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Abstract. Some recent results related to the P-adic derivatives and integrals
are surveyed. Applications of the Henstock-Kurzweil P-integral and the Perron
P-integral to the problem of recovering the coefficients of series with respect
to the Vilenkin system and the Haar system (both in one dimension and in
higher dimensions) are discussed. The case of the continual analogue of the
Vilenkin system is also considered.

1. Introduction

There are many areas in harmonic analysis which require integration processes
more powerful than the Lebesgue integration and which involve some kinds of gener-
alized derivatives. For example some important methods of summation of trigono-
metric series are based on symmetric derivatives of different orders. In particular
the basic notion of the Riemann theory of trigonometric series is the Riemann-
Schwarz second order symmetric derivative. Generalized integrals which solve the
problem of recovering the coefficients of convegent trigonometric series from their
sums, are also based on symmetric derivatives (see [58]).

In the case of the dyadic harmonic analysis and its P-adic generalization, a role
similar to the one of symmetric derivatives in the classical trigonometric case, is
played by derivatives and integrals defined in terms of dyadic or more general P-adic
basis of differentiation.

In Section 3 of this paper we survey some new results related to the dyadic and
P-adic derivatives and integrals. Our primary concern here is Henstock-Kurzweil
theory of integration in application to the dyadic and the P-adic bases.

In Section 4 we consider some application of those derivatives and integrals to the
theory of series with respect to Walsh, Haar and Vilenkin multiplicative systems
and first of all, to the problem of recovering the coefficients of those series from
their sums by generalized Fourier formulas. An extention of these results to the
case of multiplicative transforms is given in Section 5.
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We should underline that talking about dyadic and P-adic derivatives and in-
tegrals we do not refer to the popular notions introduced by Butzer and Wagner
and widely used nowadays in dyadic analysis (see [37]), but we have in mind more
classical concepts of differentiation and integration with respect to the dyadic or P-
adic interval bases. (In some literature, see for example [36], this kind of derivatives
are called the derivatives with respect to a sequence of nets). This unfortunate but
already established double meaning of the terms will not cause any confusion here
because only the latter concept are discussed in this paper.

2. Preliminaries

The Vilenkin multiplicative systems are known to be the groups of characters
of the respective compact abelian 0-dimensional groups. In particular the Walsh
system is the group of characters of the Cantor dyadic group. Therefore those
0-dimensional groups represent natural domains on which the functions from this
systems are defined, and the group structure plays an important role in the whole
Walsh-Fourier and Vilenkin-Fourier analysis.

But in some cases it is more convenient having mapped those groups on the unit
interval [0, 1), to identify them with this interval and to use real line terminology
also for elements of factor-groups of those groups. It is a point where the respective
P-adic intervals appear in this theory.

We recall some basic notations and definitions. For the sake of simplicity we
restrict ourself here to a special case of Vilenkin 0-dimensional groups, namely P-
adic groups which are defined by sequenses P of natural numbers as follows. For a
fixed sequence of natural numbers

(1) P = {pj}∞j=0, pj ≥ 2

we define a group G(P) of sequences x = {xj}∞j=0 where xj are integers,

0 ≤ xj ≤ pj − 1

for all j ≥ 0, and the group operation is defined as coordinatewise addition module
pj for the jth coordinate. So the group G(P) is in fact the direct product of the
discrete cyclic groups Zpj .

For the sequence P we put

(2) m0 = 1 and mk =
k−1∏
s=0

ps for k ≥ 1.

Then each non-negative integer n has a unique representation of the form

n =
∞∑

k=0

nkmk,

where each nk is an integer satisfying 0 ≤ nk < pk. Using this representation, the
characters χn of the group G(P) can be described as

(3) χn(x) = exp

(
2πi

∞∑

k=0

xknk

pk

)
.

