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CLOSED NORMAL SUBGROUPS IN GROUPS OF UNITS OF
COMPACT RINGS

ADELA TRIPE

ABSTRACT. Normal subgroups of semiperfect rings were studied in [BS2]. We
will study in this paper normal closed subgroups in groups of units of compact
rings with identity.

1. NOTATION AND CONVENTION

All topological rings are assumed to be associative, Hausdorff and with identity.
The group of units (equal to invertible elements) of a ring R will be denoted by
U(R). If A, B are two subsets of a ring R, the put A.B = {ab:a € A, b € B}. The
closure of a subset A of a topological space X will be denoted by A. The subgroup
of a group G generated by an element g € G will be denoted by (g). The Jacobson
radical of a ring R is denoted by J(R) or briefly by J. If I is a two-sided ideal of
a ring R we will write I << R. The set of all natural numbers will be denoted by
N, and NTstands for the set of positive integers. If n € N, and R is a ring, then
M (n, R) denotes the ring of n x n matrices over R. The theory of summable set of
elements in topological Abelian groups is exposed in [B]. Accordingly, the sum of
an arbitrary summable set {z, : a € Q} is denoted by » cqZq. If {Ry:a € Q}
is a system of topological rings, then [],.qRa stands for the topological product
of these rings. If A is a subset of a ring R, then (A) denotes the subring of R
generated by A, and <A>+ the subgroup of the additive group of R generated by
A. If G is a group, x,y € G, then [z,y] = zyz~'y~! denotes the commutator of x
and y. An idempotent e # 0 of a ring R is called primitive provided there are no
non-zero orthogonal idempotents ej, es € R such that e = e; + es.

The results of this paper were communicated at the International Conference on
Universal Algebra an Lattice Theory, July 2002, University of Szeged, Hungary.

2. PRELIMINARIES

Definition 2.1. A compact ring A with identity is called a ring with a system
of idempotents {e, : @ € Q} provided e, are non-zero orthogonal idempotents and

1=3cacta-
Denote Ayp = eqAeg and Ago = Aq, (o, 5 € Q).

Definition 2.2. The subring A = (A, : a € Q) is called the diagonal subring of
the ring A with respect to the system of idempotents {e, : o € Q}.
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Definition 2.3. The subgroup D = U(A) C U(A) is called a torus in U(A) (or
in A). A torus D is called primitive provided the system {e, : a € 0} consists of
primitive idempotents.

Evidently, each A, is a (Aq, Ag)-bimodule.

Definition 2.4. A family o = (048) of closed sub-bimodules, is called a net in A
if 0ay0y8 C 0ap, for all a, 8, € Q.

Definition 2.5. A net 0 = (04g) is called a D-net in A provided 046 = A, for all
a € Q.

If A is a topological ring with identity then, in general, U(A) with respect to the
induced topology is not a topological group. When A is a compact ring with identity,
U(A) is closed and is a topological group with respect to the induced topology. The
closedness of U(A) was proved in [K]. The continuity of the mapping x + =1 in
U(A) follows from the boundedness of A (see [U]).

For any D-net o, denote M (o) = (oap : @, 8 € Q). Evidently, M (o) is a closed
subring of A, called the subring of the net o.

Theorem 2.6. Let A be a compact ring with a countable system of idempotents
{e; :i € NT}. Then there exists a bijection between intermediate closed subgroups
Y (A C X CA) and D-nets.

Proof. Tt suffices to show that every intermediate closed subgroup ¥ has the form
Y = M(o), where o is a D-net. Put o;; = e;Xe;. Since ¢;,¢; € ¥ (4,5 € NT), we
obtain that o;; C X, hence M(0) C X. Conversely, if a = ZMGNJr ai; € 3, then
a;j = ejae; € 0y, hence a € M(0). O

We define on the set of all nets of a ring A, the relation < as follows: if o = (g453)
and 7 = (7,3)are two nets of A, we consider that o < 7 provided .3 C Tag, for all
a, B €.

For every D-net o denote G(o) = U (M(0)). This group is called the D-net
subgroup.

