construct a combinatorial embedding
of G with acc(G) = 1.

Let us first explore what happens if we do not treat v as special. Let C denote
the 4-cycle in Ga containing v, and P the infinite path that v separates from Ga.
Notice, that C is not in core(Ga), in fact core(Ga) is the infinite ladder from Figure
3. Lemma 4.6 says that core(Ga) has an essentially unique combinatorial embedding
with acc(core(Ga)) = 1 (which corresponds to the way it is drawn in these pictures,
the only accumulation point being at infinity). In the Tutte decomposition of Ga,
the cycle C is amalgamated to the cycle C ′ in core(Ga) through a 3-link L. When we
will later choose a random combinatorial embedding of Ga as described in subsection
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4.11, the combinatorial embeddings of C and L are going to be chosen uniformly
randomly, because they are not in the core. The cycle C has only 1, but L has 2
choices. And this choice of πL determines weather C will be embedded inside C ′, or
outside it. In case C is mapped inside C ′ we will get acc(G) = 2 no matter how we
reattach the infinite path P . So we will not manage to build the right combinatorial
embedding this way.

Now let us explore what happens if we treat v as special in Ga. In this case C
is also included in core(Ga), so Ga = core(Ga). We see that the embedding places
v on the boundary of the infinite face, so Lemma 4.9 applies. It provides us with
the essentially unique way of combinatorially embedding Ga such that we can then
reattach P while keeping acc(G) = 1.

· · · · · ·

v

. . .

C

C ′

P

Figure 9: An example with special vertices

4.8 Towards combinatorial embeddings of arbitrary connec-
ted planar graphs

Having found (essentially unique) combinatorial embeddings with 1 combinatorial
accumulation point for 2-connected graphs, we now turn our attention to general
connected graphs.

Let G be any locally finite, connected planar graph, with block-cut tree T . We
write Ga, a ∈ A for the 2-connected components and C for the cut vertices of G.

A combinatorial embedding πG induces a combinatorial embedding πGa on all
blocks. In order to be able to reconstruct πG we also have to record how the πGa

are to be glued at the cut vertices.
For a block Ga we denote by Cut(Ga) the set of vertices C ∩ V (Ga). Similarly,

we write Cut∞(Ga) for those vertices in Cut(Ga) that separate Ga from infinitely
many points in G.

Cut∞(Ga) = {v ∈ V (Ga) | |CG\E(Ga)(v)| =∞}.

Our aim is to construct πG randomly such that acc(G, πG) = 1. We will do
this by first choosing the πGa randomly for all blocks Ga, using Subsection 4.5 in
the infinite case. Secondly, when making choices on how to glue the πGa at the cut
vertices, we will make sure that in the end acc(G, πG) = 1 holds.
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4.9 Finite blocks with special vertices

Let Ga be a block, and assume first that Ga is finite. Let v ∈ Cut∞(Ga), and let
Gb1 , . . . , Gbl denote the other blocks containing v. For any combinatorial embedding
of G each Gbi is surrounded by one of the combinatorial faces of Ga that are incident
to v. If CG\Ga(Gbi) is infinite, this produces an accumulation point inside that
combinatorial face.

So in order to achieve acc(G, πG) = 1 we need all vertices in Cut∞(Ga) to be
adjacent to the same combinatorial face of Ga. Moreover, all neighboring blocks Gb

with CG\Ga(Gbi) infinite have to fall in this distinguished combinatorial face.

Remark 4.10. Note that fixing πGa for each a ∈ A, and also fixing the choice of the
combinatorial face of each (Ga, π

Ga) where each neighboring Gb should be embedded
still does not determine the global combinatorial embedding πG. When there are
several blocks joined by a single cut-vertex we still need to choose a cyclic order of
the blocks. This choice however does not impact acc(G, πG) = 1.

