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a b s t r a c t

We show that if a non-amenable, quasi-transitive, unimodular
graph G has all degrees even then it has a factor-of-iid balanced
orientation, meaning each vertex has equal in- and outdegree.
This result involves extending earlier spectral-theoretic results
on Bernoulli shifts to the Bernoulli graphings of quasi-transitive,
unimodular graphs.

As a consequence, we also obtain that when G is regular (of
either odd or even degree) and bipartite, it has a factor-of-iid
perfect matching. This generalizes a result of Lyons and Nazarov
beyond transitive graphs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be a simple connected graph with all degrees even. An orientation of the edges of G is
alanced if the indegree of any vertex is equal to its outdegree. When G is finite, the term Eulerian
rientation is often used, as such an orientation can be obtained from an Eulerian cycle. Our interest
ies in infinite graphs, so we prioritize the term balanced. Our main result is the following.

heorem 1. Every non-amenable, quasi-transitive, unimodular graph G with all degrees even has a
actor-of-iid orientation that is balanced almost surely.

The precise definitions of these notions are given in Section 2. Non-amenable means that
ll finite subsets of G expand, quasi-transitive means G has finitely many types of vertices, and
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Fig. 1. Obtaining G∗ from G — the combinatorial transformation around a vertex of degree 4.

unimodularity is a reversibility condition of the simple random walk on G. Informally speaking,
a balanced orientation is a factor of iid if it is produced by a randomized ‘‘local’’ algorithm. To
start with, each vertex of G gets a random label from [0, 1] independently and uniformly. Then it
makes a deterministic measurable decision about the orientation of its incident edges, based on the
labeled graph that it sees from itself as a root. Neighboring vertices must make a consistent decision
regarding the edge between them. To make the statements of our results less cumbersome, instead
of saying ‘‘a factor-of-iid orientation of the edges that is balanced almost surely’’ we will simply say
‘‘factor-of-iid balanced orientation’’. (The naming is analogous for other decorations of vertices or
edges.)

Obtaining combinatorial structures or certain models in statistical mechanics as factors of iid
is a central topic in ergodic theory. See [1] and the references therein for an overview in the
non-amenable setting.

All Cayley graphs, in particular regular trees are unimodular. For d > 1, the 2d-regular tree T2d
is also non-amenable, so it is covered by Theorem 1. Note that on T2d there is a unique invariant
random balanced orientation, which by Theorem 1 is a factor of iid. Moreover, this result cannot be
obtained by measurable versions of the Lovász Local Lemma, see Remark 8.

Our interest in balanced orientations is due to the fact that on a 2d-regular graph a balanced
rientation is a partial result towards a Schreier decoration. A Schreier decoration of G is a coloring
f the edges with d colors together with an orientation such that at every vertex, there is exactly one
ncoming and one outgoing edge of each color. It is a combinatorial coding of an action of the free
roup Fd on the vertex set of the graphs. Every Schreier decoration gives a balanced orientation
y forgetting the colors. In [2], the third author proved that all 2d-regular unimodular random
ooted graphs admit an invariant random Schreier decoration, and the current authors show in a
arallel work [3] that such invariant random Schreier decorations can be obtained as a factor of iid
n Euclidean grids in all dimensions greater than 1 as well as on all Archimedean (planar) lattices
f even degree.
It remains an open question whether there indeed is a factor-of-iid Schreier decoration of T2d.

n [4], Thornton studies when graphs have factor-of-iid Cayley diagrams. Finding a Cayley diagram
f a fixed group as a random decoration comes with (compared to a Schreier decoration) additional
ocal restrictions on how the decoration should behave on loops. Nevertheless, the question of
inding a Cayley diagram of Fd overlaps with our interest in Schreier decorations on T2d. Thornton
as a result on factor-of-iid Cayley diagrams on non-amenable graphs ([4, Theorem 1.7]) that
rovides approximate Cayley diagrams, but we do not allow for a small-probability local error here.
The proof of Theorem 1 relies on two main ingredients. First, we reduce the question of finding a

alanced orientation of G to finding a perfect matching in an auxiliary graph G∗. Fig. 1 illustrates the
onstruction, which already appears in works of Schrijver [5] and Mihail–Winkler [6]. The precise
ormulation is given in Section 5.

Second, we apply earlier matching results of Lyons and Nazarov [7], who proved that bipartite,
on-amenable Cayley graphs have a factor-of-iid perfect matching. Csóka and Lippner extended this

o all non-amenable Cayley graphs in [8].
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In order to deduce Theorem 1 from these matching results, we have to establish vertex expansion
n the appropriate Bernoulli graphing (see Section 2.7 for the definition). We do this via spectral
heory, and state our spectral-theoretic result here because we believe it is of interest in itself.

heorem 2. Let G be a connected, unimodular, quasi-transitive graph. If G is non-amenable then its
Bernoulli graphing G has positive spectral gap.

The interpretation of spectral gap is slightly different depending on the Bernoulli graphing being
measurably bipartite or not. See Theorems 17 and 18 for exact statements.

Our proof of Theorem 2 requires more sophistication than simply repeating earlier arguments
in a more general setting. To emphasize this, we point out that (unlike in the transitive case) −1
an indeed be part of the spectrum. Also our proof does not bound ∥M∥ above by ∥MG∥, where

∥MG∥ is the operator norm of the Markov operator MG on ℓ2(V(G)), while for Cayley graphs, one
has ∥M∥ ≤ ∥MG∥.

As a consequence of Theorem 2, we also obtain the following generalization of the result of Lyons
and Nazarov.

Corollary 3. Let G be a connected, unimodular, quasi-transitive non-amenable regular bipartite graph.
Then G has a factor-of-iid perfect matching.

The bipartite assumption in Corollary 3 cannot be dropped because there are unimodular, quasi-
transitive regular graphs that have no perfect matching at all, see Remark 21. Regularity cannot
be dropped either, as for example bi-regular trees (of two different degrees of regularity) have no
factor-of-iid perfect matching.

We also discuss how far Theorem 1 goes towards obtaining Schreier decorations on the regular
tree T2d.

Proposition 4. Regarding Schreier decorations of T2d we observe the following.

(i) If Td has a factor-of-iid proper edge coloring with d colors then T2d has a factor-of-iid Schreier
decoration.

(ii) T2d has a factor-of-iid Schreier decoration with the last two colors unordered.
(iii) Let T⃗4 denote the tree T4 with edges oriented in a balanced way. (T⃗4 is unique up to isomorphism.)

There is no Aut(T⃗4)-factor-of-iid Schreier decoration of T⃗4 with the additional property that after
forgetting the colors, it coincides with the original orientation of T⃗4.

(iv) For every positive integer d, if T2d has a factor-of-iid Schreier decoration then so does T2d+2.

It is an open question whether Td (for d > 2) has a factor-of-iid proper edge coloring by d
colors. Part (ii) utilizes the partial result towards such a factor-of-iid proper edge coloring presented
in [1]; see Section 6.2 for further comments. Note, however, that by part (iii), obtaining a factor-
of-iid Schreier decoration of T4 cannot be achieved by selecting a balanced orientation first and
then choosing the colors without modifying the orientation. This observation is unique to degree 4
because it relies on the 2-regular tree, otherwise known as the bi-infinite path, not having a factor-
of-iid proper edge coloring with two colors. For higher degree, a construction might be finished this
way, as pointed out in part (i).

Finally, regarding the auxiliary graph G∗ we show that existences of different factors of iid are
equivalent.

Proposition 5. For every 2d-regular graph G, the bipartite graph G∗ is also 2d-regular, and the
following are equivalent.

1. G∗ has a factor-of-iid proper edge 2d-coloring.
2. G∗ has a factor-of-iid perfect matching.
3. G∗ has a factor-of-iid Schreier decoration.
Moreover, if any of these is a finitary factor, the others are too.

3
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For the definition of finitary factors see Section 2.4.
The structure of the paper is as follows. In Section 2, we introduce the necessary notions

and existing results. In Section 3, we prove our spectral-theoretic result, Theorem 2. We deduce
Corollary 3 in Section 4, and in Section 5, we prove our main result, Theorem 1. Our results on
other types of decorations are collected in Section 6. Section 7 lists some open questions.

Addendum. After our manuscript was made available online, Riley Thornton brought to our
attention that his Theorem 2.8 in [9] provides a measurable balanced orientation in 2d-regular
raphings with expansion. Since Backhausz, Szegedy, and Virág show in [10, Theorem 2.2] that the
ernoulli graphing of T2d does have expansion, a factor-of-iid balanced orientation of T2d can also
e obtained by combining these two results.

. Notation and basics

Some of the descriptions in this section are identical to the ones in our parallel work [3].