For a,0 € Q, a # [, and & € 043, tep(§) = 1+ ¢ is called an elementary
transvection of U(A). Note that t,5(§) tap(—¢§) = 1, for every { € oq43. By
E(o) is denoted the closure of the subgroup of U(A) generated by all elementary
transvections. F(c) is called the elementary subgroup of the net o.

Definition 2.7. A fixed family o = (0,g) of closed subgroups of A is called an
I-net (net ideal) provided Aay048 € 008, 0ayAyp C 0ag for all a, 3,7 € Q.
Remark. a) Let I be a two-sided closed ideal of A. Put I,z = I NegAeg = eqles
for all o, 3 € Q. Then (I,3) is a I-net.

b) If o is an I-net, then M (o) = (oap : @, 8 € Q) is a closed two-sided ideal of
A.

The J-net of A is an I-net associated with I = J = J(A), i.e. 0 = (048),008 =
eaJes.

We consider below only compact rings with a countable system of idempotents
{61' NS NJr}

Definition 2.8. The subgroup
B:B(J): Z aijGU(A):aijGJijifi>j
i,jENT

is called the radical upper triangular subgroup of U(A).
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Consider three conditions for a ring A with a countable system of idempotents:

(X) every idempotent of A; (i € NT) is a finite sum of invertible elements of A;;
(0) there exists an invertible element § € A, such that 1+ 6 € U(A);
(62) there exists an invertible element 6§ € A, such that 1+6,1+60+62 € U(A).

Definition 2.9. Let A be a compact ring with a countable system of idempotents
{e; : i € NT}, satisfying the condition (X), and let H be a closed subgroup of U(A),
containing the torus D (i.e. D < H < U(A)). We will say that the D-net (0;;) is
associated to the subgroup H if 0,5 ={{ € Aj; 1 t;;(§) € H} = e;Ae; N (H — 1), for
i #j,i,j € N*.

Note that each o;; is closed.

If e e U(A;) and n € U(A;), we have:

(*) di (e) tij (€) d; (1) =ty (c€),
(**) di (™) tiy (€) di (n) = ti; (€n).

Consider that the ring A satisfies the condition (X); then we will deduce that o
is (Al, Aj)—bimodule (A,’O’ij:(fij, O'iin = O'ij).
We denote o= (0;). If i #r, j #r and X € 0y, 1t € 0,; We have:

[tir (A) trj ()] = ti5 (M) € H,

hence if X € 0y, 1t € 05 We have A\ € 05, deci 04,05 C 0;;. We proved that o is
a D-net in A.

3. MAIN RESULTS

Lemma 3.1. A finite simple ring R = M(n,F,) satisfies the condition (62) iff it
is mot isomorphic to one of the rings Fo, F3,Fy, M(2,F3).

Proof. =: It is a routine to see that the rings Fo,F3,Fy, M(2,F3) do not satisfy
the condition (65).

<: Let IF, be a finite field, ¢ > 4. Let S be the set of all solutions in F, of the
equation 22 + 2 + 1 = 0. The set {—1} U E has no more than three elements. But
|[U(E)| > 3, so there exists at least an element v € U(F) — ({—1} U E). Evidently,
~ verifies the condition (05).

If M(n,F,) is not isomorphic to Fa, F3,Fy, M(2,F2), then we have the following
possible cases:

Case (1) R = M(n,F3), n > 2. Then, the ring M(n,F3) contains a subring
with identity and is isomorphic to Fan.

Case (2) R = M(n,F3), n > 3. Then, the ring M(n,F3) contains a subring
with identity and is isomorphic to Fgn.

Case (3) R = M(n,Fy), n > 1. Then, the ring M(n,F,) contains a subring
with identity and is isomorphic to Fazn. U

Corollary 3.2. If R is a compact ring with identity, then it verifies the condi-
tion (02) iff in the decomposition of R/J(R) as topological product of finite simple
discrete rings, the ringa Fo,F3,Fq, M(2,F2) do not appear.

