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We have performed a FCI-quality benchmark calculation for the tetramethyleneethane molecule
in cc-pVTZ basis set employing a subset of CASPT2(6,6) natural orbitals for the FCIQMC calcula-
tion. The results are in an excellent agreement with the previous large scale diffusion Monte Carlo
calculations by Pozun et al. and available experimental results. Our computations verified that
there is a maximum on PES of the ground singlet state (1A) 45◦ torsional angle and the correspond-
ing vertical singlet-triplet energy gap is 0.01 eV. We have employed this benchmark for assessment
of the accuracy of MkCCSDT and DMRG-tailored CCSD (TCCSD) methods. MR MkCCSDT with
CAS(2,2) model space, though giving good values for the singlet-triplet energy gap, is not able to
properly describe the shape of the multireference singlet PES. Similarly, DMRG(24,25) is not able
to correctly capture the shape of the singlet surface, due to the missing dynamic correlation. On the
other hand, the DMRG-tailored CCSD method describes the shape of the ground singlet state with
an excellent accuracy, but for the correct ordering requires computation of the zero-spin-projection
component of the triplet state (3B1).

INTRODUCTION

Tetramethyleneethane (TME), the simplest disjoint non-
Kekulé diradical firstly synthesized by Dowd [1], has due to
its complex electronic structure been often used as a bench-
mark system for the state-of-the-art multireference compu-
tational methods [2–6]. Its complexity comes out of the
fact that it contains a nearly degenerate pair of the fron-
tier orbitals, which tend to be localized on separate allyl
subunits [6] and are occupied by two electrons. Moreover,
TME possesses a degree of freedom corresponding to the
rotation about the central C-C bond (maintaining D2 sym-
metry, see Figure 1) and the energetic ordering of these two
frontier orbitals and consequently their occupation in the
lowest singlet state changes along the rotation [7]. As a re-
sult, determining the relative stability of the lowest singlet
and triplet states turned out to be a big challenge for both
experimental and theoretical methods.

FIG. 1: The studied process of a rotation of the TME
allyl subunits about the central C-C bond. Carbon atoms

are colored brown, hydrogens are white.

The first experimental electron paramagnetic resonance

(EPR) results predicted TME to have a triplet ground state
[1], when stabilized in a matrix with a torsional angle be-
ing approximately 45◦ [8, 9]. The predicted triplet ground
state attracted a lot of interest in TME for its potential use
as an organic magnet [10]. However, photo-electron spec-
troscopy of the TME− ion strongly suggested TME to have
the singlet ground state at the torsional angle correspond-
ing to 90◦ [11], similarly as the EPR experiments on TME
derivatives [12, 13].

Several theoretical studies using different level of approx-
imations [2–4, 14–18] have step by step contributed to un-
derstanding of the electronic structure of the TME diradi-
cal. Nevertheless, only the work of Pozun et al. employing
the large scale diffusion Monte Carlo (DMC) calculations
[6] finally reliably established the magnitude of the singlet
triplet gap and also the shape of the singlet potential energy
surface (PES).

The main conclusions tell us that the correct theoreti-
cal description of the multireference singlet state (1A) re-
quires all of the following conditions being fulfilled, namely
the flexible-enough atomic basis set, the proper description
of the static correlation with the minimum active space
comprising of six π-orbitals, and a proper treatment of the
dynamic correlation (at least at the level of the second-
order perturbation theory). All this make TME a very
delicate molecule and indeed the perfect benchmark sys-
tem for state-of-the-art multireference methods. Moreover,
TME serves as a model system for more complicated dis-
joint diradicals.

In the present work, we follow [6] and compute the sin-
glet, as well as triplet twisting PESs of TME. Firstly,
we provide the full configuration interaction (FCI) quality
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data by the FCI quantum Monte Carlo (FCIQMC) method
[19–22], whose accuracy is justified by an excellent agree-
ment with DMC results of Pozun et al. [6] and available
experimental data. Secondly, we compare the results of
the Hilbert space Mukherjee’s multireference coupled clus-
ters (MR MkCC) [23–31] and the recently developed cou-
pled clusters with single and double excitations tailored by
the density matrix renormalization group method (DMRG-
TCCSD) [32] against the FCIQMC benchmark.

