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CLOSED NORMAL SUBGROUPS IN GROUPS OF UNITS OF
COMPACT RINGS

ADELA TRIPE

Abstract. Normal subgroups of semiperfect rings were studied in [BS2]. We
will study in this paper normal closed subgroups in groups of units of compact
rings with identity.

1. Notation and convention

All topological rings are assumed to be associative, Hausdorff and with identity.
The group of units (equal to invertible elements) of a ring R will be denoted by
U(R). If A, B are two subsets of a ring R, the put A.B = {ab : a ∈ A, b ∈ B}. The
closure of a subset A of a topological space X will be denoted by A. The subgroup
of a group G generated by an element g ∈ G will be denoted by 〈g〉. The Jacobson
radical of a ring R is denoted by J(R) or briefly by J . If I is a two-sided ideal of
a ring R we will write I C R. The set of all natural numbers will be denoted by
N, and N+stands for the set of positive integers. If n ∈ N, and R is a ring, then
M (n,R) denotes the ring of n×n matrices over R. The theory of summable set of
elements in topological Abelian groups is exposed in [B]. Accordingly, the sum of
an arbitrary summable set {xα : α ∈ Ω} is denoted by

∑
α∈Ωxα. If {Rα : α ∈ Ω}

is a system of topological rings, then
∏

α∈ΩRα stands for the topological product
of these rings. If A is a subset of a ring R, then 〈A〉 denotes the subring of R

generated by A, and 〈A〉+ the subgroup of the additive group of R generated by
A. If G is a group, x, y ∈ G, then [x, y] = xyx−1y−1 denotes the commutator of x
and y. An idempotent e 6= 0 of a ring R is called primitive provided there are no
non-zero orthogonal idempotents e1, e2 ∈ R such that e = e1 + e2.

The results of this paper were communicated at the International Conference on
Universal Algebra an Lattice Theory, July 2002, University of Szeged, Hungary.

2. Preliminaries

Definition 2.1. A compact ring Λ with identity is called a ring with a system
of idempotents {eα : α ∈ Ω} provided eα are non-zero orthogonal idempotents and
1 =

∑
α∈Ω eα.

Denote Λαβ = eαΛeβ and Λαα = Λα, (α, β ∈ Ω).

Definition 2.2. The subring ∆ = 〈Λα : α ∈ Ω〉 is called the diagonal subring of
the ring Λ with respect to the system of idempotents {eα : α ∈ Ω}.
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Definition 2.3. The subgroup D = U(∆) ⊆ U(Λ) is called a torus in U(Λ) (or
in Λ). A torus D is called primitive provided the system {eα : α ∈ Ω} consists of
primitive idempotents.

Evidently, each Λαβ is a (Λα,Λβ)-bimodule.

Definition 2.4. A family σ = (σαβ) of closed sub-bimodules, is called a net in Λ
if σαγσγβ ⊆ σαβ , for all α, β, γ ∈ Ω.

Definition 2.5. A net σ = (σαβ) is called a D-net in Λ provided σαα = Λα for all
α ∈ Ω.

If Λ is a topological ring with identity then, in general, U(Λ) with respect to the
induced topology is not a topological group. When Λ is a compact ring with identity,
U(Λ) is closed and is a topological group with respect to the induced topology. The
closedness of U(Λ) was proved in [K]. The continuity of the mapping x 7→ x−1 in
U(Λ) follows from the boundedness of Λ (see [U]).

For any D-net σ, denote M(σ) = 〈σαβ : α, β ∈ Ω〉. Evidently, M(σ) is a closed
subring of Λ, called the subring of the net σ.

Theorem 2.6. Let Λ be a compact ring with a countable system of idempotents
{ei : i ∈ N+}. Then there exists a bijection between intermediate closed subgroups
Σ (∆ ⊆ Σ ⊆ Λ) and D-nets.

Proof. It suffices to show that every intermediate closed subgroup Σ has the form
Σ = M(σ), where σ is a D-net. Put σij = eiΣej . Since ei, ej ∈ Σ (i, j ∈ N+), we
obtain that σij ⊆ Σ, hence M(σ) ⊆ Σ. Conversely, if a =

∑
i,j∈N+ aij ∈ Σ, then

aij = eiaej ∈ σij , hence a ∈ M(σ). ¤

We define on the set of all nets of a ring Λ, the relation ≤ as follows: if σ = (σαβ)
and τ = (ταβ)are two nets of Λ, we consider that σ ≤ τ provided σαβ ⊆ ταβ , for all
α, β ∈ Ω.