.1. Graphs

A graph G is given by its vertex set V (G) and edge set E(G), where E(G) ⊂ V (G)(2) is a collection
f 2-element subsets of V (G) and we write uv for the subset {u, v}. For any subset A ⊂ V (G), we
enote by NG(A) the neighborhood of A, that is {u ∈ V (G) : ∃v ∈ A such that uv ∈ E(G)}. We use
he calligraphic G for graphs that have a probability measure associated to them that makes them
graphing (see Section 2.6 for precise definition).

.2. Amenability

Let G be a locally finite connected graph, and let pn(x, y) denote the probability of the sim-
le random walk started from x reaching y in n steps. Then the value lim supn→∞

n√pn(x, y) is
ndependent of the choice of x and y, and is in fact equal to the norm of the Markov operator

: ℓ2(V (G),mst) → ℓ2(V (G),mst). Here mst is the degree-biased version of the counting measure,
.e. mst(X) =

∑
v∈X deg(v), which is a stationary measure with respect to the random walk. The

perator M is defined by

(M(f )) (v) =
1

deg(v)

∑
uv∈E(G)

f (u).

is self-adjoint and has norm at most 1 for any G. We will denote its norm (and spectral radius)
y ρ:

ρ = ∥M∥ = lim sup
n→∞

n
√
pn(x, y).

e say G is amenable if ρ = 1 and non-amenable if ρ < 1.
This characterization of amenability, due to Kesten [11], is of course only one of many. In

articular non-amenability is equivalent to the positivity of the Cheeger constant of G. In Section 5
we also work with Cheeger constants, but we do so on graphings, not on countably infinite graphs.

2.3. Schreier graphs

Given a finitely generated group Γ = ⟨S⟩ and an action Γ ↷ X on some set X , the Schreier graph
ch(Γ ↷ X, S) of the action is defined as follows. The set of vertices is X , and for every x ∈ X , s ∈ S,

we introduce an oriented s-labeled edge from x to s.x.
Rooted connected Schreier graphs of Γ come from pointed transitive actions of Γ , which are in

one-to-one correspondence with subgroups of Γ . Trivially, a graph with a Schreier decoration is a
Schreier graph of the free group Fd on d generators. A special case is the (left) Cayley graph of Γ ,
denoted Cay(Γ , S), which is the Schreier graph of the (left) translation action Γ ↷ Γ .
4
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2.4. Factors of iid

Let Γ be a group. A Γ -space is a measurable space X with an action Γ ↷ X . A map Φ : X → Y
etween two Γ -spaces is a Γ -factor if it is measurable and Γ -equivariant, that is γ .Φ(x) = Φ(γ .x)
or every γ ∈ Γ and x ∈ X .

A measure µ on a Γ -space X is invariant if µ(γ .A) = µ(A) for all γ ∈ Γ and all measurable
⊆ X . We say an action Γ ↷ (X, µ) is probability-measure-preserving (p.m.p.) if µ is a Γ -invariant
robability measure.
Let G be a countable graph and Γ ≤ Aut(G). Let u denote the Lebesgue measure on [0, 1]. We

ndow the space [0, 1]V (G) with the product measure uV (G). The translation action Γ ↷ [0, 1]V (G) is
efined by

(γ .f )(v) = f (γ −1.v), ∀γ ∈ Γ , v ∈ V (G).

The action Γ ↷ ([0, 1]V (G), uV (G)) is p.m.p.
An orientation of G can be thought of as a function on E(G) sending every edge to one of its

endpoints. Viewed like this, orientations of G form a standard Borel space in the product E(G)V (G).
We denote this space of orientations Or(G), and note that it comes with a natural action of Γ . The
et BalOr(G) ⊆ Or(G) of balanced orientations is Γ -invariant and Borel, so it is a Γ -space in itself.
imilarly, the set of all Schreier decorations of G forms the Γ -space Sch(G).

efinition 6. A Γ -factor of iid balanced orientation (respectively, Schreier decoration) of a graph
is a Γ -factor Φ : ([0, 1]V (G), uV (G)) → BalOr(G) (respectively, to Sch(G)). If the subgroup
≤ Aut(G) is not specified, we mean an Aut(G)-factor.

emark 7. We allow Φ to not be defined on a uV (G)-null subset X0 ⊆ [0, 1]V (G).

Let us now recall some special classes of factor of iid processes on graphs. For a fixed vertex
∈ V (G), let

(
Φ(ω)

)
(x) denote the restriction of Φ(ω) to the edges incident to x. We say Φ is a

initary factor of iid if for almost all ω ∈ [0, 1]V (G), there exists an R ∈ N such that
(
Φ(ω)

)
(x) is

lready determined by ω|BG(x,R). That is, if we change ω outside BG(x, R), the decoration Φ(ω) does
ot change around x. This radius R can depend on the particular ω. If it does not then we say Φ is
block factor.
When constructing factors of iid algorithmically, one often makes use of the fact that a uniform

0, 1] random variable can be decomposed into countably many independent uniform [0, 1] random
ariables. In practice, this means that we can assume that a vertex has multiple labels or that a new
ndependent random label is always available after a previous one was used.

We will use a reverse operation as well: the composition of countably many uniform [0, 1]
andom variables is again a uniform [0, 1] random variable.

emark 8. Note that balanced orientations of T2d have the property that fixing the orientation
n all edges at distance r from some vertex u determines the orientation of edges incident to
, independently of r . Consequently, the balanced orientation constructed in Theorem 1 has no

local reduction to the Lovász Local Lemma (LLL). Indeed, by [12, Section 11.1] it has randomized
local complexity Θ(log n), whereas the algorithm of [13] implies o(log n) complexity for problems
hat have local reductions to the LLL. So although there are measurable versions of the LLL [14,15],
actor-of-iid balanced orientations of T2d cannot be obtained that way.

.5. Unimodular quasi-transitive graphs

Unimodular random rooted graphs are central objects in sparse graph limit theory because they
an represent limits of locally convergent sequences of finite graphs. In this paper, however, we
nly deal with a special case, namely unimodular quasi-transitive graphs. For a thorough treatment
f the topic and the connection to unimodular random rooted graphs, we refer the reader to [16,
hapter 8.2] and [17].
5
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Let G be a locally finite graph, Γ = Aut(G). There is a function µ : V (G) → R+ such that for any
x, y ∈ V (G), we have

µ(x)
µ(y)

=
|StabΓ (x).y|
|StabΓ (y).x|

.

The function µ is unique up to multiplication by a constant. We say G is unimodular if
StabΓ (x).y| = |StabΓ (y).x| for any pair x, y ∈ V (G) that are in the same Γ orbit, that is y ∈ Γ .x. So
is unimodular if and only if µ(y) = µ(x) for any y ∈ Γ .x.
Moreover, when {oi} is the orbit section of G and

∑
i µ(oi)−1 < ∞, then we can normalize µ to

obtain a probability measure on {oi}.
In particular, when G is quasi-transitive, let T = {o1, . . . , ot} ⊂ V (G) be a set of representatives

of the orbits of Γ ↷ V (G). Let p be the normalized version of µ−1 as above — we think of p as a
distribution of a random root in G.

The notion of unimodularity comes hand in hand with the Mass Transport Principle. In our case,
it takes the following form:

Proposition 9 (Mass Transport Principle, Corollary 8.11. in [16]). Given a function f : V (G)× V (G) →

[0, ∞] that is invariant under the diagonal action of Γ , we have
t∑

i=1

p(oi)
∑

z∈V (G)

f (oi, z) =

t∑
i=1

p(oi)
∑

z∈V (G)

f (z, oi).

We immediately use the Mass Transport Principle to set up a finite state Markov chain mimicking
the transitions of the random walk on G between Γ -orbits.

Lemma 10. For any 1 ≤ i ̸= j ≤ t, the function p satisfies,

p(oi)
⏐⏐{oiv ∈ E | v ∈ Γ .oj}

⏐⏐ = p(oj)
⏐⏐{voj ∈ E | v ∈ Γ .oi}

⏐⏐ .
Proof. For fixed i ̸= j, set up a payment function f with f (x, y) = 1 if xy ∈ E(G), x ∈ Γ .oi and
y ∈ Γ .oj. Set f (x, y) = 0 otherwise. The Mass Transport Principle gives the desired equality. □

We define a Markov chain MT with states T and transition probabilities

pMT (oi, oj) =

⏐⏐{oiv ∈ E(G) | v ∈ Γ .oj}
⏐⏐

deg(oi)
.

ote that MT is just the projection of the random walk on G onto {Γ .o1, . . . , Γ .ot}.
With slight abuse of notation, we will also denote the transition matrix by MT . We write p̃ for

he degree-biased version of the root distribution p, that is

p̃(oi) =
deg(oi)

∆
· p(oi).

