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A SHORT REMARK ON KOLMOGOROFF NORMABILITY
THEOREM

A. CARUSO

Abstract. Kolmogoroff normability theorem turns to be a characterization
for the complete normability of a topological vector space by replacing the
convexity hypothesis with the σ-convexity one. In particular, the well known

theorem that characterizes completeness of a normed vector spaces by means of

absolutely convergent series, is obtained as an easy consequence of the Theorem
below.

In what follows E will denote a topological vector space (t.v.s. for short) on a
field K(=R or C). Kolmogoroff theorem about normability asserts that a t.v.s. is
normable if and only if E is Hausdorff and there exists a convex bounded neigh-
borhood U of θE (θE denotes the zero of E). By requiring that U is more than a
convex bounded set, i.e. a σ-convex set, we actually obtain a characterization for
the completeness; precisely we prove the following theorem.

Theorem. Let E be a t.v.s. Then E is a Banach space if and only if E is Hausdorff
and there exists a σ-convex neighborhood U of θE.

So what we need is the following definition.

Definition. Let E be an Hausdorff t.v.s. and C ⊆ E. The set C is said to be
σ-convex provided that the following condition hold:
∀{xn} ⊆ C, ∀{λn} ⊆ [0, 1] such that

∑+∞
n=1 λn = 1, =⇒

∑+∞
n=1 λnxn ∈ C.

It is apparent that if C is a σ-convex set then also C+a (a ∈ E) and αC (α ∈ K)
are σ-convex.

Proposition 1. Let E be an Hausdorff t.v.s., and C ⊆ E. Then
(i) if C is σ-convex then is convex and bounded;

(ii) if C is σ-convex and B ⊆ C is convex and closed, then B is σ-convex too;
(iii) if C is σ-convex then int(C) is too;
(iv) let C be convex and bounded. If E (respectively C) is sequentially complete

then C (respectively C) is σ-convex;

Proof. (i) C is obviously convex. Observe now that in any t.v.s. the condition
B ⊆ E bounded is equivalent to requiring that for any {αn} ⊆ [0, 1], αn −→
0,
∑∞
n=1 αn ≤ 1, and for any {xn} ⊆ B, then αnxn −→ θE . So chosen {xn} ⊆

C and {αn} as above, set α0 = 1 −
∑∞
n=1 αn and fix x0 ∈ C arbitrarily: the

convergence of the series
∑∞
n=0 αnxn concludes the argument.

(ii) Take {xn} ⊆ B and {λn} ⊆ [0, 1] with
∑∞
n=1 λn = 1. Then Tn = Sn +

(1 −
∑n
i=1 λi)x1 ∈ B ∀n ∈ N. But Sn =

∑n
i=1 λixi −→

∑∞
i=1 λixi ∈ C, (1 −∑n

i=1 λi)x1 −→ θE , so Tn does converges in B to the same limit of Sn.
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(iii) Suppose that int(C) 6= ∅. Take {xn} ⊆ int(C), {λn} ⊆ [0, 1] such that∑+∞
n=1 λn = 1 and set

∑+∞
n=1 λnxn = x ∈ C. If x /∈ int(C) then, by a consequence of

the Hahn-Banach Theorem (see Theorem 3.4, (a), of [4], p.58) there exist T ∈ E∗
and α ∈ R such that ReT (xn) < α ≤ ReT (x) for each n ∈ N. It follows that
α ≤ ReT (x) =

∑+∞
n=1 λnReT (xn) < α. So x ∈ int(C).

(iv) Let E be sequentially complete. Set {xn} ⊆ C, {λn} ⊆ [0, 1] such that∑+∞
n=1 λn = 1. If Sn = λ1x1 + · · · + λnxn = (

∑n
i=1 λixi +

∑+∞
i=n+1 λix1) −∑+∞

i=n+1 λix1 does converge, its limit must belong to C because
∑+∞
i=n+1 λix1 goes

to zero and (
∑n
i=1 λixi+

∑+∞
i=n+1 λix1) ∈ C converges too. So it is enough to verify

that {Sn} is a Cauchy sequence. Fixed a neighborhood U of θE , choose V ⊆ U
balanced neighborhood of θE and α > 0 such that C ⊆ αV . Moreover choose k
large enough such that (λk+1 +λk+2 + · · · )α ≤ 1. Then for each n > m ≥ k we have
Sn−Sm = λm+1xm+1 + · · ·+λnxn = (λm+1 + · · ·+λn)

( λm+1
(λm+1+···+λn)xm+1 + · · ·+

λn
(λm+1+···+λn)xn

)
∈ (λm+1 + · · ·+λn)C ⊆ (λm+1 + · · ·+λn)αV ⊆ V . Let now C be

sequentially complete: in a similar way one can prove that
∑n
i=1 λixi+

∑+∞
i=n+1 λix1

is a Cauchy sequence in C so that Sn does converge to some element of C. �

Remark. Relatively to (i) note that not every convex bounded set is σ-convex: the
set C of all complex sequences {xn} in the unit ball of l∞ such that |xn| ≤ 1 for
each n ∈ N and xn = 0 for all but finitely many n ∈ N, is convex and bounded, but
evidently C is not σ-convex in l∞. Moreover, in the assertion (ii), the assumption
B closed cannot be removed: the set C = C∞0 (R)∩B, being B the closed unit ball
in L1(R), is convex bounded and dense in B, but C is not σ-convex in L1(R).