We get in this way a family of Vilenkin multiplicative systems, each one corre-
sponding to a fixed sequence P (see [1] for details). In a special case when the
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elements pj of the sequence (1) are identically 2 we get the Walsh system in Paley
enumeration.

Considering an element x = {x0, x1, x2, . . . , xj , . . .} of the group G(P) as a se-
quence of the coefficients of the P-adic expansion

∞∑

j=0

xj

mj

of a number λ(x), we can map this group on the interval [0, 1). This mapping is
one-one if we agree to accept only finite expansions for P-adic rational points of
[0, 1), i.e. points of the form r/mk, r = 0, 1, . . . , mk. In this way we can consider
the above system of characters χn as an orthogonal system of functions on [0, 1).

For a fixed sequence (1) we consider intervals

(4)
[

r

mk
,
r + 1
mk

]
= I(k)

r , r = 0, 1, . . . ,mk − 1.

For a fixed k = 0, 1, . . ., we call those intervals P-adic intervals (or simply P-
intervals) of rank k. It is worth noting that under above mapping λ the interval
I
(k)
0 is the closure of the image, under mapping λ, of a subgroup of the group G(P)

defined for k ≥ 1 as Gk(P) = {x : x0 = x1 = . . . = xk−1 = 0}, and the intervals
I
(k)
r are the closure of the images of the respective cosets of this subgroup in the

group G(P).
In what follows we shall identify a group element x with its image λ(x). Note

that for each P-adic irrational point x, there exists only one P-interval

I(k)
x = [ak(x), bk(x)]

of rank k containing x so that {x} =
⋂∞

k=0 I
(k)
x and we say that the sequence {I(k)

x }
of nested P-intervals is the basic sequence of P-intervals convergent to x. If x
is a P-adic rational point different from 0 and 1, then there exist two decreasing
sequences of P-intervals for which x is a common end-point starting with some k,
i.e. for such a point we have two basic sequences convergent to x: the left one and
the right one.

Another orthogonal system which appears often in dyadic analysis is the Haar
system. Although it is not a system of characters of any group it is very popular in
harmonic analysis as being the simplest example of a wavelet system. It is closely
related to the Walsh system and many problems in the Walsh-Fourier analysis can
be reduced to the respective problems in terms of the Haar series (see [4], [18],
[62]). We define the Haar system {hn} on the unit interval [0, 1], using open dyadic
intervals in the following way. Let h0(x) = 1 for all x ∈ [0, 1]. If

n = 2k + j, j = 0, . . . , 2k − 1, k ≥ 0,

we put

hn(x) =





2k/2 if x ∈ ( 2j
2k+1 , 2j+1

2k+1 ),

−2k/2 if x ∈ (2j+1
2k+1 , 2j+2

2k+1 ),

0 if x ∈ [0, 1]\( j
2k , j+1

2k ).

At 0 and 1 the functions hn are defined by continuity from inside of (0, 1), and at
the points where the Haar functions are left undefined up to now let them be equal
to the average of their left and right limits.



210 VALENTIN SKVORTSOV

We shall consider also a multidimensional setting. The multiple Vilenkin system
is defined as m-dimensional sequence of products

χn(x) =
m∏

i=1

χni
(x(i)), x = (x(1), . . . , x(m)), n = (n1, . . . , nm).

In the same way the multiple Haar system {hn} is defined.
An interval in Rm is always a compact set

(5) [a1, b1]× [a2, b2]× · · · × [am, bm] with ai < bi, i = 1, 2, . . . , m.

A collection of intervals is called nonoverlapping whenever their interiors are dis-
joint. If each interval [ai, bi] in (5) is P-adic then m-dimensional interval (5) is also
called P-adic. More precisely, using notation (4) we call interval

I(k)
r = I(k1)

r1
× · · · × I(km)

rm
,

where k = (k1, . . . , km), r = (r1, . . . , rm), P-interval of rank k. Extending in a
natural way, to the m-dimensional case, the introduced above notion of the basic
sequence of P-intervals convergent to a point x, we denote this sequence by {I(k)

x }.
If all the coordinates of x are P-adic irrational then this m-dimensional sequence
is unique. If exactly s coordinates, of x, 0 ≤ s ≤ m, are P-adic rational then there
are 2s nested basic sequences convergent to x.

