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ON THE HOMOGENEOUS GEOMETRICAL MODEL OF A

RIEMANNIAN SPACE

ADRIAN SANDOVICI

Abstract. In the paper we study the homogeneous geometrical model of
a Riemannian space. The canonical connection is analyzed in details. On
this model, the Einstein equations, the electromagnetic fields and generalized

Einstein–Yang Mills equations are studied. We remark that the theory we
proposed in this paper works only for the case when the space test is without
charges. The Einstein equations of our model projected on the basis manifold
M are perturbations of the classical Einstein equations on the basis manifold
M .

1. Introduction

In the last thirty years, a lot of geometrical models for gravitational and elec-
tromagnetic theories have been proposed. We refer especially to the well known
Riemannian, Finslerian, Lagrangian or, more general, Lagrangian of higher order
theories [3, 8, 11, 12, 15, 14]. The differential geometry of the Lagrange spaces
is now considerable developed and used in various fields to study the natural
processes where the dependence on position, velocity or momentum are involved
[4, 6, 5, 7, 9, 12, 14, 16]. The geometry of Lagrange spaces gives a model for both
the gravitational and electromagnetic fields in a very natural blending of the ge-
ometrical structure of the space with the characteristic properties of the physical
fields.

In [13] the notions of homogeneous lift of a Riemannian metric and the corre-
sponding homogeneous complex structure were introduced (see also (2.20) within
the paper). The pair consists from the above structures is a special Hermitian

structure on T̃M . In the present paper we will use these geometrical structures in
order to give a picture of some physical aspects of a geometrical model generated
by the Riemannian spaces.

The paper is organized as follows: In the next section the notions of almost 2−π

structure and metrical almost 2 − π structure will be presented. These structures
were introduced in [17, 20] and were studied in details there. In Section 3 the
homogeneous geometrical model of a Riemannian space will be studied. On this
model, the Einstein equations, the electromagnetic fields and generalized Einstein-
Yang Mills equations will be in attention. Finally, some conclusions will be given.
The terminology and notations are those used in [3, 8, 11, 13, 14, 20].
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2. Preliminaries

Let R(n) = (M, γ) be a Riemannian space with a smooth, real, finite-dimensional
manifold M (dim(M) = n) and a Riemannian structure γ. The local coordinates
on M are x =

(
xi
)
, i = 1, . . . , n and (x, y) = (xi, yi), i = 1, . . . , n are the local

coordinates on the total space of the tangent manifold TM . The projection of TM

on M will be denoted by τ . Wherever they will appear, the indices i, j, k, . . . will
run from 1 to n. Moreover, the Einstein convention on summation is implied. The
geometrical objects on TM , whose local components change in the same way like on
M will be called d–objects. The kernel of the differential map τT : TTM → TM is
a vector subbundle of TTM , and it is called the vertical distribution on TM . The

local vector fields
{

∂
∂yi

}
determine a local frame in VTM. A nonlinear connection

in the tangent bundle τ : TM → M is a distribution on TM, denoted by HTM,
supplementary to the vertical distribution. That is

(2.1) TTM = HTM ⊕ V TM.

The position of the subspace HuTM , u ∈ TM , can be given by n local vector fields

δ

δxi
=

∂

∂xi
− Nk

i (x, y)
∂

∂yk
.

The real differentiable functions
(
N i

j (x, y)
)

completely determines a nonlinear con-
nection which will be denoted in compact form N . For example we can take
N i

j(x, y) := γi
jk(x)yk , where γi

jk(x) are the Christoffel symbols of the Levi–Civita
connection of the Riemannian space M . Therefore a nonlinear connection N deter-

mines a basis
(

δ
δxi ,

∂
∂yi

)
associated to the decomposition (2.1). This basis will be

called the adapted basis. The Sasaki lift (see for instance [14]) of the Riemannian
structure γ on TM , denoted by GS is defined as

(2.2) GS = γij(x)dxi ⊗ dxj + γij(x)δyi ⊗ δyj .

