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Abstract: A preponderance of brain–computer interface (BCI) publications proposing artificial neural
networks for motor imagery (MI) electroencephalography (EEG) signal classification utilize one of
the BCI Competition datasets. However, these databases encompass MI EEG data from a limited
number of subjects, typically less than or equal to 10. Furthermore, the algorithms usually include
only bandpass filtering as a means of reducing noise and increasing signal quality. In this study,
we conducted a comparative analysis of five renowned neural networks (Shallow ConvNet, Deep
ConvNet, EEGNet, EEGNet Fusion, and MI-EEGNet) utilizing open-access databases with a larger
subject pool in conjunction with the BCI Competition IV 2a dataset to obtain statistically significant
results. We employed the FASTER algorithm to eliminate artifacts from the EEG as a signal processing
step and explored the potential for transfer learning to enhance classification results on artifact-filtered
data. Our objective was to rank the neural networks; hence, in addition to classification accuracy, we
introduced two supplementary metrics: accuracy improvement from chance level and the effect of
transfer learning. The former is applicable to databases with varying numbers of classes, while the
latter can underscore neural networks with robust generalization capabilities. Our metrics indicated
that researchers should not disregard Shallow ConvNet and Deep ConvNet as they can outperform
later published members of the EEGNet family.

Keywords: BCI; EEG; neural networks; EEGNet

1. Introduction

Artificial neural networks made a seminal contribution to the field of brain–computer
interfaces (BCIs) when Schirrmeister et al. introduced Deep ConvNet and Shallow ConvNet
in 2017 [1] for electroencephalographic (EEG) signal classification. Subsequently, neural
networks have emerged as one of the most prominent topics in BCI literature.

BCIs are integrated systems comprising both software and hardware components.
As delineated by Wolpaw et al. [2], these systems capture bioelectrical signals from the brain,
extract useful information from the EEG–noise mixture, and translate them into computer
commands. EEG is characterized as the fluctuation of postsynaptic membrane potential
of neurons, recorded from the surface of the head. Figure 1 presents the components of a
BCI system.

When a novel system is developed for motor imagery (MI) signal classification, it
is frequently evaluated and contrasted with previously published systems utilizing one
of the BCI Competition databases [3–6]. However, these datasets encompass records
from a limited number of subjects, typically less than or equal to 10. Other open-access
databases contain EEG records from more than 50 subjects but are predominantly avoided
by researchers. One such database is the MI EEG dataset on PhysioNet [7] recorded using
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BCI2000 software [8], which comprises EEG records from 109 subjects. Another database
was recorded using the OpenBMI toolbox [9] and contains data from 52 subjects, each of
whom participated in two experimental days. Additionally, we have recorded our own
dataset, which includes 25 experiments from 9 subjects [10]. Concerning the referenced
literature, 39 instances employ one of the BCI Competition datasets, whereas a mere
6 instances utilize the MI EEG database available on PhysioNet. We presume that databases
with more than 20 experimental days are sufficient for BCI system comparison.

Figure 1. Components of a brain–computer interface system.

In addition to offline comparisons, the Cybathlon competition [11] was established
to assess the reliability of BCI systems operating in real-time, outside of laboratory condi-
tions. Eleven teams successfully participated in the BCI discipline of Cybathlon 2016 [12],
with two teams subsequently publishing their concepts, training protocols, and BCI
systems [13,14]. As a continuation of this competition, the 2019 Cybathlon BCI Series
and the 2020 Cybathlon Global Edition were organized, with multiple teams sharing their
preparations and results [15–20].