We choose a random combinatorial embedding πGa such that πGa places all of
Cut∞(Ga) on the same distinguished face as follows. The simply connected em-
bedding of G (that we assumed it has) induces such a combinatorial embedding on
Ga. We wire Cut∞(Ga) together. That is, add an auxiliary vertex va to V (Ga) and
connect va with all v ∈ Cut∞(Ga). This graph Gw

a is still planar, and as it is fi-
nite it has finitely many combinatorial embeddings. We choose a (uniform) random
combinatorial embedding of Gw

a , and choose the Ga-face that surrounds va to be
distinguished.

4.10 Infinite blocks with special vertices

For an infinite block Ga the role of the distinguished combinatorial face will be
played by the “infinite face” of Ga. We will not define the infinite face, but rather
say that a point “sees infinity”. We will then make sure that acc(Ga, π

Ga) = 1 and
all of Cut∞(Ga) can see infinity.

Since Ga is infinite it is no longer true that any dart −→e is part of a unique
finite combinatorial face. Let W (−→e ) denote the unique bi-infinite walk containing
−→e with the property that at every vertex the next step uses the dart succeeding
the opposite of the previous. When Ga was finite, W (−→e ) kept looping the finite
combinatorial face containing −→e infinitely many times in both directions. When
Ga is infinite however, W (−→e ) might be a bi-infinite path of darts. We say a vertex
x ∈ V (Ga) sees infinity in the combinatorial embedding πGa if there is a dart −→e
with t(−→e ) = x such that W (−→e ) is bi-infinite. Let

−→
f denote the dart after −→e in

W (−→e ), i.e.
−→
f = πGa

x (←−e ). (Recall that πGa
x denotes the cyclic permutation on the

outgoing darts at the vertex x in the combinatorial embedding πGa .)

We call the pair (←−e ,
−→
f ) the infinite region at x. We claim that this pair, if it

exists, is unique for x. Indeed, as Ga is 2-connected, we can find a directed path
−→
P

from t(
−→
f ) to s(−→e ), and form the finite cycle

−→
C = (

−→
P ,−→e ,

−→
f ). The walk W (−→e ) has

infinitely many points inside
−→
C . If there was another pair←−e 1,

−→
f 1 giving an infinite

region at x, thenW (−→e 1) would have infinitely many points outside
−→
C contradicting

acc(Ga, π
Ga) = 1.
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Lemma 4.11. Let Ga be an infinite block with a fixed combinatorial embedding πGa

such that acc(Ga, π
Ga) = 1. A vertex x ∈ V (Ga) sees infinity if and only if there is

no cycle separating it from infinitely many vertices of Ga.

Proof. First assume towards contradiction that x sees infinity and there is a cycle
−→
C

surrounding x with infinitely many points on the outside. The bi-infinite pathW (−→e )
cannot cross

−→
C , so there are infinitely many vertices inside

−→
C as well, contradicting

acc(Ga, π
Ga) = 1.

On the other hand assume that x does not see infinity, that is all darts leaving
x are part of finite combinatorial faces. Form the finite subgraph H consisting of
the vertices and edges of these combinatorial faces, together with the combinatorial
embedding πH restricted from πGa . This is a finite graph, and none of its combina-
torial faces adjacent to x surround any vertices of Ga (when considered as oriented
cycles in Ga). However, all vertices in V (Ga) \ V (H) are surrounded by some com-
binatorial face of H. As Ga is infinite, there is some other combinatorial face of H,
not adjacent to x that surrounds infinitely many points of Ga. This, as a cycle in
Ga, separates x from infinitely many vertices of Ga.

4.11 Random combinatorial embeddings of infinite blocks

We now construct a random combinatorial embedding of an infinite block Ga using
Lemma 4.9, by setting W = Cut∞(Ga).

If G has at least 2 ends, then any infinite Ga has at least 2 ends (where vertices
from Cut∞(Ga) are also regarded as “ends”), so core(Ga) is not empty. Also, if G
has a simply connected embedding ι, then the restriction ι|Ga is a simply connected
embedding of Ga placing Cut∞(Ga) on the topological boundary of the infinite
topological face of Ga. Thus the block Ga satisfies the assumptions of Lemma 4.9.

