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A SHORT REMARK ON KOLMOGOROFF NORMABILITY
THEOREM

A. CARUSO

ABSTRACT. Kolmogoroff normability theorem turns to be a characterization
for the complete normability of a topological vector space by replacing the
convexity hypothesis with the o-convexity one. In particular, the well known
theorem that characterizes completeness of a normed vector spaces by means of
absolutely convergent series, is obtained as an easy consequence of the Theorem
below.

In what follows E will denote a topological vector space (t.v.s. for short) on a
field K(=R or C). Kolmogoroff theorem about normability asserts that a t.v.s. is
normable if and only if E is Hausdorff and there exists a convex bounded neigh-
borhood U of 0 (6 denotes the zero of E). By requiring that U is more than a
convex bounded set, i.e. a o-convex set, we actually obtain a characterization for
the completeness; precisely we prove the following theorem.

Theorem. Let E be a t.v.s. Then E is a Banach space if and only if E is Hausdorff
and there ezists a o-convex neighborhood U of 0.

So what we need is the following definition.

Definition. Let £ be an Hausdorfl t.v.s. and C C E. The set C is said to be
o-convex provided that the following condition hold:

V{z,} C C, V{\,} C [0,1] such that 3/ N\, =1, = > '% \z, € C.

It is apparent that if C' is a o-convex set then also C'+a (a € E) and aC (a € K)
are g-convex.

Proposition 1. Let E be an Hausdorff t.v.s., and C C E. Then

(i) if C is o-convex then is conver and bounded;
(i) if C is o-convex and B C C' is convex and closed, then B is o-convex too;
(iii) if C is o-convex then int(C) is too;
(iv) let C be convex and bounded. If E (respectively C') is sequentially complete
then C (respectively C) is o-convex;

Proof. (i) C is obviously convex. Observe now that in any t.v.s. the condition
B C FE bounded is equivalent to requiring that for any {a,} C [0,1], ap, —
0, > 0" a, <1, and for any {x,} C B, then a,z, — 0g. So chosen {z,} C
C and {a,} as above, set g = 1 — Y " a, and fix zp € C arbitrarily: the
convergence of the series >~ o, 2, concludes the argument.

(ii) Take {z,} C B and {\,} C [0,1] with > 2 A, = 1. Then T,, = S,, +
(1 — Z?:l )\z)l‘l € BVn e N. But S, = Z?:l NiTi — Z;.il Ny € C, (1 —
Yo Ai)x1 — Og, so T, does converges in B to the same limit of S,,.
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(111) Suppose that int(C) # . Take {z,} C int(C), {M\,} C [0,1] such that

T\ =landset 3% Az, =T € C. If T ¢ int(C) then, by a consequence of
the Hahn-Banach Theorem (see Theorem 3.4, (a), of [d], p.58) there exist T' € E*
and a € R such that ReT'(z,) < a < ReT(%) for each n € N. It follows that
a<ReT(T) = 3,2 AMReT(z,) < a. So T € int(O).

(iv) Let E be sequentially complete. Set {z,} € C, {\,} C [0,1] such that

Zﬁ Ay = 1. IF S, = Nz + -+ + A\, = (Z?:l NiTi + Z;L:Os+1 )\7;.’171) -

= =
to zero and (3 1, Nz + j_:osﬂ Aixz1) € C converges too. So it is enough to verify
that {S,} is a Cauchy sequence. Fixed a neighborhood U of 6, choose V' C U
balanced neighborhood of 8 and « > 0 such that C C aV. Moreover choose k
large enough such that (Agy1+Ag12+---)a < 1. Then for each n > m > k we have

Sn_Sm - )\m+1xm+1+"’+>\nxn - ()\m+1++)\n)(%xm+l++

N (Am+1

o @n) € Qs+ 4+ 20)C C Mgy ++ -+ Xn)aV C V. Let now C be
sequentially complete: in a similar way one can prove that Z?:l )\lxﬂrz;;ofl 11 A1
is a Cauchy sequence in C so that S,, does converge to some element of C. ]

Aix1 does converge, its limit must belong to C because > i1 goes

Remark. Relatively to (i) note that not every convex bounded set is o-convex: the
set C' of all complex sequences {z,} in the unit ball of I, such that |z,| < 1 for
each n € N and x,, = 0 for all but finitely many n € N, is convex and bounded, but
evidently C' is not o-convex in lo,. Moreover, in the assertion (i), the assumption
B closed cannot be removed: the set C' = C§°(R) N B, being B the closed unit ball
in L'(R), is convex bounded and dense in B, but C is not o-convex in L'(R).