Prior to the advent of neural networks, researchers endeavored to investigate and
develop hand-crafted feature extraction methods in conjunction with simple classification
algorithms. Blankertz et al. [21] successfully employed the common spatial patterns (CSP)
algorithm with a linear discriminant analysis (LDA) classifier to control a cursor in one
dimension. Barachant et al. [22] introduced Riemannian geometry for BCI with an LDA
classifier, effectively classifying EEG covariance matrices. Lotte and Guan [23] proposed
a unifying theoretical framework for regularizing the CSP and compared it with 10 other
regularized versions of the CSP algorithm. Another feature extraction algorithm, based
on the CSP, is the filter bank common spatial pattern (FBCSP) with a naïve Bayesian
Parzen window classifier [24], which was compared with the ConvNets [1,25] on the
BCI Competition IV 2a database. The winner of the BCI discipline of the Cybathlon
competitions used the utilized power spectral density of the EEG signals as a feature [13,19]
with a Gaussian classifier.

The introduction of Deep and Shallow ConvNets heralded a new trend in BCI develop-
ment, shifting the focus from hand-crafted features to the creation of neural networks that
not only classify signals but also incorporate the feature extraction step. Lawhern et al. [25]
introduced EEGNet, drawing inspiration from previous neural networks designed for EEG
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signal processing, including MI-based BCIs [1,26–28]. It was demonstrated that EEGNet
performs feature extraction similar to FBCSP. This neural network inspired numerous re-
searchers, resulting in the development of many improved versions of EEGNet, culminating
in the creation of an entire family (Table 1) of neural networks.

Table 1. EEGNet family.

Nerual Network Reference

Shallow ConvNet [1]Deep ConvNet
EEGNet [25]
S-EEGNet [29]
EEGNet Fusion [30]
TCNet Fusion [31]
Sinc-EEGNet [32]
TSGL-EEGNet [33]
MI-EEGNet [34]
Channel-Mixing-ConvNet [35]
AMSI-EEGNet [36]
ATCNet [37]
FFCL [38]
MTFB-CNN [39]
TCACNet [40]
FB-EEGNet [41]
CRGNet [42]

Several publications outside of the EEGNet family have underscored the importance
of research on neural-network-based BCIs. Dokur and Olmez [43] presented a minimum
distance network capable of learning at a faster rate than other deep neural networks.
Fadel et al. explored the classification of image-like EEG data [44,45], while Han et al.
focused on the development of parallel network architecture [46]. Jia et al. introduced a joint
spatial–temporal architecture [47], which was further developed in [48] and successfully
applied to cross-subject classification. Roy demonstrated [49] that classification accuracy
can be further enhanced through the utilization of transfer learning.

Along with the development of neural networks, scientists started investigating the
impact of transfer learning [50]. This methodology aims to transfer knowledge between two
domains and increase classification accuracy. Khademi et al. [51] employed a CNN-LSTM
hybrid model, which was pretrained on the ILSVRC subset of the ImageNet dataset to clas-
sify MI EEG signals. Their objective was to transfer knowledge from image classification
and apply it to spatial EEG images generated using the continuous wavelet transforma-
tion method with a complex Morlet mother wavelet. Another approach is to utilize the
entire EEG dataset and combine cross-subject and within-subject training, as demonstrated
in [49,52,53]. In this case, knowledge is transferred from subjects whose data were not
included in the neural network’s test set. The network is pre-trained on data from all
but one subject, as in a cross-subject training procedure. However, the data of the test
subject is also partitioned into training and test sets, as in within-subject training, and the
training portion is used to fine-tune the pre-trained neural network. We opted for the latter
version of transfer learning because it is architecture-independent and intended to apply it
following artifact filtering.

In this article, all the experiments were conducted on data purified of artifacts because
eye and muscle movement activity can distort the EEG signals [54]. This is attributable
to the fact that the amplitude of electromyographic signals can be orders of magnitude
greater than EEG signals. Furthermore, it has been demonstrated that artifacts can be
successfully utilized for BCI purposes [55]; however, in our view, a genuine BCI should
not rely on artifacts but solely on pure EEG signals. In addition, concerning a prominent
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international BCI competition, the Cybathlon “bionic Olympics” [11], participating BCI
teams are required to implement an online artifact removal algorithm.