Here ∆ = Ep[deg(oi)] is the expected degree of a root picked with distribution p. Lemma 10
hows that p̃ is a reversible stationary distribution for MT .
List the eigenvalues of MT in decreasing order, 1 = λ1 ≥ λ2 ≥ · · · ≥ λt . We say MT is bipartite if

t = −1. MT is bipartite if and only if we can partition T into two sets T1 and T2 such that whenever
i, oj ∈ T1 or oi, oj ∈ T2, we have pMT (oi, oj) = 0. We set ρT = max({0} ∪ {|λi| | 1 < i ≤ t and λi >
1}).
We will have to treat the bipartite and non-bipartite case separately. When MT is not bipartite,

we have ρT = 0 when t = 1 and ρT = max{λ2, |λt |} when t ≥ 2. The following is an immediate
consequence of the Convergence Theorem for finite-state Markov chains.

Lemma 11. Assume MT is not bipartite. Let eoi ∈ RT denote the characteristic vector of oi ∈ T . Then
for any v ∈ RT , there exists a C > 0 such that for any i ∈ [t] and k ∈ N we have

|⟨Mke , v⟩ − ⟨̃p, v⟩| ≤ Cρk.
T oi T

6
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When MT is bipartite, the spectrum is symmetric, i.e. λi = −λt−i+1 for all i ∈ {1, . . . , t}. In
particular, λt−1 = −λ2, so ρT = λ2 whenever t ≥ 3. (When t = 2 we have ρT = 0.) The reversibility
of MT ensures p̃(T1) = p̃(T2) = 1/2, and M2

T defines two disjoint Markov chains on T1 and T2
with stationary measures 2̃p|T1 and 2̃p|T2 respectively. The eigenvalues of M2

T are the squares of
the eigenvalues of MT , in particular they are non-negative, so M2

T is not bipartite on either T1 or T2.
Also the second largest eigenvalue in absolute value of M2

T (on both T1 and T2) is ρ2
T .

2.6. Graphings

Graphings play an essential role in obtaining invariant random structures on graphs as they
represent a space where both the probability measure and the underlying (possibly random) count-
able graph are present. Their use in constructing factor-of-iid perfect matchings is well-established
in [7,8]. For a more detailed introduction, see for example [18, Chapter 18].

Definition 12. Let (X, ν) be a Borel probability space. A (bounded-degree) graphing is a graph G
with V (G) = X and Borel edge set E(G), in which all degrees are at most D ∈ N, and∫

A
degB(x) dν(x) =

∫
B
degA(x) dν(x) (2.1)

for all measurable sets A, B ⊆ X , where degS(x) is the number of edges from x ∈ X to S ⊆ X .

We will now define what we mean by E(G) being Borel. The reason we do it in a slightly
convoluted way is because in this paper it will be more convenient to use E(G) to denote the set
of edges, and not think about it as a symmetric subset of X × X . The present downside to this is
that defining the Borel structure and the edge measure can be done most naturally inside X × X .
For this reason let Ẽ(G) denote the symmetric subset of X × X corresponding to the edges of G:

Ẽ(G) = {(x, y) ∈ X × X | xy ∈ E(G)}.

We say E(G) is a Borel edge set if Ẽ(G) ⊆ X × X is Borel. Then E(G) itself has a Borel σ -algebra
corresponding to the sub-σ -algebra of symmetric Borel subsets of Ẽ(G).

Moreover, the measure ν of a graphing G gives rise to a measure νẼ on X × X by defining

νẼ(A × B) =
1
2

∫
A
degB(x) dν(x)

for any measurable A, B ⊂ X . The measure νẼ is concentrated on Ẽ(G).
We then define the edge measure νE on E(G) by setting νE(F ) = νẼ(F̃ ) for measurable subsets

⊆ E(G). (F̃ is defined analogously to Ẽ(G).) Essentially we are restricting νẼ as defined above to
he symmetric Borel subsets of Ẽ(G). The factor 1/2 is introduced so that the appropriate version
of the usual edge double counting identity 2|E(G)| =

∑
v∈V (G) deg(v) for finite graphs also holds for

graphings:

2νE
(
E(G)

)
=

∫
X
deg(x) dν(x).

Example 13. Given a finitely generated group Γ = ⟨S⟩ and a p.m.p. action Γ ↷ (X, ν), the Schreier
graph Sch(Γ ↷ X, S) is a graphing (after forgetting the orientation and S-labeling). The action being
p.m.p. implies that the degree condition (2.1) holds.

2.7. Connection to Bernoulli graphings

We now introduce Bernoulli graphings, which are closely related to factors of iid.
For a unimodular quasi-transitive graph G, we define its Bernoulli graphing G as follows. The

vertex set of G is Ω , the space of [0, 1]-decorated, rooted, connected graphs with degree bound
D (up to rooted isomorphism). Elements of V (G) = Ω are of the form (H, u, ω), where (H, u) is a
7
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T

connected, bounded-degree rooted graph, and ω : V (H) → [0, 1] is a labeling. We connect (H, u, ω)
ith (H ′, u′, ω′) if and only if we can obtain (H ′, u′, ω′) from (H, u, ω) by moving the root u to one

of its neighbors. We denote the resulting measurable edge set by E .
It remains to define the probability measure on Ω . (Note that the vertex and edge sets are

the same for every G, only the measure will be different.) G is quasi-transitive, so it has finitely
many possible rooted versions, namely the (G, oi) for oi ∈ {o1, . . . , ot}. Let us pick a random root o,
choosing each oi with probability p(oi). We also pick a random labeling ω ∈ [0, 1]V (G) according to
uV (G). Recall that u stands for the uniform measure on [0, 1]. The triple (G, o, ω), considered up to
rooted isomorphism, is a random element of Ω , let νG denote its distribution. The Bernoulli graphing
of G is G = (Ω, E, νG). G satisfies (2.1) because G is unimodular.

Given a unimodular quasi-transitive graph G, constructing an Aut(G)-factor of iid almost surely
balanced orientation (Schreier decoration) of G is equivalent to constructing a measurable almost
everywhere balanced orientation (Schreier decoration) of the Bernoulli graphing G built on G. Here,
measurability means that the oriented edges (and the color classes) form νẼ-measurable subsets of
Ω × Ω .

Also note that a measurable Schreier decoration of any graphing G defines a p.m.p. action
Fd ↷ V (G) that generates the graphing as in Example 13.

Therefore, an equivalent formulation of our main motivating question is the following: given
a (quasi-transitive unimodular) 2d-regular graph G, is the Bernoulli graphing G generated by a
p.m.p. action of Fd? The answer is no for the bi-infinite line, and one can also construct 2d-regular
counterexamples for every d, see [3]. However, as far as the authors are aware, all such known
counterexamples are 2-ended. Some cases when the answer is positive are also established in [3].

It would of course be even better to answer this question for all unimodular random rooted
graphs.

2.8. Perfect matchings in expanding graphings

Finding measurable perfect matchings in non-hyperfinite graphings is usually achieved through
expansion properties. (There are important results in the hyperfinite case as well, see e.g. [19],
announced a few months after the first version of the current paper was made available online.
Results in the hyperfinite world however tend to use a rather different set of tools.)

We will use the following two results, both based on the argument of Lyons and Nazarov in [7].

Theorem 14 (Lyons-Nazarov, [7]). Let G = (X, E, ν) be a graphing with no odd cycles. Assume it has
vertex expansion at least c > 1. That is, for any A ⊂ X such that 0 < ν(A) ≤ 1/2, we have

ν(NG(A))
ν(A)

≥ c.

Then G has a Borel matching that covers all vertices up to a nullset.

Note that G having no odd cycles in the previous theorem means that each connected component
is bipartite, but G itself might not have ameasurable bipartition of its vertex set. If such a measurable
bipartition exists, we say G is measurably bipartite. In fact we will also need a variation of the above
for measurably bipartite graphings, because in that case the expansion assumption in Theorem 14
cannot hold. (A measure 1/2 subset of the larger side of the bipartition violates the inequality.)

Theorem 15 (Lyons-Nazarov, Theorem 9.1 in [20]). Let ε > 0. Let G = (X1, X2, E, ν) be a measurably
bipartite graphing with ν(X1) = ν(X2). Assume it has bipartite vertex-expansion at least 1 + ε. That is,
for any A ⊆ X1 and B ⊆ X2, we have

ν(NG(A)) ≥ min
{
(1 + ε)ν(A),

1
4

+ ε

}
and ν(NG(B)) ≥ min

{
(1 + ε)ν(B),

1
4

+ ε

}
.

hen G has a Borel matching that covers all vertices up to a nullset.
8
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3. Spectral gap for non-amenable quasi-transitive graphs

In this section we prove our spectral theoretic result, Theorem 2.
For a graphing G on (X, ν), we denote by νst the degree-biased version of ν, that is

νst(A) =

∫
x∈A

deg(x)dν
/∫

x∈X
deg(x)dν.