In subsection 4.6 we emphasized that special vertices always belong to the core,
so Cut∞(Ga) ⊆ V (core(Ga)). We claim that with respect to either of the two com-

binatorial embeddings π
core(Ga)
+ and π

core(Ga)
− , all vertices x ∈ Cut∞(Ga) have to see

infinity in core(Ga) (where π
core(Ga)
+ and π

core(Ga)
− stand for the unique combinatorial

embedding and its inverse, as in Lemma 4.6). Indeed, by Lemma 4.11, if x did not
see infinity, it would be separated from infinitely many points by a cycle, witnessing
acc(core(G)) ≥ 2, using that x is special.

Remark 4.12. If some Gα is 2-connected and has no vertices that see infinity then
we see that it cannot contain Cut∞-vertices at all, since that would give rise to at
least 2 accumulation points of the whole graph G.

Note that amalgamating the remaining Tutte components α /∈ core(Ta) to core(Ga)
cannot create new cycles separating vertices of Cut∞(Ga) from infinitely many
points. So the choices of the πα for α /∈ core(Ta) are arbitrary, as before in subsection
4.5. These choices do not influence Cut∞(Ga) seeing infinity.

We make independent uniform random choices between π
core(Ga)
+ and π

core(Ga)
− for

the core, and also to choose each πα for α /∈ core(Ta). The chosen πcore(Ga) and πα

together form the random combinatorial embedding πGa .
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4.12 Random embedding of G from its embedded blocks

Recall that at this point G is a deterministic, infinite, locally finite graph that has
a locally finite embedding. We now construct a random combinatorial embedding
πG of G with acc(G, πG) = 1.

For finite blocks Ga, as described in subsection 4.9, we choose a uniform ran-
dom combinatorial embedding πGa with the additional property that the vertices in
Cut∞(Ga) are incident to a combinatorial face that we consider distinguished.

For infinite blocks Ga, we chose πGa as in subsection 4.11, with Cut∞(Ga) con-
sidered as special points representing infinitely many vertices (as explained in sub-
section 4.6, and therefore being placed so that they see infinity).

We then construct the combinatorial embedding πG by putting together the πGa .
At cut vertices v ∈ Cut∞(Ga) we define πG

v so that all edges leading to all other
blocks Gb intersecting Ga at v are placed inside the distinguished face of (Ga, π

Ga).
In the infinite case this means that in the cyclic order we place these edges between

the two darts (←−e ,
−→
f ) that form the unique infinite region of Ga at v.

There is some freedom still in the choice of πv when more than two blocks are
glued at v, see the Remark in subsection 4.9. In that case we choose uniformly
randomly among the finitely many choices satisfying the above.

We claim that acc(G, πG) = 1. Indeed, any cycle C has to belong to a block
Ga. The choice of the distinguished face (or the infinite region in case Ga is infinite)
makes sure that C cannot have infinitely many points on both sides.

Remark 4.13. Note that so far in the present Section 4 the graph G was deter-
ministic and unrooted (but assumed to have a locally finite embedding).

4.13 Proof of Theorem 5

The following proposition completes the proof of Theorem 5.

Proposition 4.14. Let (G, o) be a URPG. Given a random instance of (G, o),
choose the combinatorial embedding π of G randomly as described in subsection
4.12. Then the random triple (G, o; π) is a unimodular combinatorial embedding of
(G, o).

Proof. Let (G, o1, o2; π) denote the birooted (decorated) random graph induced
from (G, o; π) by taking a random step in the degree-biased version of (G, o; π).
We have to check that the distribution of (G, o1, o2; π) is invariant with respect to
swapping the o1 and o2.

First the unimodularity of (G, o) says that (G, o1, o2) is invariant under swap-
ping o1 and o2. We have two operations on the random graph (G, o): one is taking
a random step on a degree-biased sample of (G, o), the second is decorating (G, o)
randomly. These two operations commute, their order is irrelevant. The bias and
the random step never considers the combinatorial embedding and the random com-
binatorial embedding never considers any roots.
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5 Embeddings of URPG’s into H2 and R2

In this section we present the proof of Theorem 1. Much of it is adopted from
[BT21], so for brevity we will refer to them as much as possible, and emphasize the
contribution of the present work instead.