Next we consider Ga,b,c,d a (h, v)− metrical structure on TM, given by

(2.3) Ga,b,c,d(x, y) = gij(x, y)dxi ⊗ dxj + hij(x, y)δyi ⊗ δyj ,

where

(2.4)

{
gij(x, y) = a2

F 2 γij(x) + b2−a2

F 4 yiyj ,

hij(x, y) = c2

F 2 γij(x) + d2−c2

F 4 yiyj ,

where F 2 = γij(x)yiyj , yi = γij(x)yj and a, b, c, d : Im(F 2) ⊆ R+ → R+ are
differentiable functions (b ≥ a > 0 , d ≥ c > 0). The analysis of Ga,b,c,d can be
found in [20]. Assume further that TM is endowed with a nonlinear connection

determined by the local coefficients
(
N i

j(x, y) = γi
jk(x)yk

)
.

Definition 2.1. Let D be a d–connection TM . D is called compatible with Ga,b,c,d

if it satisfies

(2.5) DXGa,b,c,d = 0, ∀X ∈ χ(TM).

In the adapted basis, any d–connection on TM can be represented in the follow-
ing way

(2.6)
D δ

δxk

δ
δxj =

(H)

F

i

jk
δ

δxi , D δ

δxk

∂
∂yj =

(V )

F

i

jk
∂

∂yi ,

D ∂

∂yk

δ
δxj =

(H)

C

i

jk
δ

δxi , D ∂

∂yk

∂
∂yj =

(V )

C

i

jk
∂

∂yi ,
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where the system of functions (
(H)

F

i

jk ,
(V )

F

i

jk ,
(H)

C

i

jk ,
(V )

C

i

jk ) represents the local coef-
ficients of the above d–connection D.

Let C be the set of complex numbers and let I be the identity tensor field of type
(1, 1) on TM . Recall that (see [20]) an almost 2 − π structure is a tensor field Φ
of type (1, 1) on TM such that Φ2 = −λI . In the geometry of the tangent bundle

there exists a special almost 2−π structure, which in the adapted basis
(

δ
δxi ,

∂
∂yi

)
,

is given by

(2.7) ΦS( δ
δxi ) = −λ · ∂

∂yi , ΦS( ∂
∂yi ) = λ · δ

δxi , λ ∈ C,

Let G be a metrical structure on TM and let Φ be an almost 2− π structure on
TM . By definition, a metrical almost 2 − π structure is a pair (G, Φ) on TM for
which:

(2.8) 1
λ2 G(ΦX, ΦY ) = G(X, Y ), ∀X, Y ∈ χ(TM),

and the 2-form Ω(X, Y ) = G(Φ(X), Y ) is closed.
The pair (Ga,b,c,d, ΦS), where the metrical structure Ga,b,c,d is defined by (2.3)

and (2.4), is not a metrical almost 2-π structure. In [20], it was proved that there
exists a class of almost 2−π structures Φ such that the pair (Ga,b,c,d, Φ) should be a
metrical almost 2−π structure. In fact it was shown that the pairs (Ga,b,c,d, Φa,b,c,d)
and (Ga,a,c,c, Φa,c) are metrical almost 2−π structures on the tangent bundle, where
the almost 2 − π structures Φa,b,c,d and Φa,c are as follows

(2.9) Φa,b,c,d = λAk
i

∂
∂yk ⊗ dxi + λBk

i
δ

δxk ⊗ δyi,

and

(2.10) Φa,c = λ
v

A
k

i
∂

∂yk ⊗ dxi + λ
v

B
k

i
δ

δxk ⊗ δyi.

The coefficients Ak
i ,

v

A
k

i , Bk
i ,

v

B
k

i are

(2.11) Ak
i = −a

c
δk
i + ad+bc

dcF 2 yiy
k,

v

A
k

i = −a
c
δk
i ,

and,

(2.12) Bk
i = c

a
δk
i − ad+bc

abF 2 yiy
k, ,

v

B
k

i = c
a
δk
i .

Definition 2.2. a. Let D be a linear connection on TM . D is said to be compatible

with the almost 2 − π structure Φ if it satisfies

(2.13) DXΦ = 0, ∀X ∈ χ(TM).

b. A linear connection on TM is said to be compatible with the metrical almost

2 − π structure (G, Φ), if it satisfies the conditions

(2.14) DXG = 0, DXΦ = 0, ∀X ∈ χ(TM).