For every D-net σ denote G(σ) = U (M(σ)). This group is called the D-net
subgroup.

For α, β ∈ Ω, α 6= β, and ξ ∈ σαβ , tαβ(ξ) = 1 + ξ is called an elementary
transvection of U(Λ). Note that tαβ(ξ) tαβ(−ξ) = 1, for every ξ ∈ σαβ . By
E(σ) is denoted the closure of the subgroup of U(Λ) generated by all elementary
transvections. E(σ) is called the elementary subgroup of the net σ.

Definition 2.7. A fixed family σ = (σαβ) of closed subgroups of Λ is called an
I-net (net ideal) provided Λαγσγβ ⊆ σαβ , σαγΛγβ ⊆ σαβ for all α, β, γ ∈ Ω.

Remark. a) Let I be a two-sided closed ideal of Λ. Put Iαβ = I ∩ eαΛeβ = eαIeβ

for all α, β ∈ Ω. Then (Iαβ) is a I-net.
b) If σ is an I-net, then M(σ) = 〈σαβ : α, β ∈ Ω〉 is a closed two-sided ideal of

Λ.

The J-net of Λ is an I-net associated with I = J = J(Λ), i.e. σ = (σαβ) , σαβ =
eαJeβ .

We consider below only compact rings with a countable system of idempotents
{ei : i ∈ N+}.
Definition 2.8. The subgroup

B = B(J) =





∑

i,j∈N+

aij ∈ U(Λ) : aij ∈ Jij if i > j





is called the radical upper triangular subgroup of U(Λ).
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Consider three conditions for a ring Λ with a countable system of idempotents:
(Σ) every idempotent of Λi (i ∈ N+) is a finite sum of invertible elements of Λi;
(θ) there exists an invertible element θ ∈ ∆, such that 1 + θ ∈ U(∆);

(θ2) there exists an invertible element θ ∈ ∆, such that 1+θ, 1+θ+θ2 ∈ U(∆).

Definition 2.9. Let Λ be a compact ring with a countable system of idempotents
{ei : i ∈ N+}, satisfying the condition (Σ) , and let H be a closed subgroup of U(Λ),
containing the torus D (i.e. D ≤ H ≤ U(Λ)). We will say that the D-net (σij) is
associated to the subgroup H if σij = {ξ ∈ Λij : tij (ξ) ∈ H} = eiΛej ∩ (H − 1), for
i 6= j, i, j ∈ N+.

Note that each σij is closed.
If ε ∈ U(Λi) and η ∈ U(Λj), we have:

di (ε) tij (ξ) di

(
ε−1

)
= tij (εξ) ,(*)

di

(
η−1

)
tij (ξ) di (η) = tij (ξη) .(**)

Consider that the ring Λ satisfies the condition (Σ); then we will deduce that σij

is (Λi, Λj)-bimodule (Λiσij=σij , σijΛi = σij).
We denote σ= (σij). If i 6= r, j 6= r and λ ∈ σir, µ ∈ σrj we have:

[tir (λ) , trj (µ)] = tij (λµ) ∈ H,

hence if λ ∈ σir, µ ∈ σrj we have λµ ∈ σij , deci σirσrj ⊆ σij . We proved that σ is
a D-net in Λ.

3. Main results

Lemma 3.1. A finite simple ring R = M(n,Fq) satisfies the condition (θ2) iff it
is not isomorphic to one of the rings F2,F3,F4,M(2,F2).

Proof. ⇒: It is a routine to see that the rings F2,F3,F4, M(2,F2) do not satisfy
the condition (θ2).
⇐: Let Fq be a finite field, q > 4. Let S be the set of all solutions in Fq of the

equation x2 + x + 1 = 0. The set {−1} ∪ E has no more than three elements. But
|U(E)| > 3, so there exists at least an element γ ∈ U(E)− ({−1} ∪ E). Evidently,
γ verifies the condition (θ2).

If M(n,Fq) is not isomorphic to F2,F3,F4,M(2,F2), then we have the following
possible cases:

Case (1) R = M(n,F2), n > 2. Then, the ring M(n,F2) contains a subring
with identity and is isomorphic to F2n .