Lemma 3.3. Let {e, : a € Q} be a system of orthogonal idempotents. The ring

(ealey : o € Q) is topologically isomorphic to the topological product || eql\ey.

a€e
Proof. Consider the mapping:

(ealeq € Q) — H eaeg, Z To = {Tatyecq ) Ta € ealleq.
ae (6119
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eqAe, on the
eal\e,, for

It is clear that this mapping is an algebraic isomorphism of }_
subring A of [],cqeal\eq, consisting of elements {z4},.q € ][]
which almost all coordinates z, are zero.

We claim that this mapping is a topological isomorphism. Indeed, let V' be an
open ideal of A. There exists aj,as,...,a, € € such that e, € V for each a #
a1,09,...,0,. Then V D ey, Vey, ++eq, Vea, +(ealeq : a0 # ar,a0,...,0n).
The image of V under the application described above coincides with:

a€eQ

(emVea1 X 0 X €q, Vea, X (eaVeq :a# ay,ao,..., an>) N A.

It follows that (eqAe, : o € Q) and A are topologically isomorphic, therefore their

completions (e,Ae, : a € Q) and []a € QeyAe,, are topologically isomorphic too.
O

Corollary 3.4. U ((eoéAe,JZ ta € Q)) Ziop [aca U (ealieq).

Remark. Tt is well known that if A is a compact ring with identity and {e, : « € Q}
is a system of orthogonal idempotents, then for each z, € e,Ae,, the family
{4 : @ € O} is summable.

Lemma 3.5. The topological groups A and ], seq ealeg are isomorphic.

Proof. Put
p: A — H eqleg, p(x) = {eaxeﬂ}aﬂeg.
a,BEN
It is obvious that p is a monomorphism, and a surjective homomorphism.
By Remark 3, any family {eazapes}, seq is summable. Put z = > eaapes;

then p (LL') = {eaxaﬁeﬁ}'

It is a routine to prove that p is continuous. We will prove that p is open. Let
V be an open ideal of A. There exists a finite subset Qg of € such that e, € V if
a ¢ Qo or §¢ Q. If follows from the definition of p that

H eaVeg X H ea,Aeg, Cp(V),

a,B3€Q0 a1 Q0
or B1¢Qg

i.e. p is open. t
We consider below only compact rings with a countable system of idempotents
{e;:i e NT}
Remark. B is a closed subgroup of U (A).
Indeed,

B= Z aijEU(A)ZaijEJijifi>j s
i,jENT

and by definition,

BZU(A)ﬂ ZaijEAlaijGJijifi>j
i,jENT
Since the set
Z aij € A:aijEJij ifi>j
i,jENT

is closed in A, B is closed in A.
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Proposition 3.6. The subring S = (A;j : i > j) of the compact ring A is topologi-
cally nilpotent.

Proof. Let V be an open ideal of A. There exists a finite subset K of N* such that
e; € Viforalli¢ K. Let v =3, x;; € S then o =37, .y @ij + v, where
v € V. Consider for the simplicity that K = {1,...,n} and:

r=y+u;

T = €21%21 T €31%31 + €32T32 + +** + En n—1Tn n—1,

Y = €21Y21 +€31Y31 +€32Y32 + -+ En n—1Yn n-1,
where ¢;; € {0,1}, Vi > j.

It is clear that there exists k € N+SBCh that =¥ € V. If follows that S is a

topological nilring. Since A is compact, S is a topological nilring. (]

Lemma 3.7 (Folklore). Let G be a topological group and K a compact subspace.
Then for every neighborhood V' of identity e there exists a neighborhood U of e such
that UK C K.V.

Proof. For every k € K there exists a neighborhood Wy, of k£ and a neighborhood
) of e such that Wk_l. e(k).Wk C V (the continuity of operations). Consider the
cover {Wy, : k € K} of K, and let x1, 22, ...,2, € K such that K C W, U...UW,, .
We claim that t=1.U.t C V for every t € K, where U = U, (1) N ... N U, ().
Indeed, let t € K ; there exists i € {1,...,n} such that t € Wy, hence t~'Ut C
WotUe(z;)) Wy, CV =ULtCtV =UKCKV. O

Remark. If a € U(A) and b € J(A) then a +b € U(A).
Indeed, a='ba € J(A) and a+b=a (1+a"'b) € U(A).
Lemma 3.8. If R is a finite ring with identity and x € U(R), then 27! € (x).