We denote by I the family of all intervals in Rm and by IP the family of all
m-dimensional P-intervals.

If E ⊂ Rm then |E| denotes the Lebesgue measure of E. The terms “almost ev-
erywhere” (br. a.e.) and “measurable” are always used in the sense of the Lebesgue
measure. A δ-neighborhood of x ∈ Rm is denoted by U(x, δ).

3. Integrals associated with P-adic derivate bases

P-adic integrals we are going to consider here are generalizations of the original
Henstock-Kurzweil integral and the classical Perron integral. A Riemann-type inte-
gral which turned out to be equivalent to the Denjoy-Perron integral was introduced
independently by J. Kurzweil in [24] and R. Henstock in [21] and [22] to integrate
real-valued functions defined on an interval of the real line. The idea of the def-
inition is very simple and is based on replacing in the definition of the Riemann
integral a positive constant δ which regulate the length of the intervals constituting
a partition, by a positive function δ defined on the interval of integration.

Definition 1. A function f defined on an interval [a, b] is said to be Henstock-
Kurzweil integrable (or HK-integrable) on [a, b], with HK-integral A, if for every
ε > 0 there exists a positive function δ on [a, b] such that

∣∣∣∣∣
n∑

i=1

f(ξi)(xi − xi−1)−A

∣∣∣∣∣ < ε ,

for any partition of [a, b] which satisfies conditions

ξi ∈ [xi−1, xi] ⊂ (ξ − δ(ξi), ξ + δ(ξi))

for any i = 1, 2, . . . , n, with x0 = a and xn = b. We write A = (HK)
∫ b

a
f .



HENSTOCK-KURZWEIL TYPE INTEGRALS IN P-ADIC HARMONIC ANALYSIS 211

Those original papers written in the late fifties gave rise to a general theory of
non-absolutely convergent integrals (see [20], [23], [27], [30], [32], [46]). A unifying
notion in this theory is that of derivate basis (or basis of differentiation). It is usually
defined in the classical abstract derivation theory as a family of sets contracting
to a point (see [17]). In the theory we are discussing here, somewhat more subtle
difinition is needed (see [23], [30], [56]).

A nonempty family B of subsets of the product I ×Rm is called a derivate basis
(or simply a basis) on Rm if certain conditions are fulfilled. We assume first of all
that all bases B are filtering down, i.e., for every β1, β2 ∈ B there exists β ∈ B such
that β ⊂ β1 ∩ β2 (let us agree that B does not contain the empty set). We shall
refer to the elements β of B as basis sets. In this paper we shall always suppose
that (I,x) ∈ β implies x ∈ I, although it is not the case in the general theory (see
[32]). Given a basis B, an interval I is called a B-interval if (I,x) ∈ β for some x
and some β ∈ B. For a set E ⊂ Rm and β ∈ B we write

β(E) = {(I,x) ∈ β : I ⊂ E} and β[E] = {(I,x) ∈ β : x ∈ E}.
All the bases B we shall consider in this paper are so-called Vitali bases, i.e., such
that for any x and for any δ > 0 there is a basis set β ∈ B such that the set β[{x}]
is nonempty and consists of only those pairs (I,x) for which I ⊂ U(x, δ). The
simplest derivate basis on Rm is the full interval basis. In this case, each basis set
corresponds to a positive function δ defined on Rm and called a gage. For a given
gage δ, we denote

βδ = {(I,x) : I ∈ I, x ∈ I ⊂ U(x, δ(x))}.
So the full interval basis is the family {βδ} where δ runs over the set of all possible
gages.