As the notation suggests, νst is stationary with respect to the Markov operator M of G that is
efined by

(Mf )(G, o, ω) =
1

degG(o)

∑
ov∈E

f (G, v, ω).

M is a self-adjoint operator on L2(Ω, νst). To get a bound on the spectral radius of M (on the
ppropriate subspace), we will use the following lemma.

emma 16 (Lemma 2.4 of [10]). For a bounded self-adjoint operator T on a Hilbert space H and for any
panning subset H of H, we have

ρ(T ) = ∥T∥ = sup
v∈H

(
lim sup
k→∞

⏐⏐⏐⏐ ⟨v, T kv⟩

⟨v, v⟩

⏐⏐⏐⏐1/k
)

.

The following two theorems deal with the non-bipartite and bipartite case separately. Recall
hat we denote the Markov operator of G on ℓ2(G,mst) by M , where mst denotes the degree-biased
ersion of the counting measure on V (G). As G is non-amenable we have ρ = ∥M∥ < 1. Recall also

that ρT = max({0} ∪ {|λi| | 1 < i ≤ t and λi > −1}) is defined through the finite state Markov
chain MT , and ρT < 1.

Theorem 17. Let G be as in Theorem 2, and assume also that MT is not bipartite. Let L20(Ω, νst) denote
he orthogonal complement of the subspace of constant functions. Then the spectral radius of M on
2
0(Ω, νst) is at most max{ρ, ρT } < 1.

Theorem 18. Let G be as in Theorem 2, and assume that MT is bipartite. Let ρ < 1 denote the
pectral radius of G on ℓ2(G,mst). The Bernoulli graphing G is measurably bipartite, with bipartition
1 ∪ X2 = V (G). Let L200(Ω, νst) denote the orthogonal complement of the subspace generated by the
unctions 1X and 1X1 − 1X2 . Then the spectral radius of M on L200(Ω, νst) is at most max{ρ, ρT } < 1.

Proof of Theorem 2. The content of Theorem 2 is exactly Theorems 17 and 18. □

We first prove Theorem 17 and then use it to prove Theorem 18.

Proof of Theorem 17. As before, let pk(o, y) denote the probability that the random walk on G
tarting at o arrives at y after k steps. We have lim supk→∞

(
pk(o, y)

)1/k
= ρ, so for every ε > 0

here exists some C0(o, y, ε) ∈ R such that pk(o, y) ≤ C0(o, y, ε)(ρ + ε)k for all k.
During this proof, we will write µ for uV (G). We will use Lemma 16 in the following setting. Let
⊆ L20(Ω, νst) be the set of functions f such that

• f has zero mean, i.e.∫
(G,o,ω)∈Ω

f (G, o, ω) dνst =

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω) dµ = 0;

• f has norm 1, i.e.∫
f 2(G, o, ω) dνst =

t∑
p̃(oi)

∫
V (G)

f 2(G, oi, ω) dµ = 1;

(G,o,ω)∈Ω i=1 ω∈[0,1]

9
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• there exists some r ≥ 0 such that if we change labels of vertices further than r from the root
then the value of f does not change.

The set H is a spanning subset of L20(Ω, νst). (Note that a measurable function f : Ω → R
efines an R-valued factor of iid on any graph G. Indeed, for ω ∈ [0, 1]V (G) one defines

(
Φ(ω)

)
(v) =

f (G, v, ω).) This is equivalent to saying that any factor of iid process is a limit of block factors;
see [1].

Let us fix an element f ∈ H . Then

⟨Mkf , f ⟩ =

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)

∑
y∈Bk(oi)

pk(oi, y)f (G, oi, ω)f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∑

y∈Bk(oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ.

We split the sum depending on the distance between oi and y:

⟨Mkf , f ⟩ =

t∑
i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ (3.1)

+

t∑
i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ. (3.2)

If the distance between oi and y is bigger than 2r then (by the third property of f ) the
alues f (G, oi, ω) and f (G, y, ω) depend on labels at disjoint sets of vertices. Since those labels are
ndependent, we have∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ =

∫
ω∈[0,1]V (G)

f (G, oi, ω)dµ
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ.

herefore the first term, (3.1) is
t∑

i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈V (G)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

−

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ (3.3)

−

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ. (3.4)
10
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Along the calculation, we used that
∫

ω∈[0,1]V (G) f (G, y, ω) dµ only depends on the orbit that y is
n. Then we grouped all the y ∈ Γ .oj together, and used the fact that∑

y∈Γ .oj

pk(oi, y) = pMT
k (oi, oj).

Indeed, the probability of the random walk on G started from oi ending up at some y ∈ Γ .oj after
steps is the same as the probability of the finite Markov chain MT , starting from oi ending up in

oj after k steps.
We now use that from any initial state, the finite Markov chain converges to the stationary

distribution. That is, we use Lemma 11, with the vector

v : oj ↦→

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ.

e get that there exists some C1 ∈ R such that⏐⏐⏐⏐⏐⏐
t∑

j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ −

t∑
j=1

p̃(oj)
∫

ω∈[0,1]V (G)
f (G, oj, ω) dµ

⏐⏐⏐⏐⏐⏐ ≤ C1ρ
k
T .

ote that C1 might depend on f , but not on k. The first property of f says the second term in the
bsolute value is 0, so we have⏐⏐⏐⏐⏐⏐

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐ ≤ C1ρ
k
T .

e use this to bound the term (3.3):⏐⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐
≤

t∑
i=1

p̃(oi)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐
≤

t∑
i=1

p̃(oi)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

⏐⏐⏐⏐ C1ρ
k
T = C2ρ

k
T .

To recap, we had ⟨Mkf , f ⟩ = (3.1) + (3.2) = (3.3) − (3.4) + (3.2). We have already bounded
he absolute value of (3.3), so we now bound the absolute values of (3.2) and (3.4). These terms,
owever, correspond to cases where the random walk on G arrives close to the starting point after
steps. As G is non-amenable, the probability of this happening decays exponentially in k.
Formally, let us recall that pk(oi, y) ≤ C0(oi, y, ε)(ρ + ε)k. We write

⏐⏐(3.2)⏐⏐ =

⏐⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

⏐⏐⏐⏐⏐⏐
≤ (ρ + ε)k

t∑
i=1

p̃(oi)
∑

y∈B2r (oi)

C0(oi, y, ε)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

⏐⏐⏐⏐  
C3

,

11
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⏐⏐(3.4)⏐⏐ =

⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ
⏐⏐⏐⏐⏐

≤ (ρ + ε)k
t∑

i=1

p̃(oi)
∑

y∈B2r (oi)

C0(oi, y, ε)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ
⏐⏐⏐⏐  

C4

.

Note that the constants C3 and C4 depend on f , but not on k. We now combine our bounds and
et

lim sup
k→∞

⏐⏐⟨Mkf , f ⟩
⏐⏐1/k ≤ lim sup

k→∞

(
C2ρ

k
T + (C3 + C4)(ρ + ε)k

)1/k
= lim

k→∞

(
C2ρ

k
T + (C3 + C4)(ρ + ε)k

)1/k
= max(ρT , ρ + ε).

This holds for any ε > 0, so we have lim supk→∞

⏐⏐⟨Mkf , f ⟩
⏐⏐1/k ≤ max(ρT , ρ). By Lemma 16, we

now have ∥M|L20(Ω,νst)∥ ≤ max(ρT , ρ), which completes the proof. □

Proof of Theorem 18. Note that by bipartiteness, the subspaces 1⊥

X1
and 1⊥

X2
of L2(Ω) are invariant

under the action of M2, so M2 is well-defined as an operator on S1 = {f ∈ L200(Ω, νst) : f |X2≡ 0}
and on S2 = {f ∈ L200(Ω, νst) : f |X1≡ 0}. Moreover, L200(Ω, νst) can be written as the internal direct
um

L200(Ω, νst) = S1 ⊕ S2,

o the spectrum of M2
|L200(Ω,νst) satisfies

σ

(
M2

|L200(Ω,νst)

)
= σ

(
M2

|S1

)
∪ σ

(
M2

|S2

)
.

M2
T restricted to T1 or T2 is not bipartite, so the proof of Theorem 17, applied to M2 on S1 and

n S2, yields that the two spectral radii are both at most max(ρ2, ρ2
T ).