Case (2) R = M(n,F3), n > 3. Then, the ring M(n,F3) contains a subring
with identity and is isomorphic to F3n .

Case (3) R = M(n,F4), n > 1. Then, the ring M(n,F4) contains a subring
with identity and is isomorphic to F22n . ¤

Corollary 3.2. If R is a compact ring with identity, then it verifies the condi-
tion (θ2) iff in the decomposition of R/J(R) as topological product of finite simple
discrete rings, the ringa F2,F3,F4,M(2,F2) do not appear.

Lemma 3.3. Let {eα : α ∈ Ω} be a system of orthogonal idempotents. The ring
〈eαΛeα : α ∈ Ω〉 is topologically isomorphic to the topological product

∏
α∈Ω eαΛeα.

Proof. Consider the mapping:

〈eαΛeα : α ∈ Ω〉 →
∏

α∈Ω

eαΛeα,
∑

α∈Ω

xα 7→ {xα}α∈Ω , xα ∈ eαΛeα.
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It is clear that this mapping is an algebraic isomorphism of
∑

α∈Ω eαΛeα on the
subring A of

∏
α∈Ω eαΛeα, consisting of elements {xα}α∈Ω ∈ ∏

α∈Ω eαΛeα, for
which almost all coordinates xα are zero.

We claim that this mapping is a topological isomorphism. Indeed, let V be an
open ideal of Λ. There exists α1, α2, . . . , αn ∈ Ω such that eα ∈ V for each α 6=
α1, α2, . . . , αn. Then V ⊇ eα1V eα1 + · · ·+ eαn

V eαn
+ 〈eαΛeα : α 6= α1, α2, . . . , αn〉.

The image of V under the application described above coincides with:
(
eα1V eα1 × · · · × eαnV eαn × 〈eαV eα : α 6= α1, α2, . . . , αn〉

)
∩A.

It follows that 〈eαΛeα : α ∈ Ω〉 and A are topologically isomorphic, therefore their
completions 〈eαΛeα : α ∈ Ω〉 and

∏
α ∈ ΩeαΛeα are topologically isomorphic too.

¤

Corollary 3.4. U
(
〈eαΛeα : α ∈ Ω〉

) ∼=top

∏
α∈Ω U (eαΛeα).

Remark. It is well known that if Λ is a compact ring with identity and {eα : α ∈ Ω}
is a system of orthogonal idempotents, then for each xα ∈ eαΛeα, the family
{xα : α ∈ Ω} is summable.

Lemma 3.5. The topological groups Λ and
∏

α,β∈Ω eαΛeβ are isomorphic.

Proof. Put
ρ : Λ →

∏

α,β∈Ω

eαΛeβ , ρ (x) = {eαxeβ}α,β∈Ω .

It is obvious that ρ is a monomorphism, and a surjective homomorphism.
By Remark 3, any family {eαxαβeβ}α,β∈Ω is summable. Put x =

∑
eαxαβeβ ;

then ρ (x) = {eαxαβeβ}.
It is a routine to prove that ρ is continuous. We will prove that ρ is open. Let

V be an open ideal of Λ. There exists a finite subset Ω0 of Ω such that eα ∈ V if
α /∈ Ω0 or β /∈ Ω0. If follows from the definition of ρ that

∏

α,β∈Ω0

eαV eβ ×
∏

α1 /∈Ω0
or β1 /∈Ω0

eα1Λeβ1 ⊆ ρ (V ) ,

i.e. ρ is open. ¤

We consider below only compact rings with a countable system of idempotents
{ei : i ∈ N+}.
Remark. B is a closed subgroup of U (Λ).

Indeed,

B =





∑

i,j∈N+

aij ∈ U(Λ) : aij ∈ Jij if i > j



 ,

and by definition,

B = U(Λ) ∩




∑

i,j∈N+

aij ∈ Λ : aij ∈ Jij if i > j



 .

Since the set 



∑

i,j∈N+

aij ∈ Λ : aij ∈ Jij if i > j





is closed in Λ, B is closed in Λ.
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Proposition 3.6. The subring S = 〈Λij : i > j〉 of the compact ring Λ is topologi-
cally nilpotent.