Before we state the next result let us to make some notations: A = 2a′F 2−a
aF 2 and

B = 2c′F 2−c
cF 2 . With respect to the above notions, one obtains

Theorem 2.3. The set of all d–connections compatible with the metrical almost

2 − π structure (Ga,a,c,c, Φa,c) is determined by the following local coefficients

(2.15) (H)

F

i

jk= γi
jk + Ωei

jm · Xm
ek,

(2.16) (V )

F

i

jk= γi
jk + Ωei

jm · Xm
ek,

(2.17) (H)

C

i

jk= A · δi
j · yk + Ωei

jm · Um
ek,
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(2.18) (V )

C

i

jk= B · δi
j · yk + Ωei

jm · Um
ek,

where Xm
ek, Um

ek are arbitrary d–tensor fields and Ωei
jm is the Obata operator of the

Riemannian structure γ.

Particular cases.

10. In the case Xm
ek = Um

ek = 0 one obtains a d–connection compatible with the
metrical almost 2–π structure (Ga,a,c,c, Φa,c), which depends only on the Riemann-
ian structure γ and the functions a, c. The local coefficients of this d–connection
are as follows

(2.19) (H)

F

i

jk=
(V )

F

i

jk= γi
jk ,

(H)

C

i

jk= A · δi
j · yk,

(V )

C

i

jk= B · δi
j · yk.

The simplicity of this d–connection and the fact that it is determined only by the
Riemannian structure γ and by the functions a, c allows us to call it the canonical

d–connection of the space
(
T̃M, Ga,a,c,c, Φa,c

)
.

20. If a = F , c = k, k ∈ R∗, one obtains the so called homogeneous metrical almost

2 − π structure

(
(0)

G,
(0)

Φ

)
, where the metrical structure

(2.20)
(0)

G= γij(x)dxi ⊗ dxj +
k2

F 2
γij(x)δyi ⊗ δyj , k ∈ R,

is the Miron metrical structure from [13], and the almost 2 − π structure
(0)

Φ is
defined by

(2.21)
(0)

Φ= −λ · F
k
· ∂

∂yi ⊗ dxi + λ · k
F
· δ

δxi ⊗ δyi.

The canonical d-connection of the space

(
T̃M,

(0)

G,
(0)

Φ

)
is determined by the fol-

lowing local coefficients

(2.22) (H)

F

i

jk=
(V )

F

i

jk= γi
jk,

(H)

C

i

jk= 0,
(V )

C

i

jk= − 1
F 2 · δi

j · yk.

Remark. The space
(2−π)

M

2n

=
(
T̃M, Ga,a,c,c, Φa,c

)
is called the (a, c)–geometrical

model of the Riemannian space (M, γ) with respect to the metrical almost 2 − π

structure (Ga,a,c,c, Φa,c) (see [20]). On the other side,
(0)

M

2n

=

(
T̃M,

(0)

G,
(0)

Φ

)
is

called the homogeneous geometrical model of the Riemannian space (M, γ) with

respect to the metrical almost 2 − π structure

(
(0)

G,
(0)

Φ

)
(see [20]), and it will be

the subject of the next section.

3. The homogeneous geometrical model

In this section we shall study in details the homogeneous geometrical model of the
Riemannian space (M, γ). Let ri

jhk be the local components of the curvature tensor

field of the Riemannian space (M, γ). The notation t
a1,a2,...,ar

b1,...,bk−1,0,bk+1,...bs
means the

contraction of the tensor t
a1,a2,...,ar

b1,...,bk−1,i,bk+1,...,bs
with yi. The next results deal with

the canonical connection of the homogeneous geometrical model
(0)

M

(2n)

.
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Proposition 3.1. Let
(0)

D be the canonical connection of the homogeneous geomet-

rical model of a Riemannian space (M, γ).

a. In the adapted basis
(

δ
δxi ,

∂
∂yi

)
, the torsion tensor field of

(0)

D has the following

components

(3.1) T i
jk = 0, Ri

jk = ri
0jk ,

(3.2)
(H)

P

i

jk= 0,
(V )

P

i

jk= 0, Si
jk = 0,

and the curvature tensor field of
(0)

D has the following components

(3.3)
(H)

R

i

hjk= ri
hjk + rm

0jk · γi
hm,

(3.4)
(V )

R

i

hjk= ri
hjk −

1

F 2
· δi

h · r0
0jk ,

(3.5)
(H)

P

i

hjk=
(V )

P

i

hjk=
(H)

S

i

hjk=
(V )

S

i

hjk= 0.

b. In the adapted basis
(

δ
δxi ,

∂
∂yi

)
the Ricci tensor field of

(0)

D has the following

components

(3.6) Rij = rij+
(1)
r ij ,

(3.7)
(1)

P ij=
(2)

P ij= Sij = 0,

where rij are the local components of the Ricci tensor field of (M, γ) Riemannian

space and
(1)
r ij= rm

0jn · γn
im.

c. The scalar curvature of
(0)

D is given by

(3.8) R = r + r1,

where r is the scalar curvature of (M, γ) Riemannian space and r1 = γij ·rm
0jn ·γn

im.