More general interval bases can be defined in a similar way by gages, if in the
above definition of basis sets only those intervals are used which satisfy some ad-
ditional properties. For example, if in the definition of the full interval basis we
replace arbitrary intervals with intervals (5) subject to the regularity condition

mini(bi − ai)
maxi(bi − ai)

≥ r

with some fixed r, 0 < r ≤ 1, then we get an r-regular interval basis. If we denote
the family of all the r-regular intervals by Ir then basis sets of the r-regular basis
are defined by gages as

βr
δ = {(I,x) : I ∈ Ir, x ∈ I ⊂ U(x, δ(x))}.

Our primary concern here is P-adic bases BP each of which corresponds to some
fixed sequence (1). Basis sets of BP are defined by gages as

βPδ = {(I,x) : I ∈ IP , x ∈ I ⊂ U(x, δ(x))}.
We get the P-adic r-regular basis Br

P if we define basis sets as

βPr
δ = {(I,x) : I ∈ IP ∩ Ir, x ∈ I ⊂ U(x, δ(x))}.

A finite collection π ⊂ β is called a β-partition if for distinct elements (I ′, x′)
and (I ′′, x′′) in π, the intervals I ′ and I ′′ are nonoverlapping. If a partition π =
{(Ii, xi)} ⊂ β(I) for some I ∈ I is such that ∪iIi = I, then we say that π is a
β-partition of I. We say that a basis B has the partitioning property if for any
B-interval I and for any β ∈ B there exists a β-partition of I. The partitioning
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property is not so trivial as it may seem to be at first glance. Whereas in the
particular case of the full interval basis on R this property has long been known as
the Cousin lemma, in the multidimensional case for some bases it was proved only
recently (see [15]), and for some bases the property is not valid at all or holds true
only in some weaker sense as it is in the case of the symmetric approximate basis
(see [58]). As for the P-adic bases, both regular and unregular, the partitioning
property for these bases can be established without difficulty.

Given a basis B, an interval function τ defined at least on all B-intervals is said
to be B-continuous (or continuous with respect to the basis B) at a point x if for
any ε > 0 there exists β ∈ B such that |τ(I)| < ε whenever (I,x) ∈ β[{x}]. A
B-interval function τ is said to be strongly B-continuous at x if for any ε > 0 there
exists δ > 0 such that |τ(I)| < ε for any B-interval I whenever x ∈ I and |I| < δ.

The upper derivative of a B-interval function τ at a point x with respect to the
basis B is defined as

DBτ(x) = inf
β

sup
{

τ(I)
|I| : (I,x) ∈ β[{x}]

}
.

Similarly, the lower derivative is defined as

DBτ(x) = sup
β

inf
{

τ(I)
|I| : (I,x) ∈ β[{x}]

}
.

If DBτ(x) = DBτ(x) 6= ±∞, we say that τ is B-differentiable at x and denote the
B-derivative by DBτ(x).

In some cases below we shall talk about B-derivative and B-continuity of a point
function F on R having in mind the respective notions for the associated with F
an additive interval function defined by τ(I) = ∆F (I) = F (d) − F (c), for each
B-interval I = [c, d].

The above notions of B-derivatives, if applied to the P-adic bases BP or Br
P will

be refered to as P-derivatives (or Pr-derivatives) with respective notations DPτ ,
DPτ , DPτ (or DPrτ , DPrτ , DPrτ). It is useful to note that in the case of the
P-adic basis the set βδ[{x}] is constituted by pairs (I(k)

x ,x) in which interval I
(k)
x

represent all basic sequences convergent to x.
For a basis B having the partitioning property, Definition 1 of integral can be

extended in the following way (see [23], [30]).

Definition 2. A function f defined on a B-interval J is said to be HB-integrable
on J with integral A if for every ε > 0 there exists a basis set β such that

∣∣∣∣∣∣
∑

(I,x)∈π

f(x)|I| −A

∣∣∣∣∣∣
< ε ,

for any β-partition π of J . We write A = (HB)
∫

J
f .