Finally, we have σ (M2
|L200

) = {λ2
| λ ∈ σ (ML200

)}, which completes the proof. □

. Perfect matchings in quasi-transitive graphs

In this section we prove Corollary 3. The hard work was done in Section 3 to establish our
pectral-theoretic results, here we can mostly follow the proof of Lyons and Nazarov. In order
o prove their main result, they obtain the necessary expansion properties from the spectral gap
hrough [7, Lemma 2.3]. We recall this as Lemma 19 below. We also need to complement it with a
easurably bipartite version, proved very similarly, which will be Lemma 20.

emma 19 ([7], Lemma 2.3). Let G = (X, E, ν) be a graphing, and let ρG = ρ

(
M|L20(X,νst)

)
. Let

⊆ X be a measurable subset, and let b = νst(B)/νst(X) denote the degree-biased density of B in
. Let b′

= νst(N(B))/νst(X) denote the degree-biased density of the neighbors of B in X. Then

b′
≥

1
ρ2
G(1 − b) + b

· b.

Lemma 20. Let G = (X1, X2, E, ν) be a measurably bipartite graphing, and let ρG = ρ

(
M|L200(X,νst)

)
.

et B ⊆ X1 be a measurable subset, and let b = νst(B)/νst(X1) denote the degree-biased density of B in
X1. Let b′

= νst(N(B))/νst(X2) denote the degree-biased density of the neighbors of B in X2. Then

b′
≥

1
2 · b.
ρG(1 − b) + b
12
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The same holds for measurable subsets B ⊆ X2.

roof, following Lemma 2.3 in [7]. First we note that by the graphing condition (2.1), we must
ave νst(X1) = νst(X2) =

1
2 :

νst(X1) =

∫
X1

deg(x)dν∫
X deg(x)dν

=

∫
X1

degX2 (x)dν∫
X deg(x)dν

=

∫
X2

degX1 (x)dν∫
X deg(x)dν

=

∫
X2

deg(x)dν∫
X deg(x)dν

= νst(X2).

Since M1B is constant 0 on the complement of B′
= N(B), we have

νst(B) = ⟨1B, 1⟩ = ⟨1B,M1⟩ = ⟨M1B, 1⟩ = ⟨M1B, 1B′⟩.

Consequently,

νst(B)2 = ⟨M1B, 1B′⟩
2

≤ ∥M1B∥
2
· ∥1B′∥

2
= ∥M1B∥

2
· νst(B′) = ∥M1B∥

2
·
b′

2
. (4.1)

We split 1B as follows: 1B = b1X1 + fB, where fB = 1B − b1X1 = (1 − b)1B + (−b)1X1\B. Notice
that fB ⊥ 1 and fB ⊥ 1X1 − 1X2 , therefore ∥MfB∥ ≤ ρG · ∥fB∥. Moreover,

∥fB∥2
= (1 − b)2 · νst(B) + b2 · νst(X1 \ B) = (1 − b)2 ·

b
2

+ b2 ·
1 − b
2

=
b(1 − b)

2
.

Now M1B = b·M1X1 +MfB = b1X2 +MfB. Again, 1X2 ⊥ MfB because ⟨1X2 ,MfB⟩ = ⟨M1X2 , fB⟩ =

⟨1X1 , fB⟩ = 0. Hence,

∥M1B∥
2

= b2∥1X2∥
2
+ ∥MfB∥2

≤ b2 · ν(X2) + ρ2
G · ∥fB∥2

=
1
2

(
b2 + ρ2

Gb(1 − b)
)
. (4.2)

Putting (4.1) and (4.2) together, we get

b′
≥

2νst(B)2

∥M1B∥
2 =

b2

2∥M1B∥
2 ≥

b2

b2 + ρ2
Gb(1 − b)

=
1

ρ2
G(1 − b) + b

· b. □

roof of Corollary 3. Let MT denote the finite state Markov chain defined by the quasi-transitive
graph G described in Section 2.5. If MT is not bipartite, we have spectral gap on L20(V (G), ν) by
Theorem 17, which implies vertex expansion by Lemma 19, and Theorem 14 provides the perfect
matching. If MT is bipartite, the Bernoulli graphing G is measurably bipartite and has spectral gap
by Theorem 18. This implies bipartite expansion by Lemma 20. The bipartite expansion implies the
existence of a perfect matching by Theorem 15.

Note that we use the regularity of G, as it implies that the probability measures ν (used in
Theorems 14 and 15) and νst (used in Lemmas 19 and 20) coincide. □

Remark 21. Abért, Csóka, Lippner and Terpai show in [8] that any infinite transitive graph has
a perfect matching. The following example shows that this is not true for quasi-transitive graphs.
Therefore if we want to extend the result of Lyons and Nazarov on factor-of-iid perfect matchings
beyond transitive graphs, assuming G to be bipartite is necessary.

Let G be any unimodular transitive non-amenable 2d-regular graph, e.g. the tree T2d. Let us now
ttach two pendant K−

2d+5 (the complete graph minus an edge) to every vertex of G so that the
esulting graph G̃ is 2d + 4-regular and has three orbits. G̃ is quasi-isometric to G, and so it is non-
menable. To see that it is unimodular as well, we refer to [21], where it is shown that performing
ertain local changes preserves unimodularity. Every vertex v in G̃ corresponding to an original
ertex in G is now a cut vertex, and at least two of the components left in G̃ when v is removed
re finite and having odd order. G̃ has therefore no perfect matching at all, let alone a factor-of-iid
ne.

. Balanced orientations

In this subsection, we prove Theorem 1. We will use an auxiliary bipartite graph G∗ whose

perfect matchings correspond to balanced orientations of our graph G. This connection is implicit

13
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in Schrijver’s paper about counting Eulerian orientations [5]. The first explicit constructions of pairs
of graphs in which a balanced orientation of one is a perfect matching of the other were given
by Mihail and Winkler [6]. The auxiliary graph G∗ is constructed from G by local transformations,
hich makes sure that it is quasi-isometric to G.

efinition 22. Let G be a simple graph in which every vertex has an even degree. Then we define
simple graph G∗ as follows (see also Fig. 1). G∗ has a vertex for every edge e ∈ E(G) and deg(v)/2
ertices for every vertex v ∈ V (G), i.e.

V (G∗) = {xe : e ∈ E(G)} ∪ {vi : v ∈ V (G), i ∈ [deg(v)/2]}.

hen every vertex corresponding to a former edge is joined to all copies of its former endpoints.

E(G∗) = {xuvvi : uv ∈ E(G), i ∈ [deg(v)/2]}.

The vertices xe ∈ V (G∗) are called edge-type vertices of G∗, and vi ∈ V (G∗) are called vertex-type
ertices. Any perfect matching M in G∗ then defines a balanced orientation of G by orienting an edge
∈ E(G) towards its endpoint v if and only if xe and vi are matched by M for some i ∈ [deg(v)/2].
We now introduce the same construction starting from a graphing G. Recall that for a graphing

G, ν) we denote by νE the edge measure on E(G).

efinition 23. Let (G, ν) be a graphing with finite average degree deg = 2νE(E(G)) < ∞ in which
almost every vertex has even degree. Then we define the measurably bipartite auxiliary graphing
(G∗, ν∗) as follows.

• V (G∗) = X1 ∪X2, where X1 = E(G) and X2 =
⋃

∞

i=1 Yi ×{i}, where Yi = {x ∈ V (G) | deg(x) ≥ 2i}.
Let us denote by π : X2 → V (G) the projection onto the first coordinate.

• The measure ν∗ is defined by

ν∗
|X1=

1
2νE
(
E(G)

)νE, ν∗
|Yi×{i}=

1
2νE
(
E(G)

)ν|Yi .

• For e ∈ X1, x ∈ X2 there is an edge ex ∈ E(G∗) connecting them if and only if π (x) ∈ e.

To check that G∗ is indeed a graphing, we compute for any A ⊆ X1 and B ⊆ X2 that∫
B
degA(v)dν

∗(v) =

∫
V (G)

⏐⏐π−1(v) ∩ B
⏐⏐ · ⏐⏐{a ∈ A | v is incident to a}

⏐⏐ dν(v)∫
V (G) deg(u)dν(u)

=

∫
A |π−1(u) ∩ B| + |π−1(v) ∩ B|dνE(uv)

2νE(E(G))
=

∫
A
degB(e)dν

∗(e).

As in the discrete case, a measurable matching M ⊆ E(G∗) defines a measurable balanced
orientation of G by orienting an edge e ∈ E(G) towards its endpoint v if e and (v, i) are matched by

for some i ∈ [deg(v)/2].
We now go on to relate expansion properties of G to those of G∗. Let us define the Cheeger

onstant of G as

Φst = inf

{∫
S degNG (S)\S(u)dν(u)

νst(S)

⏐⏐⏐ 0 < νst(S) ≤
1
2

}
.