The paper is organized as follows: in Sec. II, we give a
very brief overview of the used computational approaches
and the actual computational details, the next Section sum-
marizes the results with discussion, and the final Section
closes with conclusions and outlook.

OVERVIEW OF COMPUTATIONAL APPROACHES

In this Section we, for completeness, sketch the main con-
cepts and ideas of the employed computational approaches.

FCI quantum Monte Carlo

The FCIQMC method [19, 20, 22, 33], originally devel-
oped by one of us, is a stochastic approach performing a
long time integration of the imaginary-time Schrödinger
equation which is capable of converging onto the FCI solu-
tion for much larger orbital spaces than the exact diagonal-
ization allows. In contrast to DMC, FCIQMC sample the
Slater determinant space by an ensemble of walkers that
move around randomly.

Master equations governing walkers’ population dynam-
ics are given by

− dNi
dτ

= (Hii − S)Ni +
∑
j 6=i

HijNj , (1)

where τ is imaginary time, Ni the walker population on
determinant i, S the energy shift parameter controlling the
total walker population, and Hij Hamiltonian matrix ele-
ments in the basis of Slater determinants. When employ-
ing the stochastic approach, individual walkers evolve ac-
cording to a simple set of rules which include spawning,
death/cloning and most importantly also annihilation pro-
cesses [19].

We have used the semi-stochastic method with real
walker weights [21], in which part of the imaginary-time
propagation (Eq. 1) is performed exactly (deterministic
space) and the rest stochastically. Such an approach in
fact greatly reduces stochastic errors.

Mukherjee’s coupled clusters

The MR MkCC approach formulated by Mukherjee et
al. [23] and later on developed by others, including one

of us [5, 24–31, 34, 35], is a state specific Hilbert-space
multireference coupled cluster method. Consequently, the
MkCC wave function |ΨMkCC〉 is expressed by means of the
Jeziorski-Monkhorst ansatz

|ΨMkCC〉 =

M∑
µ=1

cµe
T (µ)|Φµ〉. (2)

In Eq. 2, |Φµ〉 are the reference functions spanning the
model space (in our case complete) and T (µ) the reference-
dependent cluster operators. The cµ coefficients as well as
the desired energy are obtained by diagonalization of the
effective Hamiltonian matrix, whose elements read

Heff
µν = 〈Φµ|e−T (ν)HeT (ν)|Φν〉, (3)

with H being the Hamiltonian operator.
The MkCC method is superior to the related Hilbert-

space multireference method based on the Brillouin-Wigner
CC theory due to its exact size extensivity. Though not
completely free of problems, the MkCC approach is reliable
for small model spaces and indeed the method of choice for
electronic structure studies of diradicals. In the present
work, we have employed the MR MkCC methods including
single and double (MkCCSD) and single, double, and triple
excitations (MkCCSDT).

DMRG-based tailored coupled clusters

The tailored CC (TCC) approach was formulated by Ki-
noshita et al. [36] and belongs to the class of so called
externally corrected CC methods. The TCC wave function
expansion employes the split-amplitude ansatz used previ-
ously by Piecuch et al. [37, 38]

|ΨTCC〉 = eT |Φ0〉 = eText+TCAS |Φ0〉 = eTexteTCAS |Φ0〉, (4)

i.e. the cluster operator is split up into its active space
part (TCAS) and the remaining external part (Text). Since
|Φ0〉 is a single-determinant reference wave function, both
of the aforementioned cluster operators mutually commute,
which keeps the methodology very simple.

The TCAS amplitudes are supposed to be responsible for
a proper description of the static correlation. They are
computed from the complete active space configuration in-
teraction (CASCI) wave function coefficients and are kept
frozen during the CC iterations. Only the Text part, which
is responsible for a proper description of the dynamic cor-
relation, is being optimized.