Proof. Let V be an open ideal of Λ. There exists a finite subset K of N+ such that
ei ∈ V for all i /∈ K. Let x =

∑
i>j xij ∈ S; then x =

∑
i>j,i,j∈K xij + v, where

v ∈ V . Consider for the simplicity that K = {1, . . . , n} and:

x = y + v;
x = ε21x21 + ε31x31 + ε32x32 + · · ·+ εn n−1xn n−1,

y = ε21y21 + ε31y31 + ε32y32 + · · ·+ εn n−1yn n−1,

where εij ∈ {0, 1}, ∀i > j.
It is clear that there exists k ∈ N+such that xk ∈ V . If follows that S is a

topological nilring. Since Λ is compact, S is a topological nilring. ¤

Lemma 3.7 (Folklore). Let G be a topological group and K a compact subspace.
Then for every neighborhood V of identity e there exists a neighborhood U of e such
that U.K ⊆ K.V .

Proof. For every k ∈ K there exists a neighborhood Wk of k and a neighborhood
U

(k)
e of e such that W−1

k .U
(k)
e .Wk ⊆ V (the continuity of operations). Consider the

cover {Wk : k ∈ K} of K, and let x1, x2, . . . , xn ∈ K such that K ⊆ Wx1∪. . .∪Wxn .
We claim that t−1.U.t ⊆ V for every t ∈ K, where U = Ue (x1) ∩ . . . ∩ Ue (xn).

Indeed, let t ∈ K ; there exists i ∈ {1, . . . , n} such that t ∈ Wxi , hence t−1Ut ⊆
W−1

xi
.Ue (xi) .Wxi ⊆ V ⇒ U.t ⊆ t.V ⇒ U.K ⊆ K.V . ¤

Remark. If a ∈ U(Λ) and b ∈ J(Λ) then a + b ∈ U(Λ).

Indeed, a−1ba ∈ J(Λ) and a + b = a
(
1 + a−1b

) ∈ U(Λ).

Lemma 3.8. If R is a finite ring with identity and x ∈ U(R), then x−1 ∈ 〈x〉.
Proof. Since R is finite, there exist integers n, k, n > k, such that xn = xk. Then
xn−k = 1, hence x−1 = xn−k ∈ 〈x〉. ¤

Lemma 3.9. Let R′ be a compact ring with identity and R a subring with identity.
An element x ∈ R is invertible in R if and only if it is invertible in R′.

Proof. Since R′ has identity, it has a local base consisting of two-sided ideals. Let
V be an arbitrary open ideal of R′. Let x be an invertible element of R′ and
xx−1 = x−1x = 1. By Lemma 3.8, x−1 ∈ 〈x〉 + V , hence x−1 ∈ 〈x〉 ⊆ R. We
obtained that x is invertible in R. ¤

Proposition 3.10. If σ is a D-net then D.E (σ) = E (σ) .D.

Proof. Let a =
∑

i∈N+ aii ∈ D, where aii ∈ U (Λi) , i ∈ N+. Let α ∈ σij , i 6= j; we
have:

atij (α) a−1 =

( ∑

i∈N+

aii

)
(1 + α)

( ∑

i∈N+

a−1
ii

)

= 1 + aiiαa−1
jj ∈ E (σ) .

Since a.E (σ) ⊆ E′ (σ) .a, where E′ (σ) is a subgroup of U (Λ) generated by
transvections. By continuity, a.E (σ) ⊆ E (σ) .a, hence a.E (σ) = E (σ) .a. In
analogous way, E (σ) .a ⊆ a.E (σ). We obtain that D.E (σ) = E (σ) .D. ¤

Proposition 3.11. If a ∈ G (σ) then aii ∈ U (Λi), for every i ∈ N+.
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Proof. The element
∑

i>j aij belongs to Jij , hence by the Remark 3,

a−
∑

i>j

aij ∈ U (Λ) ,

hence
∑

i≤j aij ∈ U (Λ).
Since a ∈ U (Λ), by Lemma 3.9, a ∈ U (L), where L = 〈Λij : i ≤ j〉. Since

〈Λij : i ≤ j〉 ⊆ J (L), we have that a −∑
i<j aij ∈ U (L), i.e.

∑
i∈N+ aii ∈ U (L).