To reduce computational time for experiments, we arbitrarily selected Shallow and
Deep ConvNet [1] as predecessors of EEGNet, the EEGNet itself [25], the EEGNet Fu-
sion [30], and the MI-EEGNet [34] from the EEGNet family.

2. Materials and Methods

This section presents the databases and neural networks, along with the experimental
setups and concepts. The code utilized in this study is accessible at: https://github.com/k
olcs/bionic_apps (accessed on 12 June 2023).

2.1. Databases

We present the datasets employed for the EEGNet family comparisons. The databases
were processed in an “independent days” configuration, meaning that if a subject par-
ticipated in an experiment multiple times on different experimental days, the data were
treated as if they had been recorded from distinct subjects. To our knowledge, EEG data
can be significantly influenced by numerous factors, including recording setup, time of day,
and the mental state of subjects, as also demonstrated in [56]. These could all lead to poorer
performance if the data is merged concerning the subjects. It was also demonstrated in [57]
that there is a great difference in cross-experimental day classification. With the indepen-
dent days configuration, we aimed to overcome this problem and extend the number of
subjects to strengthen the results of the statistical analyses, similar to in [58].

2.1.1. Physionet

The open-access PhysioNet database [7] is a valuable repository of numerous phys-
iological datasets, including the EEG Motor Movement/Imagery Dataset, captured by
Schalk et al. [8], using the BCI2000 paradigm control program. For convenience, we will
refer to this specific dataset as the Physionet database. It encompasses four MI EEG signals
obtained from 109 individuals: Left Hand, Right Hand, Both Hands, and Both Legs. The MI
periods have a duration of 4 s and are interspersed with 4-second rest periods. The record-
ings were sampled at 160 Hz over 64 channels, without the use of hardware filters.

Four subjects out of the 109 were excluded from the database prior to the experiments.
For subject 89, the labels were incorrect. In the case of subjects 88, 92, and 100, the timing
was incorrect, with the execution of MI tasks and resting phases lasting 5.125 and 1.375 s,
respectively. Moreover, the sampling frequency was altered from 160 Hz to 128 Hz. Other
publications utilizing the Physionet database [30,52,59] also reported these problems.

2.1.2. Giga

Lee et al. [9] published an EEG dataset that included three paradigms: MI, event-
related potential, and steady-state visually evoked potential. The experimental paradigms
were conducted using the OpenMBI toolbox, custom written in MATLAB. We selected the
files corresponding to the MI EEG paradigm from these three paradigms, which contains
a 2-class classification problem, involving the imagination of Left Hand and Right Hand
movement. The EEG signals were recorded using a 62-channeled BrainAmp amplifier
system with a sampling rate of 1000 Hz. Fifty-four subjects participated in the experiments;
each subject was present on two distinct experimental days. Therefore, in accordance with
our independent days configuration, this dataset contains data from 108 subjects. To reduce
the size of the raw EEG files, we resampled the data to a sampling frequency of 500 Hz.

2.1.3. BCI Competition IV 2a

Tangermann et al. [6] introduced the well-known and widely utilized BCI Competition
IV database, which includes 5 sub-datasets with varying paradigms and challenges. This
popular dataset is employed as a benchmark in the BCI literature to evaluate the developed
methods and algorithms. In this study we utilize only the 2a sub-dataset, an MI dataset with
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Left Hand, Right Hand, Both Feet, and Tongue tasks. The EEG signals were recorded with a
250 Hz sampling frequency on 22 electrodes. The amplifier included a hardware bandpass
filter between 0.5 and 100 Hz, and a notch filter at 50 Hz to remove the powerline noise.

This dataset was recorded with the assistance of 9 experimental subjects and each sub-
ject participated in two different experimental days. Therefore, concerning the independent
days configuration, this dataset contains 18 subjects.