Recently, some of us have developed the DMRG-TCCSD
method, i.e. coupled clusters with single and double exci-
tations tailored by matrix product state (MPS) wave func-
tions (wave functions produced by the DMRG algorithm
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[39, 40]) [32]. This approach replaces CASCI of the orig-
inal TCC method by DMRG and thus allows employing
much larger active spaces. It has indeed proven itself a re-
liable method suitable for difficult multireference problems
requiring larger active spaces [32].

Computational details

We have performed constrained geometry optimizations
for seven values of the torsional angle along the twist-
ing process. Geometries were optimized for both states
(1A, 3B1) with the complete active space second order per-
turbation theory (CASPT2) as implemented in the MOL-
PRO package [41]. The CASPT2 calculations were car-
ried out using the active space comprising of six π or-
bitals, CAS(6,6), and cc-pVTZ basis [42]. Only the first
60 CASPT2(6,6) natural orbitals sorted according to their
occupation numbers were kept for the correlation treatment
by the FCIQMC, MR MkCC, DMRG, and DMRG-TCCSD
methods, the rest was dropped. We have chosen this strat-
egy rather than employing a smaller basis, e.g. 6-31G/6-
31G*, which would still be manageable by the massively
parallel FCIQMC implementation [33], as it was clearly
demonstrated in [6], that a triple-ζ basis with f functions
on the C atoms is essential for the proper description of the
singlet (1A) PES (see Section with results and discussion
for further comments).

For the FCIQMC calculations, we have employed the fol-
lowing computational protocol: (1) equilibration computa-
tions with 10 million walkers; (2) generation of FCIQMC
natural orbitals [22] (for faster convergence with the num-
ber of walkers) with 50-million-walker computations; (3)
subsequent 100, 500, and 1000-million-walker computa-
tions with the FCIQMC natural orbitals. We have used
the initiator version of the FCIQMC method as imple-
mented in the NECI program package [43]. Moreover,
to greatly reduce stochastic errors, we have employed the
semi-stochastic method with real walker weights [21] and,
in case of the largest 1000-million-walker computations, 50
thousand most populated determinants in the deterministic
space.

MR MkCC calculations were performed with the com-
plete model space comprising of the frontier orbitals,
CAS(2,2).

In all production DMRG calculations (those used for
generation of the active space CC amplitudes), we have
employed the dynamical block state selection (DBSS) pro-
cedure [44, 45] with the truncation error criterion set to
5 · 10−6, which resulted in bond dimensions varying in the
range of 1000−8000. The orbitals for DMRG active spaces
were chosen according to their single-orbital entropies (Si),
in particular for CAS(6,6) Si > 0.3, in case of CAS(12,12)
Si > 0.1, and for CAS(24,25) Si > 0.075. As usually, the
DMRG active space orbitals were split-localized [46]. The
Fiedler method [47, 48] was used for optimization of the
orbital ordering and DMRG runs were initialized using the

CI-DEAS procedure [49, 50].
In all DMRG-TCCSD calculations, we have employed

the frozen core approximation. Apart from the high spin
triplet (ms = 1), for the reasons discussed below, we have
also calculated the low spin triplet components (ms = 0).
Such calculations were indeed realized by swapping (rota-
tion) of the open-shell β spin-orbitals and finally closed-
shell computations employing the unrestricted versions of
the DMRG [51] and TCCSD codes (the molecular orbital
integrals become spin-dependent).

RESULTS AND DISCUSSION

The FCIQMC PESs of the singlet (1A) as well as the
triplet state (3B1) corresponding to the twisting process
are shown in Figure 2. We do not present the absolute
energies as they may not be fully converged with the num-
ber of walkers [52], however 1000 million walkers was the
maximum we could afford with 2000 CPU cores and the
relative energies are definitely not affected giving excellent
agreement with the DMC energies by Pozun et al. [6] and
available experimental data (see Table II).