There exists a′ ∈ L, such that a′
(

∑
i∈N+

aii

)
=

(∑
i∈N+ aii

)
a′ = 1. Fix i0 ∈ N+;

then ei0

(∑
i∈N+ aii

)
a′ = ei0 , or ai0i0a

′ = ei0 , or ai0i0ei0a
′ei0 = ei0 ; analogously,

ei0a
′ei0ai0i0 = ei0 , hence ai0i0 ∈ U (Λi0). ¤

Theorem 3.12. Let Λ be a ring with a countable system of idempotents and ρ a
D-net, B = G (ρ). If σ ≤ ρ is a D-net, then G (σ) = D.E (σ).

Proof. By Lemma 3.7 there exists a neighborhood V of identity in U(Λ) such that
V.E ⊆ E.W . We may assume without loss of generality that:

V = V11 + V12 + · · ·+ Vnn + 〈Λij : i > n or j > n〉,
where n ∈ N+, Vii = (1 + Q)∩ eiΛei = ei + eiQei, for i ∈ {1, . . . , n}, Vij = Q∩
eiΛej , for i 6= j, i, j ∈ {1, . . . , n}, and that Q is an open ideal in Λ.

We will prove that G (σ) ⊆ D.E (σ). Let a ∈ G (σ), a =
∑

i,j∈N+
aij , aij ∈ Λij .

Claim: For any m ∈ N+, there exist ym, xm ∈ E (σ) and dm ∈ D, such that:
dmxmaym ∈ e1 + e2 + · · ·+ em + 〈Λij : i > m or j > m〉.

Induction on m:
For m = 1, put y1 = x1 = 1, d1 = a−1

11 +1−e1 ∈ a−1
11 +〈Λij : i > 1 or j > 1〉 ∈ D.

We have:

d1x1ay1 = d1a =
(
a−1
11 + 1− e1

)
a

∈
(
a−1
11 + 〈Λij : i > 1 or j > 1〉

)

 ∑

p,q∈N+

apq




⊆
∑

q∈N+

a−1
11 a1q + 〈Λij : i > 1 or j > 1〉

⊆ e1 +
∑

q≥2

a−1
11 a1q + 〈Λij : i > 1 or j > 1〉

⊆ e1 + 〈Λij : i > 1 or j > 1〉.
Assume that the claim was proved for m, and we will prove it for m + 1. By
induction, there exist ym, xm ∈ E (σ) and dm ∈ D, such that:

dmxmaym ∈ e1 + e2 + · · ·+ em + 〈Λij : i > m or j > m〉

⊆ e1 + e2 + · · ·+ em +
m∑

k=1

λm+1 k +
m∑

s=1

λs m+1 + λm+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉.

Consider the elements x
(i)
m+1, y

(i)
m+1 ∈ E (σ), defined as follows:

x
(i)
m+1 = tm+1 i(−λm+1 i),

y
(i)
m+1 = ti m+1(−λi m+1),
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where i ∈ {1, . . . , m}. Then,

x
(1)
m+1 (dmxmaym)

= (1− λm+1 i) (dmxmaym)

∈ (1− λm+1 i) (e1 + e2 +
... + em +

m∑

k=1

λm+1 k +
m∑

s=1

λs m+1 + λm+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉)

⊆ e1 + e2 + · · ·+ em +
m∑

k=1

λm+1 k +
m∑

s=1

λs m+1 + λm+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉 − λm+1 1 − λm+1 1λ1 m+1

⊆ e1 + e2 + · · ·+ em +
m∑

k=2

λm+1 k +
m∑

s=1

λs m+1 + λ̃m+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉;
Furthermore, we have:

x
(1)
m+1 (dmxmaym) y

(1)
m+1 = x

(1)
m+1 (dmxmaym) (1− λi m+1)

∈ (e1 + e2 + · · ·+ em +
m∑

k=2

λm+1 k +
m∑

s=1

λs m+1 + λ̃m+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉) · (1− λi m+1)

⊆ e1 + e2 + · · ·+ em +
m∑

k=2

λm+1 k +
m∑

s=2

λs m+1 + λ̃m+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉.
Continuing, we obtain:

x
(m)
m+1x

(m−1)
m+1 . . . x

(1)
m+1 (dmxmaym) y

(1)
m+1 . . . y

(m−1)
m+1 y

(m)
m+1

∈ e1 + e2 + · · ·+ em + λ̃−1
m+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉;

By Lemma 3.11, λ̃m+1 m+1 ∈ U (Λm+1). Put

d′m+1 = 1− em+1 + λ̃−1
m+1 m+1

= e1 + e2 + · · ·+ em + λ̃−1
m+1 m+1 + em+2 + · · · .