Note that in this degree-biased version, we may have Φst > 0 even when the set of isolated vertices
has positive ν-measure.

Lemma 24. Let (G, ν) be a graphing with bounded average degree deg < ∞ and Cheeger constant
st(G) > 0. Then (G∗, ν∗) has bipartite expansion, that is, there is an ε > 0 such that for any A ⊆ X1

and B ⊆ X2, we have

ν∗
(
NG∗ (A)

)
≥ min

{
(1 + ε) ν∗(A),

1
+ ε

}
and
4
14
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ν∗
(
NG∗ (B)

)
≥ min

{
(1 + ε) ν∗(B),

1
4

+ ε

}
.

n particular, ε = min
{

3
20 ,

Φst(G)
4deg

}
satisfies this.

roof. First, we observe that for B ⊆ X2 we have

ν∗(B) ≤
1

2νE
(
E(G)

) ∫
π (B)

deg(v)
2

dν(v) =
1
2
νst(π (B)).

or ease of notation we will write B′
= NG∗ (B), A′

= NG∗ (A), and E = E(G). The set B′ consists
exactly of those edges of G that have at least one vertex in π (B). Consequently,

ν∗(B′) =
1

2νE(E)
νE(B′) =

1
2

∫
π (B) deg(u)dν(u) +

1
2

∫
π (B)′\π (B) degπ (B)(u)dν(u)

2νE(E)

≥

1
2

∫
π (B) deg(u)dν(u)∫

V (G) deg(v)dν(v)
+

Φst min {νst(π (B)), 1 − νst(π (B))}

2deg⎧⎨⎩≥ ν∗(B) +
Φst
deg

·
νst(π (B))

2 ≥

(
1 +

Φst
deg

)
ν∗(B) if νst(π (B)) ≤

1
2

=
1
2νst(π (B)) +

Φst(1−νst(π (B)))
2deg

≥
1
4 +

Φst
4deg

if νst(π (B)) ≥
1
2 ,

here π (B)′ = NG
(
π (B)

)
.

Second, let us consider A ⊆ X1. In this case, A′ is all possible lifts of the vertices induced by A
in G. That is, if S ⊆ V (G) is the set of vertices that are incident to at least one edge from A, then
A′

= π−1(S). Thus

ν∗(A′) =
1∫

V (G) deg(v)dν(v)

∫
S
|π−1(u)|dν(u) =

1
2νE(E)

∫
S

1
2
deg(u)dν(u)

≥
1

2νE(E)

(
1
2

∫
S
degS(u)dν(u) +

1
2
Φst min {νst(S), 1 − νst(S)}

)
⎧⎪⎨⎪⎩

≥
1
2
∫
S degS (u)dν(u)

2νE (E)

(
1 +

Φst
deg

)
≥ ν∗(A)

(
1 +

Φst
deg

)
if νst(S) ≤

1
2

≥
1
2
∫
S degS (u)dν(u)

2νE (E)

(
1 +

Φst(1−νst(S))∫
S deg(u)dν(u)

)
≥ ν∗(A)

(
1 +

Φst
deg

·
1−νst(S)
νst(S)

)
if νst(S) ≥

1
2 .

e hence have that ν∗(A′) ≥

(
1 +

Φst
4deg

)
ν∗(A) for all A ⊆ X1 such that νst(S) ≤

4
5 . Moreover,

∗(A′) =
1
2νst(S), which means that νst(A′) ≥

1
4 +

3
20 whenever A ⊆ X1 is such that νst(S) ≥

4
5 . □

roof of Theorem 1. We aim to find a factor-of-iid balanced orientation of the quasi-transitive
raph G, that is we aim to find a measurable balanced orientation (up to nullsets) in its Bernoulli
raphing (G, ν).
The spectrum of the Markov operator MG restricted to L20

(
V (G), νst

)
is bounded away from 1

though not necessarily bounded away from −1). This is given for MG with non-bipartite MT by
heorem 17. For MG with bipartite MT , we deduce this by observing that L20 (V (G), νst) can be
ritten as the direct sum L200 (V (G), νst) ⊕ ⟨1X1 − 1X2⟩ and applying Theorem 18.
By a standard argument this spectral gap ‘‘at the top of the spectrum’’ implies that G has positive

heeger constant. See e.g. [22, Proposition 3.3.6] for a formulation and proof for finite graphs
hat generalizes to graphings (with the appropriate vertex- and edge measures). Consequently
y Lemma 24 the auxiliary graphing G∗ has bipartite vertex expansion, which means it has a
easurable perfect matching M by Theorem 15. Then M defines a measurable balanced orientation

f G as described after Definition 23. □
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6. Other decorations

6.1. Schreier decorations of T2d

In this section we prove the four items of Proposition 4.
We start by pointing out that for T2d, there are in fact unique Aut(T2d)-invariant measures µbo

nd µSch on the spaces BalOr(T2d) and Sch(T2d) respectively. The reason is that both the balanced
rientation and Schreier decoration are essentially unique on T2d, meaning that StabAut(T2d)(o) acts

transitively on both BalOr(T2d) and Sch(T2d). Here o denotes an arbitrary root vertex in T2d.
One can construct µbo and µSch by starting at o and defining the balanced orientation or Schreier

decoration on the incident edges uniformly at random. Then continue moving radially outwards
through the vertices of T2d, always extending the structure to the 2d − 1 outwards edges where
it is not yet defined, doing so by choosing uniformly randomly among the possible extensions,
independently at each vertex.

Note that µbo is a factor of µSch, simply by forgetting the colors. In fact, there is an intermediate
object, which we can obtain from µSch by forgetting the order of the last two colors cd−1 and cd.
This gives µSch∗ , the unique invariant measure on Sch∗(Td), the space of Schreier decorations of T2d
with the colors {cd−1, cd} unordered. So the more detailed picture is that µbo is a factor of µSch∗ ,
which is itself a factor of µSch.

Theorem 1 implies that µbo is a factor of iid. For d > 1, one could show that µSch is a factor of
iid if Td had a factor of iid proper edge d-coloring. (However, the existence of such a coloring is an
open question [1].)

Proof of (i). A balanced orientation of T2d gives rise to a decomposition of the edges into infinitely
many edge-disjoint d-regular subtrees, with each subtree having either only incoming or only
outgoing edges at every vertex it covers. Each vertex is covered by exactly two such d-regular
subtrees.

We construct a balanced orientation (and the resulting decomposition) as a factor of iid by
Theorem 1. Furthermore, we can assume that each vertex v still has two independent uniform
random labels lin(v) and lout(v) to be used in each of the two subtrees covering it. Then by using the
assumed factor-of-iid proper edge d-coloring on each subtree, we obtain a Schreier decoration. □

In [1], Lyons presents a partial result towards constructing the unique invariant measure µcol on
proper edge colorings of Td with d colors as a factor-of-iid. He obtains a factor-of-iid proper edge
coloring, but with the last two colors being unordered. This allows us to prove part (ii), which states
that even µSch∗ is a factor of iid.

Proof of (ii). We follow the construction of part (i), and use the factor-of-iid proper edge coloring
with two colors unordered from [1] on the d-regular subtrees. To complete the construction, at
every vertex of the tree, we have to match the colors of the {cd−1, cd}-colored incoming edges to
the two outgoing {cd−1, cd}-colored edges. So each vertex chooses a random bijection between these
incoming and outgoing edges, placing the paired edges in the same color class from {cd−1, cd}. □

Notice that the map forgetting the order of colors from Sch(T2d) to Sch∗(T2d) is a 2-to-1 cover.
In a sense, we are only lacking a coin flip to find a Schreier decoration. However, this is exactly
the kind of randomness that cannot be used when constructing factors of iid — vertices far away
cannot generate a common random value because of correlation decay. In part (iii), we explicitly
show that ‘‘finishing the construction’’ starting from a balanced orientation of T4 is not possible.

Proof of (iii). Take two oriented edges e⃗ and f⃗ of T⃗4 that are the first and the last edge on a path
on which the orientation is alternating. Coloring one of them determines the color of the other in
a Schreier decoration that respects the orientation. If the path consists of an odd number of edges
then e⃗ and f⃗ have to have the same color.