One can observe a very similar shape of the singlet PES
as demonstrated by Pozun et al. [6], i.e. with its maximum
corresponding to the torsional angle of 45◦. The height of
this “hump” [E(45◦) − E(0◦)] calculated by the FCIQMC
method equals 0.05 eV. Pozun et al. [6] demonstrated that
a triple-ζ basis with f functions on the C atoms is essen-
tial to obtain a correct shape of the singlet PES with the
maxima at 45◦. We have performed additional FCIQMC
calculations for the torsional angles of 0◦, 45◦, and 90◦ with
the hybrid 6-31G/6-31G* including polarization functions
only on the two central C atoms (74 molecular orbitals in
total) to verify this conclusion. In fact, the energy dif-
ference between the points at 45◦ and 0◦ that we obtained
was zero within the statistical errors, which is in agreement
with [6].

The magnitude of the TME singlet-triplet energy gap is
indeed very small, corresponding to 0.01 eV as obtained
by the FCIQMC method. This is also the reason for the
originally wrong ground state triplet assignment by EPR
spectroscopy [1]. Weak EPR signal was apparently caused
by small population of the triplet state allowed by the ro-
tation about the central C-C bond.

In Figure 3, we present the MR MkCCSD, MkCCSDT
and DMRG(24,25) singlet (1A) and triplet state (3B1)
TME PESs. TCCSD PESs are shown in Figure 4.

As can be observed in Figure 3, the MR MkCCSD
method gives wrong state ordering for all points along the
twisting process except for one (0◦). Inclusion of triple
excitations (MR MkCCSDT) in fact corrects this behav-
ior. Nevertheless, nor the MR MkCCSDT method with
CAS(2,2) model space is able to properly describe the PES
of the singlet state with the apparent maximum at the tor-
sional angle of 45◦. There is actually an indication of an
arising maximum on the MR MkCCSDT singlet PES close
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FIG. 2: The FCIQMC singlet (1A) and triplet state (3B1)
twisting PESs of TME. Vertical lines correspond to errors

calculated by the blocking analysis [53].

to 45◦, however it is still too flat. Either enlargement of the
model space as suggested by Pozun et al. [6] or inclusion
of higher (quadruple) excitations is probably necessary for
the correct singlet state description. We have not pursued
any of these possibilities, mainly due to considerably higher
computational demands. Moreover, larger model spaces [in
our case ideally CAS(6,6)] are not recommended for the
Hilbert space multireference coupled cluster methods due
to the so called proper residual problem [54].

Figure 3 also depicts the DMRG(24,25) PESs. One can
see the correct ordering of both spin states, however the sin-
glet (1A) PES also does not possess the right shape. The
singlet state energy is correctly increasing when going from
the torsional angle of 0◦ to 45◦, but does not sufficiently
decrease for 45◦ to 90◦. Apparently, the missing dynamic
correlation has an important effect on this part of the sin-
glet PES, changing its shape qualitatively.

The TCC results from Figure 4 indicate that the TCCSD
method is successful in recovering a major part of the miss-
ing dynamic correlation and thus properly describes the
singlet PES. The effect of enlarging CAS is graphically de-
picted in Figure 4a and numerically by comparison with
the FCIQMC benchmark in Table I. One can observe that
the value of the twisting energy barrier [E(45◦) − E(0◦)]
is decreasing with enlarging CAS and also improving to-
wards the FCIQMC benchmark, eventually giving an excel-
lent agreement for TCCSD(24,25) with the error of −0.005
kcal/mol.

Nevertheless, the shape of the singlet PES is only a part
of the story. In case of the spin state ordering, even the
TCCSD method is not completely free of problems. When
calculating the high spin triplet component (ms = 1),
TCCSD(24,25) gives a wrong ordering of both spin states
near the torsional angle of 45◦ (see Figure 4b). The reason
for this behavior is obviously a fact that at 45◦, both spin
states very much differ in their character, triplet dominated
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FIG. 3: The MR MkCCSD, MkCCSDT, and
DMRG(24,25) singlet (1A) and triplet state (3B1)

twisting PESs of TME.