2.1.4. TTK

The TTK database [10], recorded at the Research Centre for Natural Sciences (TTK,
as a Hungarian abbreviation), utilized a 64-channeled ActiChamp amplifier system (Brain
Products GmbH, Gliching, Germany) to capture EEG signals at a sampling frequency of
500 Hz.

The EEG signals were recorded using a custom-built, MATLAB-based, paradigm
leader code, General Offline Paradigm (GoPar), which was presented in the
Supplementary Materials of [60] and is accessible at https://github.com/kolcs/GoPar
(accessed on 12 June 2023). This code, inspired by the paradigm of the Physionet database,
was designed to conduct multiple different MI paradigms with four tasks: Left Hand, Right
Hand, Left Foot, and Right Foot. The paradigm began with an initial task consisting of a
one-minute eye-open session followed by a one-minute eye-closed session, intended to
capture the subjects’ full attention and prepare them for the core part of the experiment
while serving as a baseline. Subsequently, two warmup sessions were conducted in which
two of the four MI tasks were selected and practiced overtly and covertly to guide subjects
on how to execute MI tasks. In total 25 experiments were conducted with 9 subjects. No
hardware or software filters were applied during the EEG recording.

2.2. Signal Processing

Initially, EEG signals were filtered with a 5th-order Butterworth bandpass filter in
the range of 1 to 45 Hz. Subsequently, a customized FASTER algorithm [54], as described
in [60], was employed to eliminate artifacts associated with eye movements or muscle
activity. The first stage involved the removal of EEG channels that exhibited consistent noise
throughout the experiment, as determined by variance, correlation, and Hurst exponent
measures. The second stage involved the exclusion of epochs containing motion artifacts
(e.g., chewing, yawning) based on deviation from channel average, amplitude range,
and variance parameters. In the third stage, eye-related artifacts were removed using
independent component analysis. The fourth stage involved the individual filtering of EEG
channels from epochs that were still considered noisy based on variance, median gradient,
amplitude range, and channel deviation parameters. The fifth stage of the original FASTER
algorithm, which involved the detection of artifacts across subjects, was omitted as our
signal processing algorithm was designed to be subject-specific.

The resulting 4-s epochs were divided into 2-s windows with 0.1-s shifts to increase
the sample size. The signals were then normalized using standard scaling, where the mean
was set to zero and the standard deviation to one. These processed EEG windows were
utilized for training and testing the classifiers of the BCI system.

For within-subject classification, 5-fold cross-validation was performed on a subject-
wise basis, with the database split at the epoch level to ensure that windows originating
from the same epoch were used exclusively in either the training or testing set. Approxi-
mately 10% of the training data was used as a validation set, with the split performed at
the epoch level.

2.3. Neural Networks

This section describes the neural networks utilized in this study, as well as the methods
and modifications employed in relation to the original networks.

https://github.com/kolcs/GoPar
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2.3.1. Callbacks

During the training of the neural networks, a modified early stopping and model-
saving strategy was implemented. The conventional early stopping approach [61] involves
monitoring the validation loss and halting the learning process when it increases to prevent
overfitting of the network. A patience parameter can also be specified to determine the
number of training epochs that should elapse before the monitored value shows improve-
ment. We extended this strategy by introducing an additional patience-like parameter
termed “give up.” This strategy is intended to address training scenarios in which the
validation loss increases above the initial training loss but subsequently decreases as the
neural network begins to learn. The give up parameter specifies the number of training
epochs that should elapse before the validation loss returns to its initial value. If the initial
loss is reached within the give up limit, the original patience value is activated; otherwise,
training is terminated.

Our model-saving strategy was designed to reflect our modified early-stopping ap-
proach. Until the initial validation loss was reached, model weights with the highest
validation accuracy were saved. After reaching the initial validation loss, model weights
were only saved if improvements were observed in both validation loss and validation
accuracy. Prior to testing, the best model weights were restored.

Our experiments were conducted with a maximum of 500 training epochs, a give up
value of 100, and a patience value of 20.