Proof. Since R is finite, there exist integers n, k, n > k, such that 2™ = z*. Then
"% =1, hence 71 = 2" € (2). O

Lemma 3.9. Let R’ be a compact ring with identity and R a subring with identity.
An element x € R is invertible in R if and only if it is invertible in R'.

Proof. Since R’ has identity, it has a local base consisting of two-sided ideals. Let
V be an arbitrary open ideal of R’. Let z be an invertible element of R’ and
zz~! = 272 = 1. By Lemma 3.8, 27! € (z) +V, hence 27! € () C R. We
obtained that x is invertible in R. O

Proposition 3.10. If o is a D-net then D.E (c) = E (o) .D.

Proof. Let a = Y, n+ s € D, where a; € U (A;) i € N*t. Let « € 0yj,1 # j; we
have:

atij (@)a™t = (Za“) (1+a) (Zaii1>

iEN+ ieN+
=1+ aiiaa;jl € E(o).
Since a.E (o) C E'(0).a, where E’ (o) is a subgroup of U (A) generated by

transvections. By continuity, a.F (0) C FE(0).a, hence a.E (c) = E(0).a. In
analogous way, E (0) .a C a.E (¢). We obtain that D.E (o) = E (o) .D. O

Proposition 3.11. Ifa € G (o) then ay; € U (A;), for every i € N*.
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Proof. The element ). . a;; belongs to J;;, hence by the Remark 3,

G—ZaijGU(A),

>3]

i>]

hence ), a;; € U (A).
Since a € U (A), by Lemma 3.9, a € U (L), where L = (A;; : 4 <j). Since
(Aij 19 <j) € J (L), we have that a — >, s a;; € U(L), e D 0,cn+ ai € U(L).

There exists a’ € L, such that a’ < > a“—> = (ZieNJr aii) a = 1. Fix ig € NT;

i€Nt
! I I — .
then e, (Zi@w a“) a' = eiy, OF Giyin0 = €, OF Gjyi0€in@ €;y = €4,; analogously,
/ —
€iy0 €0 igiy = Ciy, hence a; iy € U (Ayy). O

Theorem 3.12. Let A be a ring with a countable system of idempotents and p a
D-net, B= G (p). If o < p is a D-net, then G (0) = D.E (o).

Proof. By Lemma 3.7 there exists a neighborhood V' of identity in U(A) such that
V.E C E.W. We may assume without loss of generality that:

V=Vii+Vig+ -+ Van+ (Aij i >nor j>n),

where n € N, V;; = (1 4+ Q)N e;Ae; = e; + €;Qe;, for i € {1,...,n}, Vi; = QN
eilej, for i # j, 4,7 € {1,...,n}, and that Q is an open ideal in A.

We will prove that G (¢) C D.E(0). Let a € G(0), a= ). ai;, aij € Ayj.

1,jENT

Claim: For any m € N7, there exist ym,Tm € E (o) and d,, € D, such that:
AmZTmQYm € e1+ea+ - +epm+ (A 10> mor j >m).

Induction on m:

Form=1,puty; =21 = 1,dy =a' +1—e; €ap +(Ayj:i > 1Lor j > 1) € D.
We have:

dixray; = dia = (afll +1-— el) a

6(@1—11+<Aij:i>lorj>1>) Z Qpq

p,qeENT
C Y antay+ A i>Torj>1)
geNt
Cer+ Y aptayg+(Ayi>1lorj>1)
q>2

Cer+(Ay;:i>1orj>1).

Assume that the claim was proved for m, and we will prove it for m + 1. By
induction, there exist Y,z € E (o) and d,, € D, such that:

A TmQYm € €1+ €2+ -+ ey + (Ajj 10 >mor j >m)

gel+62+"'+em+Z)\m+1k+z)\sm+1+>\m+lm+l
k=1 s=1

+ (At >m+1orj>m+1).