We tackle the case of more than one ends through Theorem 5 and Proposition
1.1. Besides these, the case not covered by [BT21], namely an invariant embedding
of a non-amenable URPG into H2 will be dealt with using Theorem 7.

Proof of Proposition 1.1. By Theorem 5 we can start with a unimodular
random combinatorial embedding π of G with acc(G, π) ≤ 1. Based on this we
can construct the triangulation (G+, o+) as in [BT21, Theorem 2.2], the resulting
G+ has finite expected degree, and invariant amenability or non-amenability is pre-
served, and positive density of G in G+ is guaranteed. Moreover the construction
provides a unimodular combinatorial embedding π+ with acc(G+, π+) = 1, where
the restriction of π+ to G ≤ G+ is π.

We claim G+ has one end. If G+ had more than one end, there would be a finite
induced subgraph F with G+ \ F having at least two infinite components. These
infinite components would also have to be surrounded by distinct combinatorial faces
of F , because G+ is triangulated (no edge can be added without violating planarity).
In fact all vertices of G+ \F that are surrounded by the same combinatorial face of
F belong to the same connected component of G+ \F . Consequently F would have
two distinct faces surrounding infinitely many points, implying acc(G+, π+) ≥ 2.

Proof of Theorem 1. For amenable URPG’s one in fact first finds an invariant
embedding of finite intensity, and takes the Palm version to produce an unimodular
embedding. By Proposition 1.1 one can find (G, o) as a positive density subgraph of
an amenable planar triangulation. By [BT21, Theorem 4.2] such a triangulation can
be embedded into R2 invariantly with vertices mapped onto some invariant point
process of finite intensity.

For non-amenable URPG’s the construction works in the other direction. We
construct a unimodular embedding of positive intensity, and use Theorem 7 to de-
duce the existence of an invariant embedding. The triangulation (G+, o+) has a cir-
cle packing represetation on H2 which is unique up to isometries [HS93, AHNR16].
Therefore the embedding defined by the circle packing (by connecting centers of tan-
gent circles by straight line segments) is a well defined rooted drawing of (G+, o+)
(as defined in Subsection 2.4). As (G+, o+, S) is unimodular, restricting the rooted
drawing to (S, o+) on the event that o+ ∈ S, we get a unimodular embedding of
(G, o). Moreover, by a Mass Transport argument the intensity is simply multi-
plied by P[o+ ∈ S] > 0 when restricting the embedding. The payment function is
f([G+, o+, u,S]) = 1u∈S · λ

(
Vor(G+, o+)∩Vor(S, u)

)
. (The reader who uses gothic

letters as rarely as the authors may want to note that S is the gothic version of the
letter S.)

We now prove that this unimodular embedding has positive intensity. All edges
of (G+, o+) are mapped to geodesics, and the embedding gives a triangulation of
H2. We consider the following factor allocation: take the barycentric subdivision
of each triangle into 6 smaller triangles, and assign each to the one original vertex
it is incident to. The number of triangles assigned to o+ is 2 degG+(o+), so the
expected area of these pieces is at most (π/2) · 2E[degG+(o+)] < ∞. Consequently
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the intensity of the embedding of (G+, o+) is positive. As S has positive density in
G+, the embedding restricted to S also has positive intensity. Therefore we get an
invariant embedding by Theorem 7.

Finally, URPG’s have no invariant or unimodular embeddings into the wrong
space as proven in Propositions 6.1, 6.2 and 6.3 below.

6 Cases with no embedding because of isoperime-

try

The final pieces of the proof of Theorem 1 are the following propositions.

Proposition 6.1. A non-amenable URPG G has no invariant embedding into R2.

Proof as in Theorem 1.1 in [BT21]. Suppose that G had an isometry-invariant
embedding into R2 without accumulation points. Then one could use the invariant
random partitions of R2 to 2n× 2n squares to define a unimodular finite exhaustion
of G. Thus G is amenable, a contradiction.