2.3.2. ConvNets

The Deep and Shallow ConvNets were implemented using the source code provided
in [25] which employs several modified parameters relative to those originally published
in [1]. No further modifications were made to the architecture of the networks.

2.3.3. EEGNets

The networks of the EEGNet family, including the EEGNet [25], the EEGNet Fusion [30],
and the MI-EEGNet [34] were modified to enable automatic adaptation to databases with
varying sampling frequencies, rather than requiring manual specification of input param-
eters. In the EEGNet publication [25], the authors explicitly stated that the filter size of
the first convolutional block should be half of the sampling frequency. Accordingly, in our
implementation, the kernel size was calculated based on the sampling frequency of the
input signals, rather than being directly specified. This approach was also applied to
EEGNet Fusion and MI-EEGNet.

2.4. Transfer Learning

In addition to subject-wise learning, we also investigated the effects of transfer learning.
Test subjects were selected as distinct groups of 10, with the remaining subjects designated
as pre-train subjects and used to establish the initial optimal weights for the neural networks.
A validation set was separated from the pre-train data for use with our modified early
stopping and model-saving strategy. Upon convergence of the pretraining phase, either
through reaching the maximum number of training epochs or through early stopping,
the best network weights were stored. For each test subject, 5-fold within-subject cross-
validation was performed as described in the third paragraph of Section 2.2. Prior to each
cross-validation step, the saved model weights were loaded and the selected training set
for the test subject was used as fine-tuning data for the neural networks. During fine-
tuning, validation sets were again employed in conjunction with our early stopping and
model-saving strategies.

2.5. EEGNet Family Comparison

Extensive computational experiments were conducted on each database (Physionet,
Giga, TTK, and BCI Competition IV 2a) to compare the performance of the neural networks
from the EEGNet family (Shallow ConvNet, Deep ConvNet, EEGNet, EEGNet Fusion,
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MI-EEGNet). In cases where a subject participated in multiple experiments on different
days, the data was treated as if it had been collected from multiple subjects, referred to
as the independent days configuration. However, for the BCI Competition IV 2a dataset,
we also conducted experiments in which data from a single subject was combined across
recording dates to facilitate comparison with previous BCI studies. These experiments are
denoted as “merged subject data.”

Both within-subject and transfer learning phases were conducted for each neural
network and database. Cross-validation results were collected and normality tests were
performed to determine the appropriate statistical test (t-test or Wilcoxon) for normally
or non-normally distributed accuracy levels, respectively. The resulting p-values were
adjusted using Bonferroni correction, with a preset significance level of 0.05.

In addition to comparing accuracy levels, we introduced two additional metrics to
rank the performance of the neural networks. These metrics were evaluated on databases
configured for independent days. The first metric measures the improvement in accuracy
achieved by the EEGNet family relative to chance level, which can be applied to databases
with varying numbers of classes. This metric was calculated and averaged for both within-
subject and transfer learning. The second metric assesses the effect of transfer learning
by comparing the results of within-subject classification with those of transfer learning
classification. The difference between the two methods was calculated for each database
configured for independent days.

2.6. Significance Investigation of Databases

To quantitatively evaluate our assumption that databases with more than 20 exper-
imental days are sufficient for BCI system comparison, we investigated the number and
quality of significant differences between databases. For each database configuration,
two values were calculated: the sum of significance levels, as categorized in Table 2, and the
count of significant differences. These values were then correlated with the number of
subjects in each database.

Table 2. Levels of significance tests.

Level p-Value Range

1 10−2 < p <= 5 × 10−2

2 10−3 < p <= 10−2

3 10−4 < p <= 10−3

4 p <= 10−4

3. Results

Upon obtaining five-fold cross-validated accuracy levels for all combinations of the
four databases, five neural networks, and two learning methods (within-subject and transfer
learning), normality tests indicated a non-normal distribution of the data. Consequently,
the Wilcoxon statistical test with Bonferroni correction was employed for significance
analysis. The results are presented in Figures 2 and 3. In general, transfer learning was
found to significantly improve performance across all databases except for BCI Competition
IV 2a.