Consider the elements xffl)ﬂ, yift)ﬂ € E (o), defined as follows:
$£7?+1 = tmt1 i(—Amt1i)s

3/7(7?“ =ti m+1(—Ni ma1)s
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where i € {1,...,m}. Then,

375,2.1 (dmxm a'ym)

= (1 - )\m+1 1) (dmxmaym)

m m
€l —Ampri)(ertezt+item+ D Amirk+ D Asmit + Amit min
k=1 s=1

+ (A ;i>m4+1lorj>m+1))

gel +62+"'+em+ Z)\m+lk+ Z)\sm+1+)\m+1m+l
k=1 s=1

+(Aji>m+lorj>m+1) — A1 1 — Amg1 1A mt1

m m
g€1+62+"'+6m+ Z)\m+1k+ Z)\sm+1+)\m+1m+1
k=2 s=1

+ (A i >m+1orj>m+1);

Furthermore, we have:

20 (dnmaym) Yook = 2001 (dmmaymn) (1= A ms1)

m m
€ (€1+62+"'+6m+ Z)\m+1k+ Z)\sm+1+)\m+1m+1
k=2 s=1

+ At >m4lorjg>m4+1) - (1— X my1)

m m
g61+62+"'+em+ Z)\m+1k+ ZAsm,+1+)\m+lm+1
k=2 s=2

+ (A i>m+1orj>m+1).

Continuing, we obtain:

m m—1 1 1 m—1 m
$£n+)1905n+1 ' wﬁn)ﬂ (dmTmaym) ygnil e y£n+1 )I%(n+)1

Certeart - temt A i

+ (At >m+1orj>m+1);
By Lemma 3.11, Aps1 ma1 € U (Apgr). Put

T-1
d;n+1 =1—=emt1+A001 mi1
=ertest ot em T AN gt +Emaz o
‘We have:

—1 1 1 —1
din+1wfff+)1wﬁ2"+1 I xfn)+1 (dmTmaym) yfnll . yin"fkl )yfn@1

Elertezt tem+ Aty mar)er et Fem+ A i
+(Ajj:i>m+1orj>m+1))

Cert+er+-+entempn+Ajjii>m+lorj>m+1).
Put

m m—1 1
Ty = mfnJlegnH ' ‘rgnzrl € E(o),

1 m—1 m
y;n«kl = y7(n)+1 .. 'y7(n+1 )yv(n+)1 € E(o).
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We obtain:

m m—1 1 1 m—1 m
d;n+1x£n+)1$£n+1 ) e xgnzrl (dmTmaym) yf(nzrl e y7(n+1 )y7(n+)1

= d/7n+1x/7n+1 (dmTmaym) y;n—l—l
= d;n+1x;1L+1dmxmaymy;11+l
€ertert+--+entempr+{Njji>m+lorj>m+1).

By Proposition 3.10, there exist d’ € D and 2’ € E(0), such that: 2], dp, =
d'z’. We obtain:

!/ / ! !/ ! /
dm+1xm+1dmxmaymym+1 = dm+1 (xm—i-ldm) TmAYmYm+1
!/ I !
= dm+1 (d'x )Imaymym-s-l

! ! ! /
=dy 10 T T OYmY iyt -

Denote: dpmt1 = dp, 1d' Ymt1 = Ym¥Yms1s Tmt1 = &' Ty, Where dyp1 € D, pyq1,
Ym+1 € E (0); we have:
d:71+1d/$/xmaymy;n+l = dm4+1Tm+10Ym+1
We obtained:
d;n+1$;n+1dmxmaymy;n+1
= dp41Tm+10Ym+1

certet--Femp+(Ajii>m+lorj>m+1),

so the affirmation is true for every m € N*. In particular, there exist y,, z,, € F (o),
d, € D, such that:

dprnayn, €e1+ea+--+ep,+(Ajj:i>norj>n)CV.
It follows that:
a=xz,'d,'Vy,' CE(c).D.V.E(c) C D.E(0).V.E(¢) C D.E (c).W.
We obtain:

G (o) CN{D.E (o) .W : W is a neighborhood of identity in U (A)} = D.E (o).
U

Lemma 3.13. Let A be a compact ring with identity, with a countable system of
idempotents, which satisfies the condition (0). Let H be a closed subgroup of U (A),
DCUW). Ifa= Zi,j@w a;; € H, and r is a fized natural number for which
ar; =0, (V) j #r, then tir (air) € H for all i # 1.