On the other hand, the action of Aut(T⃗4) is edge-transitive, which implies that if we pick e⃗ and f⃗
further and further apart, the correlation between their colors must decay. Hence, there can be no

factor-of-iid Schreier decoration respecting the orientation. □
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Finally we prove part (iv), namely that if µSch is a factor of iid for T2d, then it is a factor of iid
lso for T2d+2i for all i ∈ N.

roof of (iv). Let us first construct two disjoint factor-of-iid perfect matchings on T2d+2 as in [7].
Then after disregarding the edges in these matchings, we are left with infinitely many copies of T2d,
in which we can find, by assumption, a factor-of-iid Schreier decoration with colors c1, . . . , cd. Let us
now in the tree T2d+2 disregard the edges colored with c1, so that we again are left with infinitely
many T2d-s. We delete the {c2, . . . , cd}, orientation, and matching decorations in these trees, and
construct on them, anew, a Schreier decoration with colors {c2, . . . , cd+1}. Together with the edges
decorated with c1, this gives a Schreier decoration of the tree T2d+2. □

6.2. A connection to measured group theory

Part (ii) of Proposition 4 also has the following interpretation.
The 2d-regular tree is the Cayley graph of Fd, the free group on d generators, but also of the

group (Z/2Z)∗2d, the 2d-fold free product of (Z/2Z) with itself. A Schreier decoration corresponds
to an action of Fd, while a proper edge coloring corresponds to an action (Z/2Z)∗2d.

Let Γ = (Z/2Z)∗2d. Consider the Bernoulli shift Fd ↷
(
[0, 1]Fd , uFd

)
, and similarly Γ ↷(

[0, 1]Γ , uΓ
)
. Let S and T denote the standard generating sets of F2 and Γ respectively.

One can ask whether the two Bernoulli shifts are equivalent in the strong sense that there exists a
measure-preserving bijection Φ : [0, 1]Fd → [0, 1]Γ such that (on a subset of measure 1) whenever
s.ω = ω′ for ω, ω′

∈ [0, 1]Fd , and s ∈ S, then there is some t ∈ T such that t.Φ(ω) = Φ(ω′). (Note
that this is much stronger than Orbit Equivalence, we require t to be from the finite generating set
T . We require that the distances defined by the word length on the orbits are preserved.)

As far as the authors are aware, this question is open. The existence of such Φ would imply
that Fd has a p.m.p. action on [0, 1]Γ that defines the same distance on orbits as Γ and vice versa.
So disproving the equivalence could be achieved by showing that one of these actions does not
exist. This is a fruitful approach when considering the same problem for groups with Cayley graphs
isomorphic to the square lattice.

The results of [1] and part (ii) of Proposition 4 respectively say that Γ acts on a 2-cover of
[0, 1]Fd defining the same distance on orbits, and Fd acts on a 2-cover of [0, 1]Γ and defines the
same distance on orbits.

6.3. Decorations of G∗

In this subsection, we further study the connection between balanced orientations of G and
perfect matchings of the auxiliary graph G∗.

We will first finish proving the equivalence of a balanced orientation of Gwith a perfect matching
on G∗ started in Section 5, and then use the perfect matching to construct Schreier decorations and
proper edge colorings of G∗.

Lemma 25. Let G be a simple graph with all degrees even. There is a (finitary) Aut(G)-factor of iid
balanced orientation of G if and only if there is a (finitary) Aut(G∗)-factor of iid perfect matching.

Proof. Suppose G∗ has a factor-of-iid perfect matching. Given random labels on V (G), we can
deterministically produce labels on V (G∗) as we will describe below. We use the factor-of-iid perfect
matching to deterministically compute matching M in G∗, which again deterministically defines a
balanced orientation of G. As all the steps are Aut(G)-equivariant, their composition is a factor-of-iid
balanced orientation of G.

By decomposing our original labels, we can assume that we have 3
2 deg(v) independent random

labels at each v ∈ V (G) at the beginning. We make each v give one of these labels to all the vi as
well as all xe for edges e incident to v. Then each xe takes the two labels it got from its endpoints and
composes them to get a label. This way each vertex of V (G∗) obtains a label. The joint distribution
of these labels is uniform iid, which completes the construction in this direction.
17
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On the other hand, suppose G has a factor-of-iid balanced orientation. Without loss of generality,
e will assume that G is connected. If G ̸= P and G ̸= Ck, then any y ∈ V (G∗) can determine

whether it is of edge-type or vertex-type. Also, if y is of vertex-type (say y = vi), it can identify
ll other vertices of G∗ that correspond to the same vertex of G as y (all vertices of the form vj,
∈ [deg(v)/2]). If the vj, j ∈ [deg(v)/2] compose their labels to get a label l(v) for each v ∈ V (G),
hen any y ∈ V (G∗) of vertex-type can simulate the factor-of-iid balanced orientation on ‘‘its
eighborhood in G’’. The balanced orientation determines which deg(v)/2 vertices of the form xvu
et matched to the vi. The vi can together choose the matching between {vi | i ∈ [deg(v)/2]} and

{xvu | uv is oriented towards v in G} randomly, yielding a factor-of-iid perfect matching of G∗.
If G = P is the bi-infinite path then G∗

= G and it has neither factor of iid perfect matching
nor balanced orientation. If G = Ck for some k ∈ N then G∗

= C2k, and so there is both a balanced
orientation on G and a perfect matching on G∗. □

emark 26. From a more algebraic point of view, in the proof above, we use the fact that Aut(G)
acts on [0, 1]V (G∗). There is a natural embedding ϕ : Aut(G) → Aut(G∗), which in turn defines the
translation action of Aut(G) on [0, 1]V (G∗). By decomposing and combining the labels as explained,
we have in fact shown that Aut(G) ↷

(
[0, 1]V (G∗), uV (G∗)

)
is a factor of Aut(G) ↷

(
[0, 1]V (G), uV (G)

)
.

We can then utilize the existence of an Aut(G∗)-factor of iid perfect matching of G∗ and the
correspondence with balanced orientations of G to finish the proof by composing the appropriate
factor maps.

In the other direction, we aim to build a factor map from Aut(G∗) ↷
(
[0, 1]V (G∗), uV (G∗)

)
to

Aut(G∗) ↷
(
PM(G∗), µpm

)
through the factor from Aut(G) ↷

(
[0, 1]V (G), uV (G)

)
to Aut(G) ↷(

BalOr(G), µbo
)
. But in order to do that we have to consider

(
[0, 1]V (G), uV (G)

)
as an Aut(G∗)-space.

This is possible exactly when G has a vertex of degree at least 4, or equivalently when vertices of
G∗ can determine their type. In this case every element of Aut(G∗) is an element of Aut(G) up to
permuting the sets {vi | i ∈ [deg(v)/2]}.

As an immediate corollary, we get factor-of-iid perfect matchings on G∗.

Corollary 27. Let G be a unimodular, quasi-transitive, non-amenable graph with all degrees even. Then
G∗ is a unimodular, quasi-transitive, non-amenable graph that has a factor-of-iid perfect matching.

Proof. Follows from Theorem 1 and Lemma 25. □

Note that even though we obtained the factor-of-iid balanced orientation in Theorem 1 through
perfect matchings, there we used the auxiliary graphing G∗ of the Bernoulli graphing G (of G).
Whereas here we claim that the Bernoulli graphing of the graph G∗ has a measurable balanced
orientation.

We are now also ready to prove Proposition 5. For the reader’s convenience we restate it here.

Proposition 5. For every 2d-regular graph G, the bipartite graph G∗ is also 2d-regular, and the following
are equivalent.

1. G∗ has got a factor-of-iid proper edge 2d-coloring.
2. G∗ has got a factor-of-iid perfect matching.
3. G∗ has got a factor-of-iid Schreier decoration.

Moreover, if any of these is a finitary factor, the others are too.

Even though proving three implications would be enough, we show five to emphasize the
techniques that could be used more widely for other suitable bipartite graphs too.

Proof. Let v be a vertex of G whose neighbors are u1, . . . , u2d. Then for every i ∈
[ deg(v)

2

]
= [d], the

eighbors of v in G∗ are exactly x , . . . , x . Also for any edge uv in G, the neighbors of x in
i vu1 vu2d uv
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G∗ are u1, . . . , ud, v1, . . . , vd, and so G∗ is also 2d-regular. Let us denote by AV the set of vertices of
G∗ that are of vertex-type, and by AE the set of vertices of edge-type.

1 H⇒ 2. Choose one of the 2d color classes to obtain a perfect matching.

3 H⇒ 2. Every finite bipartite 2d-regular graph has a perfect matching and choosing one at
random is a factor-of-iid process, so we can assume G is infinite. P∗

= P does not admit a factor-of-
iid Schreier decoration, so let us suppose that d ≥ 2. Then as in the proof of Lemma 25, every vertex
can determine whether it belongs to AV ⊂ V (G∗) or AE ⊂ V (G∗). To obtain a perfect matching, let
us fix a color c of the decoration and let each x ∈ AV pick the outgoing edge of color c and each
x ∈ AE the incoming edge of color c.