For the Physionet database (Figure 2A), within-subject classification using MI-EEGNet
yielded the highest accuracy (0.4646) relative to other methods, while transfer learning
using Deep ConvNet achieved the highest performance (0.5377).

For the Giga database (Figure 2B), MI-EEGNet achieved the highest accuracies of
0.725 and 0.7724 for within-subject and transfer learning, respectively. This network
significantly outperformed other networks, with the exception of Shallow ConvNet in
transfer learning mode.
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Figure 2. EEGNet family comparison on 4 databases handling the datasets in independent days
configuration. The p-value annotation legend is the following: ns: 5 × 10−2 < p; *: 1 × 10−2 < p <= 5
× 10−2; **: 1 × 10−3 < p <= 1 × 10−2; ***: 1 × 10−4 < p <= 1 × 10−3; ****: p <= 1 × 10−4. The mean of
the data is presented with the ’+’ symbol.
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Analysis of results from the TTK dataset (Figure 2C) revealed that EEGNet achieved the
highest accuracies of 0.4437 and 0.4724 for within-subject and transfer learning, respectively.
These results were significantly higher than those obtained using other networks, with the
exception of MI-EEGNet.

Figure 3. EEGNet family comparison on BCI Competition IV 2a. The p-value annotation legend is
the following: ns: 5 × 10−2 < p; The mean of the data is presented with the ’+’ symbol.

For the BCI Competition IV 2a dataset, when treated as independent days (Figure 2D),
Shallow ConvNet achieved accuracies of 0.719 and 0.733 for within-subject and transfer
learning, respectively. In transfer learning mode, this network significantly outperformed
other networks; however, its performance was comparable to that of EEGNet and MI-
EEGNet in within-subject classification mode. When data from a single subject was merged
across experimental days, Shallow ConvNet again achieved the highest accuracies of
0.749 and 0.7533 for within-subject and transfer learning, respectively; however, differences
between networks were not significant.

To establish a hierarchy among the neural networks, we analyzed the improvement
in accuracy achieved by the EEGNet family relative to chance level. Table 3 presents the
ranking of these networks based on their training modes. Across all databases configured
for independent days, MI-EEGNet exhibited the greatest average improvement in within-
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subject classification, while Shallow ConvNet outperformed other networks in transfer
learning mode.

Table 3. Ranking the performance of neural networks on all the databases concerning the independent
days configuration.

Classifier Avg. Acc. Improvement
from Chance Level

Rank

Within subject

Shallow ConvNet 0.2071 2
Deep ConvNet 0.1249 5
EEGNet 0.1997 3
EEGNet Fusion 0.1871 4
MI-EEGNet 0.2306 1

Transfer learning

Shallow ConvNet 0.2721 1
Deep ConvNet 0.2598 2
EEGNet 0.2521 4
EEGNet Fusion 0.2312 5
MI-EEGNet 0.2537 3

We also considered the extent to which neural network performance was enhanced by
transfer learning, as presented in Table 4. Deep ConvNet exhibited the greatest improvement,
achieving results that were on average 0.1 higher than those obtained using within-subject
classification mode. In contrast, Shallow ConvNet, which ranked first in transfer learning
performance, improved by only 0.05 relative to within-subject classification.

Table 4. Classification improvements by transfer learning on databases with independent day configuration.

Rank Neural Networks Physionet Giga TTK BCI Comp
IV 2a

Avg.
Impr.