Proof of Theorem. By (iv) the closed unit ball is a o-convex neighborhood of 6g
whenever F is Banach space. Let assume now that U is a o-convex neighborhood
of 0. By (i) of Proposition 1 and Kolmogoroff theorem we can find a norm || || on
E whose topology coincides with the given one. Let B C U be a closed ball. By (ii)
of Proposition 1 B is o-convex, consequently by (i7) and translations argument, so
is any other ball in E. Let {z,} be a Cauchy sequence and {z,,} a subsequence
such that ||y, ., — @n,|| < 3¢ Vk € N: it is enough to prove that such a sequence
converges to some element of E. Set yp = 2%(z,,,, — ®,,) Yk € N. It results
{yr} € B, B the open unit ball in E. By construction there exists y € B such that
y =320 % = limy SF (€., — ;). This implies that z,, — y + x,, € E,
and the proof is complete. O

It is known that if F is a finite dimensional vector space a set C' is o-convex
if and only if it is convex and bounded (the if part follows by Example 1.6, iv),
of [2], p.84). This is false in general as showed in the Remark. If E is a normed
space, next Proposition 2 will give us a similar characterization. Recall that a set
B C F containing 0 is said to be absorbing if for any « € E is possible to find a
number ¢ > 0, depending on z, such that x € tB; moreover B is said to be radial
at O if for any x € F there is a number § > 0, depending on z, such that Az € B
for any A € [0,0]. Clearly any set B radial at 6 is an absorbing set and it is
easy to verify that any neighborhood of 0 is radial at #g. Finally recall that to
any absorbing set B we can associate the Minkowski functional pg defined by the
position pp(z) = inf{t > 0: z € tB}.
Lemma. Let E be an Hausdorff t.v.s. and A C E an open conver set. Then

A = int(A).

Proof. Tt is enough to verify that int(A) C A, i.e., A\ A C A\ int(A). Without
loss of generality we can suppose that g € A. A is an open convex neighborhood
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of 0z, so the equalities A = {x € E:pa(zr) < 1} and A = {a: € FE :pa(x) < 1}
hold (see Lemma 3.5.5, (d), of [], p.154). Choose ¢ € A\ A : it results pa(c) = 1.
Arguing by contradiction, suppose that ¢ € int(A4). So we can find a neighborhood
U of ¢, U C A, such that pa(z) < 1 for any z € U. Let g :]0, +oo[— E be the
function defined by the formula g(t) = ¢. It is g(1) = c. By the continuity of g we
can find 0 < e < 1 such that g([1 —¢,1+ ¢]) C U. It follows that ¢ € (1 — €)A4, so
pa(c) < 1—e But py =pa (see Theorem 1.35, (d), of [@], p.25): this contradiction
concludes the argument. O

Proposition 2. Let E be a normed space. Then the following facts are equivalent:

(a) E is a Banach space;
(b) For any open set, convex and bounded means o-convez;
(¢) The open unit ball B, or equivalently any other open ball in E, is o-convez.

Proof. (a)=>(b) Let A # () be any open convex bounded set in E. By (iv) of
Proposition 1, A is o-convex and, by (7i) and the previous Lemma, so is A = int(A).
(b)=(c) Tt is trivial.
(¢)=>(a) Following the notations of the proof of the Theorem (the only if part),
if {z,} is Cauchy sequence, then {y} belongs to the open unit ball B of E. By

the hypothesis B is o-convex: this concludes the proof. O

The following two corollaries to Theorem are immediate consequences, so their
easy proofs are left to the reader.

Corollary 1. Let (E,| - ||) be a normed space and B its closed unit ball centered
in Og. Then E is complete if and only if

“+o00 —+00
V{an} € B, V{A,} C [0,1] such that Y Ay =1 = > Az, € B.
n=1 n=1

Corollary 2. Let (E,| - ||) be a normed space. Then E is complete if and only if
every absolutely convergent series is convergent.

Sketch. Apply Corollary 1. O

We conclude the present note giving some easy application of the previous results.

Ezample. Let (Q, A, u1) be an arbitrary measure space. Consider the vector space
LP(u), 1 < p < oo, consisting of all (classes of equivalence of) measurable functions

f such that |f|P is summable over  with respect to the measure p. The formula
1

£, = (fQ |f\pdu) " defines a norm on LP () which so becomes an Hausdorff

t.v.s.. In order to verify the completeness of the space we can directly apply the
Theorem and verify that the closed ball B with radius one, centered at zero is
actually o-convex. Take {f,} C B and {A,} C [0, 1] such that :2 A, = 1. By

1
Minkowski inequality it results (fQ DI |pdu) < A <1VEeEN,
1

so, by the Monotone Convergence theorem, (fQ >0 Anlfal |pd,u) ’ < 1. Thus

the function :z Anfn, defined a.e. on Q, belongs to B.
Analogous considerations, based on the convexity property of a Young function
M, hold if we want to prove the completeness of the more general Orlicz Spaces

Ly (see for instance [3]).
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