3 H⇒ 1. Suppose the Schreier decoration uses colors c1, . . . , cd and that we want to produce
proper coloring with colors c ′

1, . . . , c
′

2d. Similarly as in the proof of 3 H⇒ 2, let each edge of color
ci going from AE to AV get color c ′

2i and each edge of color ci going from AV to AE the color c ′

2i−1.

2 H⇒ 3. For every v ∈ V (G), the d copies of v in G∗ together with the d vertices they are matched
to induce a Kd,d. Let us note that the collection of these Kd,d-s is vertex-disjoint. Let us randomly
pick a proper edge d-coloring on each of these Kd,d-s and orient all their edges from AE to AV . After
removing the decorated edges, we are again left with a collection of vertex-disjoint Kd,d-s, this time
in each of which one part is formed by v1, . . . , vd for some v ∈ V (G) and the other by the neighbors
f vi, i ∈ [d] that are matched towards some uj where uv ∈ E(G). Each of these Kd,d-s again picks a

proper d-coloring at random, but this time we will orient each edge from AV to AE .

H⇒ 3. Suppose E(G∗) is colored with c1, . . . , c2d. Let every edge of color c1, c3, . . . retain it and
ecome oriented from AE to AV . Then all edges of a color ci, i ∈ [d] will get recolored to ci and get

oriented from AV to AE . □

7. Open questions

Question 28. Is the unique Aut(T2d)-invariant measure µSch on Sch(T2d) a factor of iid?

We believe that this question, which has already been asked in [23] for the case d = 2, is the
most natural and important one at this point. A very similar question asking for any Cayley diagram,
not just of Fd, as a factor of iid on the regular tree was asked by Thornton [4, Problem 4.16]. Our
positive examples of Schreier decorations in [3] so far seem fundamentally different from the tree
in the sense that none of them even have infinite monochromatic paths, which would be automatic
on T2d. This leads us to the following question (also included in [3]).

Question 29. Is there a factor-of-iid Schreier decoration on a unimodular transitive graph that has
infinite monochromatic paths with positive probability?

The Schreier decoration of T ∗

2d obtained from a factor-of-iid perfect matching according to the
2 H⇒ 3 part of Proposition 5 has infinite monochromatic paths, but T ∗

2d is not transitive.
The following is the question discussed in Section 6.2. We encountered it during personal

communication with Matthieu Joseph.

Question 30. Is there a measurable bijection Φ between the Bernoulli shifts of the free group Fd
and the free product (Z/2Z)∗2d that preserves the distance defined by word length on almost all
orbits?

Regarding our spectral result on quasi-transitive unimodular graphs, a natural question is to ask
for an extension to unimodular random graphs.

Question 31. Let (G, o) be an invariantly non-amenable (a.k.a. non-hyperfinite) unimodular random
rooted graph, and let G denote the Bernoulli graphing on (G, o). Does the Markov operator M on G
have spectral gap? Maybe under some stronger assumption of non-amenability?

Addendum. After the first version of this paper was made available online, Abért, Fraczyk, and
Hayes answered Question 31 negatively. They construct a unimodular random rooted graph that is
non-amenable almost surely, but its Bernoulli graphing does not have spectral gap.
19



F. Bencs, A. Hrušková and L.M. Tóth European Journal of Combinatorics 115 (2024) 103784

P
w
g
p

R

Acknowledgments

The authors would like to thank Miklós Abért, Jan Grebík, Matthieu Joseph, Gábor Kun, Gábor
ete, and Václav Rozhoň for inspiring discussions about various parts of this work. The first author
as supported by the NKFIH (National Research, Development and Innovation Office, Hungary)
rant KKP-133921, ‘‘Structure, chaos and simplification’’. The second and third authors were
artially supported by the NKFIH grant KKP-139502, ‘‘Groups and graph limits’’.

eferences

[1] Russell Lyons, Factors of IID on trees, Combin. Probab. Comput. 26 (2) (2017) 285.
[2] László Márton Tóth, Invariant Schreier decorations of unimodular random networks, Ann. Henri Lebesgue 4 (2021)

1705–1726.
[3] Ferenc Bencs, Aranka Hrušková, Lászlo Márton Tóth, Factor of iid Schreier decoration of lattices in Euclidean spaces,

2021, Preprint arXiv:2101.12577.
[4] Riley Thornton, Factor maps for automorphism groups via Cayley diagrams, 2020, arXiv preprint arXiv:2011.14604.
[5] Alexander Schrijver, Bounds on the number of Eulerian orientations, Combinatorica 3 (3–4) (1983) 375–380.
[6] Milena Mihail, Peter Winkler, On the number of Eulerian orientations of a graph, Algorithmica (1996).
[7] Russell Lyons, Fedor Nazarov, Perfect matchings as IID factors on non-amenable groups, European J. Combin. 32 (7)

(2011) 1115–1125.
[8] Endre Csóka, Gábor Lippner, Invariant random perfect matchings in Cayley graphs, Groups, Geom., Dyn. 11 (1) (2017)

211–244.
[9] Riley Thornton, Orienting Borel graphs, Proc. Amer. Math. Soc. 150 (04) (2022) 1779–1793.

[10] Ágnes Backhausz, Balázs Szegedy, Bálint Virág, Ramanujan graphings and correlation decay in local algorithms,
Random Struct. Algorithms 47 (3) (2015) 424–435.

[11] Harry Kesten, Full Banach mean values on countable groups, Math. Scand. (1959) 146–156.
[12] Alkida Balliu, Brandt Sebastian, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, Jukka Suomela, Classi-

fication of distributed binary labeling problems, in: International Symposium on Distributed Computing, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[13] Manuela Fischer, Mohsen Ghaffari, Sublogarithmic distributed algorithms for lovász local lemma, and the
complexity hierarchy, in: 31st International Symposium on Distributed Computing (DISC 2017), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[14] Gábor Kun, Expanders have a spanning Lipschitz subgraph with large girth, 2013, Preprint arXiv:1303.4982.
[15] Anton Bernshteyn, Measurable versions of the Lovász Local Lemma and measurable graph colorings, Adv. Math. 353

(2019) 153–223.
[16] Russell Lyons, Yuval Peres, Probability on Trees and Networks, Vol. 42, Cambridge University Press, 2017.
[17] David Aldous, Russell Lyons, Processes on unimodular random networks, Electron. J. Probab. 12 (2007) 1454–1508.
[18] László Lovász, Large Networks and Graph Limits, Vol. 60, American Mathematical Soc., 2012.
[19] Matthew Bowen, Gábor Kun, Marcin Sabok, Perfect matchings in hyperfinite graphings, 2021, arXiv preprint arXiv:

2106.01988.
[20] Oleg Pikhurko, Borel combinatorics of locally finite graphs, 2020, Preprint arXiv:2009.09113.
[21] Dorottya Beringer, Gábor Pete, Ádám Timár, On percolation critical probabilities and unimodular random graphs,

Electron. J. Probab. 22 (2017) 26.
[22] Emmanuel Kowalski, An Introduction To Expander Graphs, Société Mathématique de France, 2019.
[23] Karen Ball, Factors of independent and identically distributed processes with non-amenable group actions, Ergodic

Theory Dynam. Systems (2005) 711–730.
20

http://refhub.elsevier.com/S0195-6698(23)00101-4/sb1
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb2
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb2
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb2
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2101.12577
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://arxiv.org/abs/2011.14604
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb5
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb6
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb7
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb7
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb7
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb8
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb8
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb8
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb9
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb10
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb10
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb10
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb11
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb12
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb12
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb12
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb12
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb12
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb13
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb13
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb13
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb13
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb13
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://arxiv.org/abs/1303.4982
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb15
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb15
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb15
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb16
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb17
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb18
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2106.01988
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://arxiv.org/abs/2009.09113
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb21
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb21
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb21
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb22
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb23
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb23
http://refhub.elsevier.com/S0195-6698(23)00101-4/sb23

	Factor-of-iid balanced orientation of non-amenable graphs
	Introduction
	Notation and basics
	Graphs
	Amenability
	Schreier graphs
	Factors of iid
	Unimodular quasi-transitive graphs
	Graphings
	Connection to Bernoulli graphings
	Perfect matchings in expanding graphings

	Spectral gap for non-amenable quasi-transitive graphs
	Perfect matchings in quasi-transitive graphs
	Balanced orientations
	Other decorations
	Schreier decorations of T2d
	A connection to measured group theory
	Decorations of G*

	Open questions
	Acknowledgments
	References