Proof. Using condition (f) we find elements € € A, n € A;, such that e,e,. + ¢ €
U (Ar), and n,e; +n1 € U (A;).
Denote a~" = 37, aj;, where a~ " is the inverse of a. We have,

1= Z Qi Z a'sk

i,jENT s,keNTt

Multiplying on the left by e, we obtain a., (Zk@H a'Tk) = e,. Multiplying on the
right by e; we obtain a,.a;.; = 0, hence a;; = 0 for all j # r.
Put b = ad, (e, +¢)a~' € H. We have:

b=1+aca =1+ Z apreay; =1+ Z agrea,.,.

k,jeNt keN+
It is easy to prove that b= = 1+ 3. ap.2al, , where € = — e (e, +¢) ", is the
keNt

inverse of b.
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Put ¢ = [d; (e; +7),bl € H and 57 = — (e; + 1)~ " € U (A;). Then:
c=(eitn)bleitn) b = (ei+n) " bpp .

But
= (1 + Z ak,«ea;.,) n <1 + Z akrea;.,) =7 (1 + Z akrsa;.r> ,
keN+ keN+ keN+
and
c=(e;+n)7 (1 + Z akrea'”> =1+ a;zal,.
keN+
We proved that ;- (a;rgal,) € H. But €al.,. € U (A,), so applying the formula (xx)
we obtain that ¢;, (a;) € H. O

Note. An analogous lemma is true in the case of a matrix a € H, for which a;, =0,
Vj #r.
Theorem 3.14. If C is the subring of A defined as follows:
C = ZaijEA:aijGJijifi>j s
1,jENT

then

J(C): ZaijEA:aijEJijifiZj

i,jENT

Proof. Let I = {Zi,jeI\H aj; € N:iay e Jiyifi > j}.

The subset X = {Zi’j@w 2i; € I : almost all x;; are O} is dense in I. Indeed,
let

V:ZVM—&-(Aijzi>norj>n>

i<n,
j<n

be a neighborhood of identity in U(A), where n € N,
Vii=(1+ Q) Neile; = e; + e;Qe;
fori € {1,...,n} and V;; = Q@ Ne;Ae; for i # j,4,5 € {1,...,n}, and Q is an open
ideal in A.
Every element @ = 3, ;c\+ 25 of I can be written in the form
T = T11 +x12+"'+$nn+va

where v € V. Therefore, X is dense in I. It is a routine to prove that I is a
two-sided ideal in C.
Consider the following application:

prC =8, > ey fei+J (M) biens »
2%
where R =[], Ai/J (A).
The application defined above is a morphism. Let a,c € C; we have:

platc)=p Z (aij + cij) | = {(aii + cii) + J (M) }ien+

3,jENT

={aii +J (M) }iens +1cii +J (Ai) }ienr = p(a) +p(c)
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If ac = d, then:
plac) ={dii + J (Ai)}iens > p(a) ple) = {aiici +J (M) }yens
Fix i € NT, then
dii = Y @iscsi = aiicii +J (Ai)
seNt

where p (ac) = p(a) p(c).
We affirm that p is continuous. Let U be a neighborhood of identity in R,

U= [] i+ 7)) x I [As/T (Aw)];

1<i<n k>n

where U; are neighborhoods of identity in A;(1 <14 < n.
Let V be a neighborhood of identity in C,

V=<U1+U2+--~+Un+(Uij:1§i§n,1§j§n,i7éj>+<Aij:i<j>)ﬁC,

where U;; are neighborhoods of 0 in A, with 1 <4 <n,1 <5< n,i#j.

Then, p (V) = U. Hence p is an open continuous morphism.

Note that p is surjective and kerp = I. By continuity of p it follows that I is
closed in C. Since R is semisimple, J(C) C I.