We have:

d′m+1x
(m)
m+1x

(m−1)
m+1 . . . x

(1)
m+1 (dmxmaym) y

(1)
m+1 . . . y

(m−1)
m+1 y

(m)
m+1

∈ (e1 + e2 + · · ·+ em + λ̃−1
m+1 m+1)(e1 + e2 + · · ·+ em + λ̃−1

m+1 m+1

+ 〈Λij : i > m + 1 or j > m + 1〉)
⊆ e1 + e2 + · · ·+ em + e m+1 + 〈Λij : i > m + 1 or j > m + 1〉.

Put

x′m+1 = x
(m)
m+1x

(m−1)
m+1 . . . x

(1)
m+1 ∈ E (σ) ,

y′m+1 = y
(1)
m+1 . . . y

(m−1)
m+1 y

(m)
m+1 ∈ E (σ) .
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We obtain:

d′m+1x
(m)
m+1x

(m−1)
m+1 . . . x

(1)
m+1 (dmxmaym) y

(1)
m+1 . . . y

(m−1)
m+1 y

(m)
m+1

= d′m+1x
′
m+1 (dmxmaym) y′m+1

= d′m+1x
′
m+1dmxmaymy′m+1

∈ e1 + e2 + · · ·+ em + e m+1 + 〈Λij : i > m + 1 or j > m + 1〉.
By Proposition 3.10, there exist d′ ∈ D and x′ ∈ E (σ), such that: x′m+1dm =

d′x′. We obtain:
d′m+1x

′
m+1dmxmaymy′m+1 = d′m+1

(
x′m+1dm

)
xmaymy′m+1

= d′m+1 (d′x′) xmaymy′m+1

= d′m+1d
′x′xmaymy′m+1.

Denote: dm+1 = d′m+1d
′, ym+1 = ymy′m+1, xm+1 = x′xm, where dm+1 ∈ D, xm+1,

ym+1 ∈ E (σ); we have:

d′m+1d
′x′xmaymy′m+1 = dm+1xm+1aym+1

We obtained:
d′m+1x

′
m+1dmxmaymy′m+1

= dm+1xm+1aym+1

∈ e1 + e2 + · · ·+ e m+1 + 〈Λij : i > m + 1 or j > m + 1〉,
so the affirmation is true for every m ∈ N+. In particular, there exist yn, xn ∈ E (σ),
dn ∈ D, such that:

dnxnayn ∈ e1 + e2 + · · ·+ en + 〈Λij : i > n or j > n〉 ⊆ V.

It follows that:

a = x−1
n d−1

n V y−1
n ⊆ E (σ) .D.V.E (σ) ⊆ D.E (σ) .V.E (σ) ⊆ D.E (σ) .W.

We obtain:
G (σ) ⊆ ∩{D.E (σ) .W : W is a neighborhood of identity in U (Λ)} = D.E (σ).

¤

Lemma 3.13. Let Λ be a compact ring with identity, with a countable system of
idempotents, which satisfies the condition (θ). Let H be a closed subgroup of U (Λ),
D ⊆ U (Λ). If a =

∑
i,j∈N+ aij ∈ H, and r is a fixed natural number for which

arj = 0, (∀) j 6= r, then tir (air) ∈ H for all i 6= r.

Proof. Using condition (θ) we find elements ε ∈ Λr, η ∈ Λi, such that ε, er + ε ∈
U (Λr), and η, ei + η ∈ U (Λi).

Denote a−1 =
∑

i,j∈N+ a′ij , where a−1 is the inverse of a. We have,

1 =


 ∑

i,j∈N+

aij





 ∑

s,k∈N+

a′sk


 .

Multiplying on the left by er we obtain arr

(∑
k∈N+ a′rk

)
= er. Multiplying on the

right by ej we obtain arra
′
rj = 0, hence a′rj = 0 for all j 6= r.

Put b = adr (er + ε) a−1 ∈ H. We have:

b = 1 + aεa−1 = 1 +
∑

k,j∈N+

akrεa
′
rj = 1 +

∑

k∈N+

akrεa
′
rr.

It is easy to prove that b−1 = 1 +
∑

k∈N+
akrεa

′
rr , where ε = − ε (er + ε)−1, is the

inverse of b.
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Put c = [di (ei + η) , b] ∈ H and η = − (ei + η)−1 ∈ U (Λi). Then:

c = (ei + η) b (ei + η)−1
b−1 = (ei + η)−1

bηb−1.