Proposition 6.2. An amenable URPG G has no invariant embedding into H2.

Proof. Suppose that G has an invariant embedding into H2. Take the Voronoi par-
tition of H2 corresponding to the embedded vertices. For the random configuration
ω and x, y ∈ H2, define f(x, y;ω) to be 1 if x is in the Voronoi cell of an embedded
vertex that is at distance ≤ 1 from y, and for A,B ⊂ H2 Borel define

µ(A,B) = E
[∫

x∈A

∫
y∈B

f(x, y;ω)dxdy

]
.

The continuous version of the Mass Transport Principle (Theorem 5.2 in [BS01])
shows that the expected area of the Voronoi cell of the origin has to be finite.

Consider some unimodular finite exhaustion of G, i.e. some unimodular random(
G, o; (Pn)n∈N

)
with the following properties almost surely. Each Pn is a partition

of V (G) into finite subsets, Pn+1 is a coarsening of Pn, and for every u, v ∈ V (G)
there exists some n for which u and v are in the same part in Pn. The existence of
such a unimodular finite exhaustion is equivalent to the amenability of (G, o).

The Pn can be used to define an invariant random sequence of coarser and coarser
partitions Kn of H2, by taking the unions of the Voronoi cells of vertices that belong
to the same part in Pn. The parts in Kn have finite area. Any two points of H2 end
up in the same part of Kn for high enough n, which contradicts the non-amenability
of H2. (To see this using our setup, take an invariant random non-amenable tiling
in H2 with a transitive underlying graph Γ. The above sequence of partitions would
generate a unimodular finite exhaustion of Γ, a contradiction.)

Propositions 6.1 and 6.2 covered invariant embeddings; the next observations are
their counterparts addressing unimodular embeddings.

Proposition 6.3. Let (G, o) be a URPG.

(1) If (G, o) is amenable, then it has no unimodular embedding of positive intensity
into H2.
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(2) There exists an amenable (G, o) with a unimodular embedding (of 0 intensity)
into H2.

(3) If (G, o) is non-amenable then it has no unimodular embedding of positive in-
tensity into R2.

Proof. If an embedding as in (1) or (3) existed, one could apply Theorem 7 to
obtain an invariant embedding, contradicting Propositions 6.2 and 6.1, respectively.

Example 1.5 in [BT21] proves (2). That is, consider a bi-infinite geodesic in H2

through the origin 0, and take the points at integer distance from 0 on this geodesic
to be the embedded vertices.

Part (3) is part of Theorem 1.2 in [BT21].

Appendix

Proof of Theorem 7. We denote by νH the Haar measure on Γ, normalized such
that νH

(
StabΓ(0)

)
= 1. Any factor allocation scheme, in particular Ψ can be used

to sample the Palm version of an invariant random embedded graph G with finite
intensity as follows. First pick G randomly, then let o ∈ V (G) be the vertex whose
cell contains the origin, i.e. 0 ∈ ΨV (G)(o). Now pick a Haar-random element φ ∈ Γ
such that φ.o = 0 (the set of such φ is compact, so it has finite Haar measure),
and let G′ = φ.G. Let G∗ denote the Palm version of G. Then in distribution
G′ is exactly G∗ biased by the area of the cell of the origin, i.e. λ

(
ΨV (G∗)(0)

)
. To

be precise, if µ′ and µ∗ denote the distributions of G′ and G∗ respectively, for any
A ⊆ G0(M) measurable we have

µ′(A) =

∫
A

λ
(
ΨV (G)(0)

)
dµ∗(G)

/∫
G0(M)

λ
(
ΨV (G)(0)

)
dµ∗(G).

For a reference see [HP05], where a balanced allocation scheme (assigning equal
sized cells for all centers) is constructed. In that case there is no bias happening,
there is no difference between G′ and G∗.