The HB-integral of a complex-valued function is defined in a natural way by the
integrals of its real and imaginary parts.

The HB-integral with respect to any basis can be given an equivalent Perron-
type definition (see [30]), where major and minor functions are defined by lower
and upper derivatives with respect to this basis.
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Definition 3. Let f be a function defined on a B-interval J . An additive B-interval
function M (resp. m) is called a B-major (resp. a B-minor) function of f on J if

(6) DBM(x) ≥ f(x) (resp. DBm(x) ≤ f(x)) for all x ∈ J.

A function f is said to be PB-integrable on J if

−∞ < inf
M
{M(J)} = sup

m
{m(J)} < ∞,

where “inf” is taken over all major functions M and “sup” is taken over all minor
functions m. The common value is denoted by (PB)

∫
J

f , and it is called the Perron
integral with respect to B or PB-integral of f over J .

Remark 1. If the major and minor functions in the above definition are assumed
to be B-continuous, then it is possible to permit a countable exeptional set in the
condition (6) getting an equvalent definition. In some cases (see Section 4) some
special uncountable exceptional sets are allowed but in such cases we have to assume
that the major and minor functions are strongly B-continuous (see [41], [43]).

In the case of the ordinary Perron integral on the interval of the real line, the
known Marcinkiewicz theorem (see [36]) states that a measurable function is Per-
ron integrable (and therefore also HK-integrable) if it has at least a single pair
of continuous major and minor functions. This theorem was extended to some
generalized Perron integrals (see [11]). But at the same time it was shown that
Perron integral with respect to symmetric basis and dyadic basis does not have the
Marcinkiewicz property (see [45], [52]).

In the case of the P-adic bases BP or Br
P we shall call the respective integrals in

short P-integral or Pr-integral, for the Henstock-type integrals, and PP -integral or
PPr-integral, for the Perron-type integrals. In the particular case of the sequence
P = {2, 2, . . . , 2, . . . } we get the well known dyadic integral, different versions of
which (including Henstock-type and Perron-type versions) were studied in numer-
ous papers (see [8], [19], [25], [31], [38], [44], [46], [52]). For P-integral see [9], [43]
and [50].

It is easy to check that if a function f is HB-integrable on J , then it is also
HB-integrable on each B-interval I ⊂ J . Therefore the indefinite HB-integral F (I)
is defined as an additive interval function at least on the family of all B-intervals
I ⊂ J . This function is B-continuous. As for B differentiability of F it depends on
whether the Vitali covering theorem holds true for this basis. For unregular bases
this theorem fails to be true (see [17]). But if we assume regularity conditions then
for a wide class of bases the indefinite integral is differentiable almost everywhere.
In particular we have

Proposition 1. The indefinite Pr-integral F of a function f Pr-integrable on a
P-interval J , is Pr-continuous at each point of J and it is Pr-differentiable a.e.
with DPrF (x) = f(x) a.e. on J .

As for the m-dimensional P-integral which is obviously included into Pr-integral,
we can state only its Pr-differentiability a.e.

We mention also an integral which is intermediate between the P-integral and
any of the Pr-integrals, 0 ≤ r ≤ 1. It is a generalization, for the P-adic case, of an
integral introduced by Mawhin in [29] (see also [26]). We shall call it P0-integral.
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Definition 4. A function f defined on P-interval J is said to be P0-integrable on
J with integral A if for each r ∈ (0, 1) f is Pr-integrable on J with integral A. We
write A = (P0)

∫
J

f .

This integral can be given an equivalent Perron-type definition.
Now we introduce a notion of variational measure generated by a function. This

notion is due to B. Thomson (see [56], [57]) and is very useful in describing classes
of indefinite HB-integrals and in obtaining in this way descriptive characterizations
of the integrals.