But

bηb−1 =

(
1 +

∑

k∈N+

akrεa
′
rr

)
η

(
1 +

∑

k∈N+

akrεa
′
rr

)
= η

(
1 +

∑

k∈N+

akrεa
′
rr

)
,

and

c = (ei + η) η

(
1 +

∑

k∈N+

akrεa
′
rr

)
= 1 + airεa

′
rr.

We proved that tir (airεa
′
rr) ∈ H. But εa′rr ∈ U (Λr), so applying the formula (∗∗)

we obtain that tir (air) ∈ H. ¤

Note. An analogous lemma is true in the case of a matrix a ∈ H, for which ajr = 0,
∀j 6= r.

Theorem 3.14. If C is the subring of Λ defined as follows:

C =





∑

i,j∈N+

aij ∈ Λ : aij ∈ Jij if i > j



 ,

then

J (C) =





∑

i,j∈N+

aij ∈ Λ : aij ∈ Jij if i ≥ j



 .

Proof. Let I =
{∑

i,j∈N+ aij ∈ Λ : aij ∈ Jij if i ≥ j
}

.

The subset X =
{∑

i,j∈N+ xij ∈ I : almost all xij are 0
}

is dense in I. Indeed,
let

V =
∑
i≤n,
j≤n

Vij + 〈Λij : i > n or j > n〉

be a neighborhood of identity in U(Λ), where n ∈ N+,

Vii = (1 + Q) ∩ eiΛei = ei + eiQei

for i ∈ {1, . . . , n} and Vij = Q ∩ eiΛej for i 6= j, i, j ∈ {1, . . . , n}, and Q is an open
ideal in Λ.

Every element x =
∑

i,j∈N+ xij of I can be written in the form

x = x11 + x12 + · · ·+ xnn + v,

where v ∈ V . Therefore, X is dense in I. It is a routine to prove that I is a
two-sided ideal in C.

Consider the following application:

ρ : C → S,
∑

i,j

cij 7→ {cii + J (Λii)}i∈N+ ,

where R =
∏

i≥1 Λi/J (Λi).
The application defined above is a morphism. Let a, c ∈ C; we have:

ρ (a + c) = ρ


 ∑

i,j∈N+

(aij + cij)


 = {(aii + cii) + J (Λi)}i∈N+

= {aii + J (Λi)}i∈N+ + {cii + J (Λi)}i∈N+ = ρ (a) + ρ (c)
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If ac = d, then:

ρ (ac) = {dii + J (Λi)}i∈N+ , ρ (a) ρ (c) = {aiicii + J (Λi)}i∈N+

Fix i ∈ N+, then

dii =
∑

s∈N+

aiscsi = aiicii + J (Λi) ,

where ρ (ac) = ρ (a) ρ (c).
We affirm that ρ is continuous. Let U be a neighborhood of identity in R,

U =
∏

1≤i≤n

[Ui + J (Λi)]×
∏

k>n

[Λk/J (Λk)] ;

where Ui are neighborhoods of identity in Λi(1 ≤ i ≤ n.
Let V be a neighborhood of identity in C,

V =
(
U1 + U2 + · · ·+ Un + 〈Uij : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j〉+ 〈Λij : i < j〉

)
∩ C,

where Uij are neighborhoods of 0 in Λij , with 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j.
Then, ρ (V ) = U . Hence ρ is an open continuous morphism.
Note that ρ is surjective and kerρ = I. By continuity of ρ it follows that I is

closed in C. Since R is semisimple, J(C) ⊆ I.
We affirm that I ⊆ J(C). Since X is a dense subset of I, if suffices to show that

every element of X is quasiregular (because I is a compact ideal). We will prove
that for any x ∈ X, the element x+J (C) is quasiregular. Let x =

∑
i,j∈N+ xij ∈ X;

then, by the definition of I, xij ∈ Jij for i ≥ j. Fix s ∈ {1, . . . , n}. Then K =
〈Jsi : i ∈ N+〉 is a right ideal of C. Note that the ideal K is topologically nilpotent.
We will prove by induction on t, that Kt ⊆ J t−1

ss Js1 + J t−1
ss Js2 + · · · . If t = 1 the

inclusion is obvious (put J0
ss = C). If the inclusion is true for t, then

Kt+1 ⊆ (〈
Jsi : i ∈ N+

〉) (
J t−1

ss Js1 + J t−1
ss Js2 + · · · ) .