Method E [kcal/mol] ∆E [kcal/mol]
TCCSD(6,6) 2.527 1.395

TCCSD(12,12) 1.577 0.445

TCCSD(24,25) 1.127 −0.005

TABLE I: The TME singlet state (1A) twisting energy
barrier calculated by the TCCSD method with various
CASs and the energy differences from the FCIQMC

benchmark.

by a single determinant, whereas singlet being strongly
multireference with the two determinants (HOMO2LUMO0

and HOMO0LUMO2 [55]) of practically equal weight. This
is actually the worst case scenario for the TCC method,
which even though we call a multireference CC, strictly
speaking uses a single reference determinant and may be
slightly biased in such “degenerate” situations. Taking into
account that the TME singlet-triplet energy gap is really
small (0.2 kcal/mol by FCIQMC), the aforementioned fact
results in wrong state ordering.

To verify our assumptions, we have also calculated the
low spin triplet component (ms = 0). It is strongly mul-
tireference as well, since it can be qualitatively described
by a combination of two determinants (HOMOαLUMOβ
and HOMOβLUMOα) with equal weights. Our aim was to
eliminate to some extent the bias towards one of the two
equally important determinants by calculating the states of
a similar character. Figure 4b proves that such an approach
gives correct spin state ordering.

Last but not least, Table II compares the singlet-triplet
energy gaps for the torsional angles of 45◦ and 90◦ calcu-
lated by different methods with the DMC result of Pozun
et al. [6] and available experimental data. One can no-
tice results of a similar quality for the MR MkCCSDT and
TCCSD(24,25)ms=0 methods, where the fact that the for-
mer method includes single, double, and triple excitations
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FIG. 4: The TCCSD PESs of TME. (a) Singlet state (1A) PES calculated with different CAS sizes. (b) Singlet and
triplet state (3B1) PESs calculated by the TCCSD(24,25) method.

whereas the later only single and double excitations should
be emphasized.

Method ∆ET-S [eV]
45◦ 90◦

MkCCSD −0.12 −0.03

MkCCSDT 0.07 0.15

DMRG(24,25) 0.05 0.13

TCCSD(24,25)ms=1 −0.09 0.04

TCCSD(24,25)ms=0 0.07 0.20

FCIQMC 0.01 0.13

best available 0.02a 0.13 ± 0.013b

TABLE II: The TME singlet-triplet energy gaps
corresponding to the torsional angles of 45◦ and 90◦

calculated by different methods. aDMC result [6],
bphoto-electron spectroscopy result [11].

CONCLUSIONS

We have presented the FCIQMC benchmark data for the
twisting process of the TME diradical which give an excel-
lent agreement with the previous DMC and available ex-
perimental results. Our computations verified that there is
a maximum on PES of the ground singlet state (1A) corre-
sponding to the torsional angle of 45◦. At this point, there
is also the smallest vertical singlet-triplet energy gap of 0.01
eV as provided by FCIQMC.

Against the FCIQMC benchmark data, we have critically
assessed the accuracy of the MR MkCC and TCC methods.
We have found out that the MR MkCCSD method is not
able to correctly predict the ordering of both lowest lying
spin states and that the MR MkCCSDT, though giving
good values for the singlet-triplet energy gap, is, due to

the small CAS(2,2) model space, not able to properly de-
scribe the shape of the multireference singlet PES. On the
other hand, the TCCSD method describes the ground sin-
glet state with an excellent accuracy, but for the correct
ordering requires computation of the low-spin component
of the triplet state (3B1).

Taking into account strengths and weaknesses of the em-
ployed MR CC approaches, we propose a combination of
both of them, namely a multireference generalization of
the tailored CC method. Such an approach, based on the
Jeziorski-Monkhorst ansatz (Eq. 2), i.e. employing differ-
ent sets of CC amplitudes for each reference determinant,
and MR cluster analysis [56] of the MPS wave function,
is currently being developed by some of us and will be a
subject of the follow-up paper.
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