Given a basis B, a set E ⊂ Rm and an interval function τ , defined at least on
all B-intervals, we define

Vτ (E) = inf sup
∑

(I,x)∈π

|τ(I)| ,

where “sup” is taken over all π ⊂ β[E] and “inf” is taken over all basis sets β ∈ B.
We call Vτ the variational measure generated by τ with respect to the basis B. Note
that Vτ is a metric outher measure in Rm (see [57]) and so its restriction to the
Borel sets is a measure. A variational measure Vτ is called absolutely continuous
(with respect to the Lebesgue measure) on a set E if |N | = 0 implies Vτ (N) = 0
for any set N ⊂ E. It is easy to check (see [28] and [54]) that if a variational
measure is absolutely continuous then it is a measure also on the family of Lebesgue
measurable sets.

The following property is known for HB-integral associated with Vitali basis B
(see [30], [56]):

Proposition 2. The indefinite HB-integral F generates an absolutely continuous
variational measure VF with respect to B.

More delicate problem is a question whether the converse of this statement holds
for a particular bases. It was established recently that for some bases the converse
is true (see [5], [6], [7], [8], [10], [14], [28], [53], [59]) and it is not true in a general
case. In particular for the P-adic bases this result is true only in the case the
sequence (1) is bounded. In the one-dimensional case it is proved in ([9]):

Theorem 1. Let the sequence P be bounded. An additive P-interval function
F is the indefinite P-integral of a function f on a P-interval J if and only if
F generates an absolutely continuous variational measure with respect to BP and
DPF (x) = f(x) a.e. on J .

This theorem gives in fact a descriptive definition of the P-integral associated
with a bounded sequence P.

In higher dimension analogous descriptive characterization is obtained for the
dyadic integral in [53], and this result can be extended for the case of any bounded
sequence P.

As for any unbounded sequence P, it is shown in [9], by constructing an example,
that already in the one-dimensional case there exists an additive P-interval function
F which generates an absolutely continuous variational measure VF and which is
the indefinite P-integral of no P-integrable function.

The reason for this is the fact that the P-adic basis defined by an unbounded
sequence P fails to possess the so called Ward property. We say that a basis B
possesses Ward property if each additive B-interval function is B-differentiable a.e.
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on a set on which at least one of its extreme derivatives is finite. The following
theorem is proved in [9] for the one-dimansional case.

Theorem 2. A P-adic basis possesses the Ward property if and only if the sequence
P which defines this basis is bounded.

The necessity part of this theorem is proved by constructing the following ex-
ample.

Theorem 3. For any unbounded sequence P = {pj}∞j=0 there exist a closed set S
of positive measure and

(i) a continuous point function F on [0, 1] such that

(7) DPF (x) = +1 and DPF (x) = −1

for any x ∈ S;
(ii) a continuous point function G on [0, 1] such that

(8) DPG(x) = DPG(x) = +∞
for any x ∈ S.

The Ward property is used in the proof of Theorem 1 to establish the P-
differentiability a.e. of the function F , which generates an absolutely continuous
variational measure. But if B-differentiability a.e. of a function under consider-
ation is assumed in advance then that kind of discriptive characterization of the
HB-integral can be obtained for a wider class of bases. In particular we have the
following result for the multidimensional P-adic integrals.

Theorem 4. An additive P-interval function F is the indefinite Pr-integral of
a function f on a P-interval J if and only if F generates an absolutely contin-
uous variational measure with respect to Br

P and F is Pr-differentiable a.e. with
DPrF (x) = f(x) a.e. on J .

As multidimensional P-integral can fail to be P-differentiable a.e., then the pre-
vious statement is true for this integral only in one direction:

Theorem 5. If an additive P-interval function F generates an absolutely contin-
uous variational measure with respect to BP and F is P-differentiable a.e. with
DPF (x) = f(x) a.e. on J then F is the indefinite P-integral of f .

The following theorem can be obtained from Theorems 4 and 5 as a corollary.