We will reverse these steps by starting from a unimodular embedding [G0, o],
sample it biased by λ

(
ΨV (G0)(o)

)
, taking a representative of the class [G0, o] from

G0(M) with the root at 0, picking a uniform random point v from ΨV (G0)(0) (the
cell has finite area almost surely), picking a random isometry φ ∈ Γ with φ.0 = v,
and shifting the embedding with φ−1. We will show that the resulting embedding
is Γ-invariant in distribution. This will complete the proof of Theorem 7, as the
original unimodular embedding is the Palm version of the invariant one, because
our construction is the reverse of the one in the previous paragraph.

Throughout this paper this is the only point where fixing an arbitrary embed-
ding of each rooted drawing [G, o] is necessary. As we have said before, RD(M) is
in bijection with G0(M)/StabΓ(0), so let θ : RD(M) → G0(M) be a measurable
selecting function (as both G0(M) and RD(M) are standard Borel spaces, such a
function exists, see for example [Kec12, Exercise 18.3]). To shorten notation we write
θ([G0, o]) = [G, o]. Note that [G, o] is no longer a rooted object, it is an embedded
graph that happens to have a vertex at 0 ∈M .

32



Let a : G(M)×M → [0,∞) be defined as follows:

a(G, y) =

{
1 if y ∈ V (G) and 0 ∈ ΨV (G)(y);

0 otherwise.

Note that if 0 ∈ M is not in the measure zero subset of M where ΨV (G) fails to be
a partition, then it is contained in exactly one cell, so we have

∑
y∈V (G) a(G, y) = 1.

Let µ0 ∈ Prob
(
RD(M)

)
denote the distribution of (G0, o). We define the measure

µ on G(M) as follows.

µ(A) =

∫
[G,o]∈RD(M)

∫
φ∈Γ

1A

(
φ.[G, o]

)
· a

(
φ.[G, o], φ.0

)
dνH(φ) dµ0([G, o]) (2)

Remark 6.4. In the definition of µ it is not apparent that any biasing with the
size of the cell of 0 took place. But in fact it did, otherwise there would be a
1/λ

(
ΨV ([G,o])(0)

)
term as well in the integral. The role of the biasing is exactly

to cancel this term out. Also note that we are not normalizing µ, as that would
lengthen the expressions in the coming calculation. The measure of the whole space
µ(G(M)) is E[G0,o]

[
λ
(
ΨV (G0)(o)

)]
, this is ensured by having picked the right nor-

malization of νH . By assumption, this is finite, so we get a probability measure after
normalization.

We claim µ is Γ-invariant, which is equivalent to showing that for any f :
G(M)→ [0,∞) and fixed η ∈ Γ we have∫

G(M)

η.f dµ =

∫
G(M)

f dµ. (3)

By the definition of µ we have∫
G(M)

η.f dµ =

∫
RD(M)

∫
Γ

f
(
η−1φ.[G, o]

)
· a

(
φ.[G, o], φ.0

)
dνH(φ) dµ0([G, o]) = . . .

For µ0-almost all [G, o] ∈ RD(M) and φ ∈ Γ we have
∑

x∈η−1φ.V ([G,o]) a
(
η−1φ.[G, o], x

)
= 1, so

. . . =

∫
RD(M)

∫
Γ

∑
x∈η−1φ.V ([G,o])

a
(
η−1φ.[G, o], x

)
· f

(
η−1φ.[G, o]

)
· a

(
φ.[G, o], φ.0

)
dνH(φ) dµ0([G, o]) = . . .

By substituting x = η−1φ.y we have

. . . =

∫
RD(M)

∫
Γ

∑
y∈V ([G,o])

a
(
η−1φ.[G, o], η−1φ.y

)
· f

(
η−1φ.[G, o]

)
· a

(
φ.[G, o], φ.0

)
dνH(φ) dµ0([G, o]) = . . .
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We will use the Mass Transport Principle with the function g that assigns to
[G, u, v] ∈ BRD(M) the value

g([G, u, v]) = a
(
η−1φ.[G, u], η−1φ.v

)
· f

(
η−1φ.[G, u]