Proof of Theorem. By (iv) the closed unit ball is a σ-convex neighborhood of θE
whenever E is Banach space. Let assume now that U is a σ-convex neighborhood
of θE . By (i) of Proposition 1 and Kolmogoroff theorem we can find a norm || · || on
E whose topology coincides with the given one. Let B ⊆ U be a closed ball. By (ii)
of Proposition 1 B is σ-convex, consequently by (iii) and translations argument, so
is any other ball in E. Let {xn} be a Cauchy sequence and {xnk} a subsequence
such that ‖xnk+1 − xnk‖ < 1

2k
∀k ∈ N: it is enough to prove that such a sequence

converges to some element of E. Set yk = 2k(xnk+1 − xnk) ∀k ∈ N. It results
{yk} ⊆ B, B the open unit ball in E. By construction there exists y ∈ B such that
y =

∑+∞
k=1

yk
2k

= limk

∑k
i=1(xni+1 − xni). This implies that xnk −→ y + xn1 ∈ E,

and the proof is complete. �

It is known that if E is a finite dimensional vector space a set C is σ-convex
if and only if it is convex and bounded (the if part follows by Example 1.6, iv),
of [2], p.84). This is false in general as showed in the Remark. If E is a normed
space, next Proposition 2 will give us a similar characterization. Recall that a set
B ⊆ E containing θE is said to be absorbing if for any x ∈ E is possible to find a
number t > 0, depending on x, such that x ∈ tB; moreover B is said to be radial
at θE if for any x ∈ E there is a number δ > 0, depending on x, such that λx ∈ B
for any λ ∈ [0, δ]. Clearly any set B radial at θE is an absorbing set and it is
easy to verify that any neighborhood of θE is radial at θE . Finally recall that to
any absorbing set B we can associate the Minkowski functional pB defined by the
position pB(x) = inf

{
t > 0 : x ∈ tB

}
.

Lemma. Let E be an Hausdorff t.v.s. and A ⊆ E an open convex set. Then
A = int(A).

Proof. It is enough to verify that int(A) ⊆ A, i.e., A \ A ⊆ A \ int(A). Without
loss of generality we can suppose that θE ∈ A. A is an open convex neighborhood
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of θE , so the equalities A =
{
x ∈ E : pA(x) < 1

}
and A =

{
x ∈ E : pA(x) ≤ 1

}
hold (see Lemma 3.5.5, (d), of [1], p.154). Choose c ∈ A \ A : it results pA(c) = 1.
Arguing by contradiction, suppose that c ∈ int(A). So we can find a neighborhood
U of c, U ⊆ A, such that pA(x) ≤ 1 for any x ∈ U . Let g :]0,+∞[−→ E be the
function defined by the formula g(t) = c

t . It is g(1) = c. By the continuity of g we
can find 0 < ε < 1 such that g([1 − ε, 1 + ε]) ⊆ U . It follows that c ∈ (1 − ε)A, so
pA(c) ≤ 1− ε. But pA = pA (see Theorem 1.35, (d), of [4], p.25): this contradiction
concludes the argument. �

Proposition 2. Let E be a normed space. Then the following facts are equivalent:

(a) E is a Banach space;
(b) For any open set, convex and bounded means σ-convex;
(c) The open unit ball B, or equivalently any other open ball in E, is σ-convex.

Proof. (a)=⇒(b) Let A 6= ∅ be any open convex bounded set in E. By (iv) of
Proposition 1, A is σ-convex and, by (iii) and the previous Lemma, so is A = int(A).

(b)=⇒(c) It is trivial.
(c)=⇒(a) Following the notations of the proof of the Theorem (the only if part),

if {xn} is Cauchy sequence, then {yk} belongs to the open unit ball B of E. By
the hypothesis B is σ-convex: this concludes the proof. �

The following two corollaries to Theorem are immediate consequences, so their
easy proofs are left to the reader.

Corollary 1. Let (E, ‖ · ‖) be a normed space and B its closed unit ball centered
in θE. Then E is complete if and only if

∀{xn} ⊆ B, ∀{λn} ⊆ [0, 1] such that
+∞∑
n=1

λn = 1 =⇒
+∞∑
n=1

λnxn ∈ B.

Corollary 2. Let (E, ‖ · ‖) be a normed space. Then E is complete if and only if
every absolutely convergent series is convergent.

Sketch. Apply Corollary 1. �

We conclude the present note giving some easy application of the previous results.

Example. Let (Ω,A, µ) be an arbitrary measure space. Consider the vector space
Lp(µ), 1 ≤ p <∞, consisting of all (classes of equivalence of) measurable functions
f such that |f |p is summable over Ω with respect to the measure µ. The formula

‖f‖p =
( ∫

Ω
|f |pdµ

) 1
p

defines a norm on Lp(µ) which so becomes an Hausdorff
t.v.s.. In order to verify the completeness of the space we can directly apply the
Theorem and verify that the closed ball B with radius one, centered at zero is
actually σ-convex. Take {fn} ⊂ B and {λn} ⊆ [0, 1] such that

∑+∞
n=1 λn = 1. By

Minkowski inequality it results
( ∫

Ω
|
∑k
n=1 λn|fn| |pdµ

) 1
p ≤

∑k
n=1 λn ≤ 1 ∀k ∈ N,

so, by the Monotone Convergence theorem,
( ∫

Ω
|
∑∞
n=1 λn|fn| |pdµ

) 1
p ≤ 1. Thus

the function
∑+∞
n=1 λnfn, defined a.e. on Ω, belongs to B.

Analogous considerations, based on the convexity property of a Young function
M, hold if we want to prove the completeness of the more general Orlicz Spaces
LM (see for instance [3]).
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