Concerning the homogeneous geometrical model of a Riemannian space we will
answer to the following questions

A. Which are the Einstein equations of the model?

B. Which are the physical implications of the electromagnetic fields?

C. Which are the EYM equations of the model?

A. In the adapted basis
(

δ
δxi ,

∂
∂yi

)
, the Einstein equations (for these equations we

refer to [14]) of the test space, are as follows

(3.9) Rαβ −
1

2
R · GαβK · Wαβ ,

where Wαβ are the local components of the stress–energy tensor field. The above
results together with (3.9) lead to

Theorem 3.2. In the adapted basis
(

δ
δxi ,

∂
∂yi

)
the Einstein equations of the ho-

mogeneous geometrical model are

(3.10) rij+
(1)
r ij −

1

2
· (r + r1) · γij = K·

(H)

W ij ,
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(3.11)
1

2F 2
· (r + r1) · γij = −K·

(V )

W ij

(3.12)
(H,V )

W ij= 0,
(V,H)

W ij= 0,

where
(H)

W ij ,
(H,V )

W ij ,
(V,H)

W ij and
(V )

W ij are the local components of stress–energy

tensor field in the adapted basis
(

δ
δxi ,

∂
∂yi

)
.

We remark that the mixed stress–energy tensor fields vanishing. Moreover, the
projection of Einstein equation (3.9) on the basis manifold M (namely (3.10)) is a
perturbation of the classical Einstein equation on the Riemannian manifold (M, γ).

In fact the term of the perturbation is given by pij =
(1)
r ij − 1

2 · r1 · γij .

B. We will determine the local components of the electromagnetic field of the our
model. For this reason, we will calculate the local components of so-called deflection
tensor field. It is known that in Lagrange geometry approach the above mentioned
tensor field has the local components given by

(3.13) Di
m = yi

|m, di
m = yi |m .

In the our case we have the following particular expresion for the deflection tensor
field

(3.14) Di
m = 0, di

m = δi
m −

1

F 2
· ym · yi.

The covariant expresion of the deflection tensor field is useful in order to determine
the form of the electromagnetic tensor field. Its local components are as follows

(3.15) Dij = gik · Dk
j , dij = hik · dk

j .

We recall that, in the general setting of the Lagrange spaces, the h– and v– local
components of the electromagnetic tensor fields are given by

(3.16) Fij =
1

2
(Dij − Dji) , fij =

1

2
(dij − dji) .

Using the above formulas we remark that in the our geometrical model, the elec-
tromagnetic tensor fields vanishing

(3.17) Fij = 0, fij = 0.

C. In the last part of this section we deal with the generalized EYM equations of

the model
(0)

M

(2n)

endowed with the canonical linear connection
(0)

D . The basic ideas
for the development of the gauge theory on the total space of the tangent bundle
are given in [3, 6, 7, 8, 10, 14, 16, 18]. For a better understanding of the next
results, we recall some basic definitions from the Lagrange gauge theory.

Let M be a real, n−dimensional, differentiable manifold, and let

(3.18)

{
xi = xi (x) , det

(
∂xi

∂xj

)
6= 0,

ya = ∂xa

∂xb yb, i, a = 1, n,

be the local coordinate transformations on TM . If γij (x) is a Riemannian metric
tensor field on M, then M can be endowed with the nonlinear connection N ={
N i

j (x, y)
}

(see [11, 14]), where

(3.19)
N i

j (x, y) = γi
jk (x) · yk

γi
jk = 1

2 · γis · (∂jγsk + ∂kγjs − ∂sγjk) , ∂k = ∂
∂xk .
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This provides the corresponding adapted basis for χ (TM), namely

(3.20)
δi = δ

δxi = ∂
∂xi − N

j
i (x, y) ∂

∂yj

•

∂a= ∂
∂ya , i, a = 1, n.