Since (〈
Jsi : i ∈ N+

〉)
J t−1

ss ⊆ J t
ss,

the inclusion is true for every t. Since Λ has a local base consisting of two-sided
ideals, and Jss ⊆ J (Λ) is topologically nilpotent, hence K is topologically nilpotent.

Then we have:
x + J (C) =

∑

i,j∈N+

xij + J (C) .

But
∑

i,j∈N+ xij is a nilpotent element, so x + J (C) is nilpotent. Furthermore I

is a quasiregular ideal, hence I ⊆ J(C). ¤

Theorem 3.15. Let Λ be a compact ring with identity and a countable system
of idempotents, satisfying conditions (θ2) , (Σ). Let D be a torus and B the radical
upper triangular subgroup of U (Λ). Then for every closed subgroup H, D ⊆ H ⊆ B,
there exists a D-net σ such that H = G (σ).

Proof. Let σ = (σij) , i, j ∈ N+, be the D-net associated to H (see the Defi-
nition 2.9). Since D ≤ H, E (σ) ≤ H, and by Theorem 3.12, we obtain that
G (σ) = D.E (σ) ≤ H.

We will prove that H ≤ G (σ). It suffices to show that aij ∈ σij , i 6= j, for all
a =

∑
i,j∈N+ aij ∈ H, or equivalently, tij (aij) ∈ H, for i 6= j.

By condition (θ2), there exists an element ε ∈ Λr, for any r ∈ N+, such that
ε, er + ε, er + ε + ε2 ∈ U (Λr).
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Let a =
∑

i,j∈N+ aij ∈ H; denote a−1 =
∑

i,j∈N+
a′ij . Put b = adr (er + ε) a−1 ∈ H;

we obtain:
b = 1 + aεa−1 = 1 +

∑

i,j∈N+

airεa
′
rj .

Since H ≤ G (ρ) = B, by the Proposition 3.11, we obtain that

arr, a
′
rr, brr = er + arrεa

′
rr ∈ U (Λr) .

Denote
η = b−1

rr arrεa
′
rr = (er + arrεa

′
rr)

−1
arrεa

′
rr ∈ U (Λr) .

ut c = bdr (η) a ∈ H. We have:

c =


1 +

∑

i,j∈N+

airεa
′
rj


 (1− er + η)

∑

i,j∈N+

aij

=


1 +

∑

i,j∈N+

airεa
′
rj − er + η +

∑

i,j∈N+

airεa
′
rr (η − er)


 ∑

i,j∈N+

aij

=
∑

i,j∈N+

aij +
∑

i∈N+

airε + (η − er)
∑

j∈N+

arj +
∑

i,j∈N+

airεa
′
rr (η − er) arj .

Then crr = arrε and cri = 0, for i 6= r. Applying Lemma 3.13 for c ∈ H, we obtain
that tir (cir) ∈ H, for every i 6= r.

We have:

cir = air + airε + airεa
′
rr (η − er) arr = air [er + ε + εa′rr (η − er) arr] .

Denote µ = er + ε + εa′rr (η − er) arr; then, cir = airµ. Since

η − er = − (er + arrεa
′
rr)

−1
,

we obtain that:

µ = er + ε− [
a−1

rr

(
er + arrεa

′−1
rr ε−1

)]−1

= er + ε− (
a−1

rr a′−1
rr ε−1 + 1

)−1

= er + ε− [
(er + εa′rrarr) a−1

rr a′−1
rr ε−1

]−1

= er + ε− εa′rrarr (er + arrεa
′
rr)

−1
.

Hence, µ (er + εa′rrarr) = er + ε + ε2a′rrarr.
Using Theorem 3.14, we have that er+ε+ε2a′rrarr = er+ε+ε2 (mod J (C)), and

since er + ε + ε2 ∈ U (Λr), we obtain er + ε + ε2a′rrarr ∈ U (Λr), hence µ ∈ U (Λr).
Since tir (cir) = tir (airµ) ∈ H, and using the relation (∗∗) , we obtain that

tir (air) ∈ H if i 6= j. We proved that H ≤ G (σ), hence H = G (σ). ¤
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