We affirm that I C J(C'). Since X is a dense subset of I, if suffices to show that
every element of X is quasiregular (because I is a compact ideal). We will prove
that for any = € X, the element x4+ J (C) is quasiregular. Let z = Zi,jeI\H zi; € X,
then, by the definition of I, z;; € J;; for ¢ > j. Fix s € {1,...,n}. Then K =
(Jsi 11 € NT) is a right ideal of C'. Note that the ideal K is topologically nilpotent.
We will prove by induction on ¢, that K* C Ji; g + Ji g + -+, If t = 1 the
inclusion is obvious (put JO, = C). If the inclusion is true for ¢, then

KU C ((Jyri € NDY) (T W + g 40 )

Since
((Ji:ieNT)) JITHC JL

887
the inclusion is true for every ¢. Since A has a local base consisting of two-sided
ideals, and Jgs C J (A) is topologically nilpotent, hence K is topologically nilpotent.

Then we have:

4+ J(C)= > @i+ J(C).
i,jENT

But Zi,jeNJr x;; is a nilpotent element, so  + J (C) is nilpotent. Furthermore I

is a quasiregular ideal, hence I C J(C). O

Theorem 3.15. Let A be a compact ring with identity and a countable system
of idempotents, satisfying conditions (02),(X). Let D be a torus and B the radical
upper triangular subgroup of U (A). Then for every closed subgroup H, D C H C B,
there exists a D-net o such that H = G (o).

Proof. Let ¢ = (0y5),i,j € NT, be the D-net associated to H (see the Defi-
nition 2.9). Since D < H, E (o) < H, and by Theorem 3.12, we obtain that
G (o) = D.E (o) < H.

We will prove that H < G (o). It suffices to show that a;; € 0y;,1 # j, for all
a=7)_, ien+ @iy € H, or equivalently, t;; (a;;) € H, for i # j.

By condition (6s), there exists an element ¢ € A,., for any » € N, such that
g er+ee.+e+e2elU(A).
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Let a =}, ;cn+ aij € H; denote a”'= 3 aj. Putb=ad, (e, +e)a"" € H;
’ i,jEN+
we obtain:
b=14+aca =1+ Z AirEy.;.
i,jENT
Since H < G (p) = B, by the Proposition 3.11, we obtain that
Apry @y by = €4 + apreal.,. € U (A,).
Denote
_ -1
n=>blta e, = (e, +apeal,)  anca.. €U(A,).
ut ¢ = bd, (n) a € H. We have:

c= |1+ Z aireay; | (1—e, +n) Z aij

§,jENT i,jEN+
= |1+ air€al.; — eq +n—+ ai-ea,., (n—e;) a;
ir€Qy; r 1 ir€Qy, \7] r ij
i,jENT i,jENT i,jENT
_ !
= ai; + aire + (n —er) arj + Air€ay, (N — er) arj.
1,jENt €Nt JENT i,jENT

Then ¢ = a,-€ and ¢,; = 0, for i # r. Applying Lemma 3.13 for ¢ € H, we obtain
that ¢ (¢;r) € H, for every i # r.
‘We have:

Cir = Qir + QipE + ajreal, (N — €;) apr = a4y [ep + €+ £ar., (N — €) ary] .

Denote u = e, + € +ea..,. (n — e) apr; then, ¢; = a;rp. Since
-1
n—€e = - (er + arrga;r) y
we obtain that:
_ 1 _1\1-1
p=e +¢e—[a.' (e +apeal e )]

-1 /—1_-1 -1
=e +e— (aa et +1)

11 —17-1
er +e—[(e +eal,ar)arar et

I ! -
= e, + & —ea,, ar (€ + arreay,)

Hence, (e, +eal, a.) = e, + & + €2al., ap.
Using Theorem 3.14, we have that e, +e+¢c%al,.a,. = e, +e+&2 (mod J (C)), and
since e, + ¢ +¢% € U (A,), we obtain e, + ¢ +&2al.,.a, € U (A,), hence u € U (A,).
Since t; (¢ir) = tir (a;rp) € H, and using the relation (x%), we obtain that
tir (ai-) € H if i # 5. We proved that H < G (0), hence H = G (o). O
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