A gauge transformation on TM (see [3, 4, 6, 14]) is an element of a fixed subgroup
of automorphisms of the tangent bundle, locally given by

(3.21)

{
xi = X i (x̃) , det

(
∂Xi

∂exj

)
6= 0

ya = Y a
b (x̃) · ỹb, det (Y a

b (x̃)) 6= 0

The natural compatibility with respect to the coordinate transformations (3.18) is
satisfied.

A linear d–connection on TM (see [8, 14]), whose associated h– and v– covari-
ant derivatives preserve the gauge tensorial character of the gauge tensor fields, is
called a generalized gauge linear d–connection. The nonlinear connection N , which

provides the local adapted basis
(
δi,

•

∂a

)
, is called a generalized gauge nonlinear

connection (see also [6, 5, 7, 16, 18]). A gauge d–connection D on TM is said to be
compatible with the metrical structure G if it satisfies the condition DXG = 0, for
all X ∈ X (TM). In the adapted basis, any gauge d–connection on TM can be rep-

resented as in (2.6) (the system of functions (
(H)

F

i

jk,
(V )

F

i

jk ,
(H)

C

i

jk ,
(V )

C

i

jk) represents
the local coefficients of the above d–gauge connection D). It is not difficult to prove
that if the canonical connection is a gauge one then the corresponding torsion and
curvature tensor fields are gauge d–tensor fields.

From now on let us suppose that the canonical connection of the model is a
gauge one with respect to the gauge transformations (3.21). As concerns the gauge
theory on the our model one can prove the following results

Proposition 3.3. The following Lagrangians

L2 = Ri
jk · Rjk

i , L11 = R
ij
ij , L12 =

(V )

R

i

hjk ·
(V )

R

hjk

i , L21 =
(H)

R

i

hjk ·
(H)

R

hjk

i

are gauge invariants with respect to the gauge transformations (3.21) and to the

local coordinates transformations (3.18), respectively.

Next, we will work with a full gauge Lagrangian, defined by

(3.22) L = n2L2 + n11L11 + n12L12 + n21L21,

where n2, n11, n12, n21 are arbitrary real numbers. We consider the following
Lagrangian density:

(3.23) l = L · G, G = (det (gij))
1
2 · (det (hab))

1
2

which depends only on the generalized gauge fields Φ ∈ {gij , hij , N i
j , γi

jk ,
(V )

C

i

jk}.

Proposition 3.4. The solution of the variational problem δ
∫

dnxdny = 0, is the

same with the solution of the following system of equations

(3.24)
δL

δΦ
≡

∂

∂xj

(
∂L

∂
(

∂Φ
∂xj

)
)

+
∂

∂yj


 ∂L

∂
(

∂Φ
∂yj

)


−

∂L

∂Φ
= 0

Moreover, the gauge derivatives δL
δΦ are invariant to the gauge transformations

(3.21) and to the local coordinates transformations (3.18), respectively. Before we
state the last result of this paper we make the following notations

(3.25) Dm = Dm +
DmG

G
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(3.26) ω
jkl
i = γjk · δl

i

Theorem 3.5. Let α, β be the arbitrary real constants. The Einstein Yang Mills

equations generated by the full Lagrangian L, the d–canonical connection
(0)

D and

the generalized gauge fields Φ ∈ {gij , hij , N i
j , γi

jk,
(V )

C

i

jk} are the following

(3.27) n2DmR
mj
i + n12 ·

1

F 6
· yi ·


(V )

R

hj0

h + γ0
0r ·

(V )

R

hrj

h


 = 0

(3.28) Dm

[
4n21 · α·

(H)

R

jkm

i +4n12 · β·
(V )

R

jkm

i +n11 · α ·
(
ω

jkm
i − ω

jmk
i

)]
= 0

(3.29) n12 · R
k
mn·

(V )

R

jmn

i = 0

(3.30)
∂L

∂γij

+
1

2
· γij · L = 0

(3.31)
∂L

∂hij

+
1

2
· hij · L = 0

4. Conclusions

We remark that the theory we proposed in this paper works only for the case
when the space test is without charges (see (3.17)). The Einstein equations of
the our model projected on the basis manifold M (see (3.10)) are perturbations of
the classical Einstein equations on the basis manifold M . For this reason the our
Einstein equations can explain some unknown aspects in classical Einstein’s theory
(for another approach see [16]). The gauge equations (3.27)–(3.31) look like those
from [6]. Consequently, they may be solved in the same manner. Finally we remark
that, if on the basis manifold a Finsler function is given, the our theory could be
developed too.
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