1 Deep ConvNet 0.1557 0.1418 0.0708 0.0614 0.1075
2 Shallow ConvNet 0.0928 0.0497 0.0509 0.0141 0.0519
3 EEGNet 0.0716 0.0487 0.0288 −0.0065 0.0357
4 EEGNet Fusion 0.0381 0.0586 0.0379 0.0007 0.0338
5 MI-EEGNet −0.0058 0.0475 0.0564 −0.0015 0.0241

Finally, databases were ranked based on the number of significant differences observed
between them. Table 5 presents the sum of significance ranges (corresponding to the number
of stars in figures) and count of significant differences alongside the number of subjects in
each database. The sum of significance ranges was found to be strongly correlated with
the number of subjects in each database (r(3) = 0.7709), although this correlation was not
statistically significant (p-value = 0.127014 > 0.05).

Table 5. Significance investigation.

Significance Level
Database Sum Count Subjects

Physionet 63 18 105
Giga 49 15 108
TTK 45 16 25

BCI Comp IV 2a 31 15 18
BCI Comp IV 2a-

merged subject data
0 0 9

4. Discussion

Many articles presenting MI EEG signal classification using artificial neural networks
from the EEGNet family report and compare their results on one of the BCI Competition
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databases. The aim of this study was to demonstrate the necessity of using datasets with
large numbers of subjects for statistically significant comparisons. To this end, we com-
pared the performance of five neural networks from the EEGNet family on four databases
containing data from various subjects. With respect to the datasets, we introduced an
independent day configuration in which data from a subject who participated in multiple
experimental days were treated as if they had been collected from multiple subjects. This
configuration was intended to increase the number of experiments and enhance the sig-
nificance of comparisons. All four databases, namely BCI Competition IV 2a database [6],
Physionet [7,8], Giga [9], and our TTK dataset [10], were used in this configuration. For the
Physionet database, the authors reported that experiments were conducted with 109 volun-
teers, rendering the independent subject configuration irrelevant. For the BCI Competition
IV 2a database, we also conducted an experiment in which data from a single subject was
merged across experimental days (“merged subject data”) to facilitate comparison with
other studies (Figure 3). These results were used to test our assumption regarding the
correlation between the number of subjects in a database and the number of significant
comparisons (Table 5). Although a strong correlation was observed between the number of
subjects and our significance metric, it was not statistically significant. Nonetheless, Table 5
indicates that a database with only nine subjects is insufficient for significance testing. We
therefore recommend using databases with large numbers of subjects, such as Physionet
or Giga, for comparing BCI systems. Further investigation of our assumption will require
additional open-access MI EEG databases.

We also wish to emphasize that our experiments used artifact-filtered EEG data,
in contrast to previous studies on the investigated neural networks [1,25,30,34], which
included only bandpass filtering and standardization prior to classification. In our signal
processing step, we applied a fifth-order bandpass Butterworth filter with a range of
1 to 45 Hz, and utilized the FASTER algorithm [54] to detect and remove artifacts associated
with eye movements and muscle activity. This is crucial to ensure that classification is
performed on pure EEG signals rather than artifacts, because it has been demonstrated
in [55] that electromyography can be successfully used for BCI purposes.

Many studies investigating the effects of transfer learning have utilized datasets
without artifact filtering [49,51–53,62]. Our findings demonstrate that, even after artifact
filtering, the implementation of transfer learning on databases with large numbers of
subjects, such as Physionet and Giga, significantly enhances the accuracy of neural network
classifications relative to within-subject classifications (Figure 2A,B). We also showed
that Deep ConvNet exhibited the greatest improvement from transfer learning across
all databases (Table 4). In contrast, Shallow ConvNet achieved the highest performance
according to our “improvement from chance level” metric for all transfer-learning-trained
neural networks (Table 3). Nevertheless, the differences between the ConvNets were
insignificant concerning the Physionet and Giga databases (Figure 2A,B). In within-subject
training mode, Deep ConvNet exhibited suboptimal performance, which may be attributed
to an insufficient quantity of training data, a crucial factor for effective training of deep
neural networks.

Our results highlight the importance of considering multiple factors when ranking the
performance of neural networks. Relying solely on accuracy differences between networks
and using unfiltered datasets with small numbers of subjects may lead to inconclusive results.