)
· a

(
φ.[G, u], φ.0

)
,

where v ∈M is some point corresponding to v in the embedded [G, u], that is to say[
[G, u], 0, v

]
= [G, u, v]. If there are multiple such points, any choice is sufficient, the

value of g does not depend on the choice. We get

. . . =

∫
Γ

∫
RD(M)

∑
y∈V (G)

g([G, o, y]) dµ0([G, o]) dνH(φ) =

MTP
=

∫
Γ

∫
RD(M)

∑
y∈V (G)

g([G, y, o]) dµ0([G, o]) dνH(φ) =

=

∫
RD(M)

∫
Γ

∑
y∈V (G)

a
(
η−1φ.[G, y], η−1φ.o

)
· f

(
η−1φ.[G, y]

)
(4)

· a
(
φ.[G, y], φ.0

)
dνH(φ) dµ0([G, o]) = . . .

As we have emphasized before, the sum only makes sense once a representative
of [G, o] is chosen. For us this will be [G, o]. This way [G, y] (as y runs through V (G))

is exactly
[
[G, o], y

]
as y runs through V ([G, o]). For an y ∈ V

(
[G, o]

)
let φy ∈ Γ be

such that φy.
[
[G, o], y

]
= [G, o] and φy.0 = y. We note that as we sum over y, the

term o in (4) also changes. As y runs through V
(
[G, o]

)
in our chosen representative

φ−1
y .0 is a valid choice of o. For y fixed let ψ = η−1φφ−1

y , and we calculate

. . . =

∫
RD(M)

∫
Γ

∑
y∈V ([G,o])

a

(
η−1φ.

[
[G, o], y

]
, η−1φφ−1

y .0

)
· f

(
η−1φ.

[
[G, o], y

])

· a
(
φ.
[
[G, o], y

]
, φ.0

)
dνH(φ) dµ0([G, o]) =

=

∫
RD(M)

∑
y∈V ([G,o])

∫
Γ

a

(
ψφy.

[
[G, o], y

]
, ψ.0

)
· f

(
ψφy.

[
[G, o], y

])

· a
(
ηψφy.

[
[G, o], y

]
, ηψφy.0

)
dνH(φ) dµ0([G, o]) = . . .

The Haar measure νH is bi-invariant, therefore (for fixed y) we can integrate
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with respect to ψ instead of φ, so we get

. . . =

∫
RD(M)

∑
y∈V ([G,o])

∫
Γ

a
(
ψ.[G, o], ψ.0

)
· f

(
ψ.[G, o]

)
· a

(
ηψ.[G, o], ηψ.y

)
dνH(ψ) dµ0([G, o]) =

=

∫
RD(M)

∫
Γ

a
(
ψ.[G, o], ψ.0

)
· f

(
ψ.[G, o]

)
·

∑
y∈V ([G,o])

a
(
ηψ.[G, o], ηψ.y

)
dνH(ψ) dµ0([G, o]) = . . .

We have
∑

y∈V ([G,o]) a
(
ηψ.[G, o], ηψ.y

)
= 1 for almost all ψ and [G, o], therefore

. . . =

∫
RD(M)

∫
Γ

a
(
ψ.[G, o], ψ.0

)
· f

(
ψ.[G, o]

)
dνH(ψ) dµ0([G, o]) =

∫
G(M)

f dµ.

The last equality holds by the definition of µ in (2). Reading the calculation
from start to finish yields equation (3), proving that µ is indeed Γ-invariant, which
completes the proof.

Remark 6.5. We never used that the function a is {0, 1}-valued, only that it sums
to 1 almost always. For this reason one can extend Theorem 7 and Corollary 8 to
fractional allocations as well, where instead of partitioning M we cover it by L1

functions (indexed by the centers) that sum to 1M . The size of a cell is the integral
of the function. Considering such fractional allocations has a utility in homogeneous
spaces of general locally compact groups. In this generality the Voronoi allocation
and balanced allocation of [HP05] can only be defined as fractional allocations,
because the measure of points equidistant from two given points can be positive.
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