In addition to our findings, it is important to acknowledge the limitations of our
research. Only a few neural networks were selected from the EEGNet family (Table 1) to
shrink down the computational time. While it would be valuable to expand this compar-
ison in future studies, the inclusion of additional networks may result in less significant
findings due to the Bonferroni correction. Furthermore, several limitations were identi-
fied within the databases used. Only two databases, Physionet and Giga, were found to
have more than 20 subjects. The TTK and BCI Competition IV 2a datasets were extended
using our independent days configuration. The databases were recorded using different
paradigms and contain varying amounts and types of motor imagery tasks. Addition-
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ally, they were recorded using different EEG amplifier systems with varying numbers of
electrodes. As such, the consistency of the databases cannot be guaranteed. The aforemen-
tioned limitations may also have contributed to the observed variability in the classification
results of the neural networks.

In future research, it would be worthwhile to explore the potential of transfer learning
using data from multiple databases. However, this approach presents challenges due to
variations in recording equipment and methodology across datasets, including differences
in the position and number of electrodes, as well as sampling frequency. These issues must
be addressed to facilitate effective transfer learning using data from multiple sources.

5. Conclusions

In this study, we conducted a critical comparison of neural networks from the EEGNet
family, including Shallow ConvNet, Deep ConvNet, EEGNet, EEGNet Fusion, and MI-
EEGNet, for the classification of MI EEG signals. Comparisons were performed using the
BCI Competition IV 2a database as well as the Giga and Physionet databases, which com-
prise data from large numbers of subjects. Our TTK dataset was also utilized. Within-subject
and transfer learning classifications were performed for each combination of database configu-
ration and neural network, with all results subjected to five-fold cross-validation. Classification
was performed on signals that had been cleaned of artifacts using the FASTER algorithm.

To our knowledge, this is the first study to compare neural networks from the EEGNet
family on artifact-filtered databases comprising large numbers of subjects (>20) using
cross-validated results. We demonstrated that transfer learning can improve classification
performance even on artifact-filtered MI EEG data. To rank the performance of the neural
networks, we introduced two metrics: one measuring improvement in accuracy relative to
chance level and the other assessing improvement in classification performance achieved
through transfer learning. These metrics indicated that Shallow ConvNet (0.2721, 0.0519)
and Deep ConvNet (0.2598, 0.1075) outperformed more recently published networks from
the EEGNet family. Finally, we showed that databases with small numbers of subjects (≤10)
are insufficient for statistically significant comparison of BCI systems.
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55. Noboa, E.; Rácz, M.; Szűcs, L.; Galambos, P.; Márton, G.; Eigner, G. Development of an EMG based SVM supported control

solution for the PlatypOUs education mobile robot using MindRove headset. IFAC-PapersOnLine 2021, 54, 304–309. [CrossRef]
56. Gibson, E.; Lobaugh, N.J.; Joordens, S.; McIntosh, A.R. EEG variability: Task-driven or subject-driven signal of interest?

NeuroImage 2022, 252, 17. [CrossRef]
57. Huang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L.; Zhang, Z. M3CV: A multi-subject, multi-session, and

multi-task database for EEG-based biometrics challenge. NeuroImage 2022, 264, 119666. [CrossRef] [PubMed]
58. Castiblanco Jimenez, I.A.; Gomez Acevedo, J.S.; Olivetti, E.C.; Marcolin, F.; Ulrich, L.; Moos, S.; Vezzetti, E. User Engagement

Comparison between Advergames and Traditional Advertising Using EEG: Does the User’s Engagement Influence Purchase
Intention? Electronics 2022, 12, 122. [CrossRef]

59. Fan, C.C.; Yang, H.; Hou, Z.G.; Ni, Z.L.; Chen, S.; Fang, Z. Bilinear neural network with 3-D attention for brain decoding of motor
imagery movements from the human EEG. Cogn. Neurodyn. 2021, 15, 181–189. [CrossRef]
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