Theorem 6. Let an additive P-interval function F be Pr-differentiable (or P-
differentiable) and DPrF (x) = f(x) (or DPF (x) = f(x)) everywhere on J outside
a set E with |E| = 0. If the variational measure, with respect to Br

P (BP), of E
is equal zero then f is Pr-integrable (respectively, P-integrable) on J and F is its
indefinite Pr-integral (P-integral).

This theorem together with the Ward property implies the following proposision
for the case of a bounded sequence P
Proposition 3. Let the sequence P be bounded and let the upper and the lower Pr-
derivatives of an additive P-interval function F be finite everywhere on a P-interval
J except on a countable set where F is P-continuous. Then its Pr-derivative f
(which exists a.e. by Ward property) is Pr-integrable on J and F is the indefinite
P-integral of f on J .
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We conclude this section with some remarks concerning relationship between the
class of P-adic primitives (in the one-dimensional case) and the classical ACG- and
V BG-classes which are known to play an important role in the theory of Denjoy
integrals (see [36]).

We say that a function is exact P-primitive if it has finite P-derivative every-
where. Following [36], we call the integral defined by such primitives, the Newton
P-integral. So the above primitives constitute the class of the indefinite integrals
in this sense.

It is shown in [44] that the indefinite P-integral in the dyadic case can fail to be
V BG and hence also to be ACG function. On the other hand it is proved in [38]
that all exact dyadic primitives belong to the (ACG) class (recall that a function
F is said to be (ACG) on E if E =

⋃
n En with F being AC on each En, so F is

not supposed to be continuous as it is in the definition of ACG).
It turns out however that this difference in the behavior of the indefinite integrals

in the Newton sense and in the Henstock-Kurzweil sense for the dyadic basis, is
rather an exception. Already in the case of the triadic basis (i.e. when pj = 3 for
each j ≥ 0 in (1)) a continuous exact P-primitive can fail to be a V BG function
and to satisfy Lusin condition (N) (see [9]).

On the other hand the function F , being exact P-primitive, is by Proposition 3
the indefinite P-integral of its P-derivative and so by Theorem 1, generates an
absolutely continuous P-variational measure. Hence we have got the following
result:

Theorem 7. There exists, on an interval of the real line, a continuous function
which generates absolutely continuous P-variational measure but which is not V BG
and does not satisfy Lusin condition (N).

In some literature (see [27]) a function generating an absolutely continuous vari-
ational measure is said to satisfy the strong Lusin condition. So in this terminology
we can say that strong Lusin condition with respect to P-adic basis does not imply
Lusin condition (N), in contrast with the case of usual interval basis and some
other bases (see [16]).

Another consequence of the above example is the fact that the Newton P-integral,
in the case of the triadic bases, and the Denjoy-Khintchine integral are noncompat-
ible. (As we have already mentioned, in the dyadic case the Newton P-integral is
(ACG) and this implies that it is compatible with the Denjoy-Khintchine integral.)

4. Application to the problem of recovering the coefficients

The problem of recovering the coefficients of orthogonal series from their sums is
a generalization of the uniqueness problem for the coefficients of orthogonal series.
It makes sense to consider this problem of recovering only for those orthogonal
systems for which some kind of the usual uniqueness theorem is already established.
The uniqueness can be related to pointwise convergent series or series which are
summable in a certain sense, and the convergence or summability can be supposed
everywhere or outside some exeptional set. It is natural sometimes to impose some
kind of growth condition on the coefficients or the partial sums of the series. (For
references to the literature on the rich theory of uniqueness of Walsh, Haar and
Vilenkin series, including subtle theory of sets of uniqueness, see [1], [18], [37], [61],
[63]. The classical trigonometric case is treated for example in [65])
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If the uniqueness theorem is proved for a certain system and so the coefficients
of an orthogonal series with respect to this system are uniquely determined by its
sum, then it is natural to expect that they may be recovered from the sum by
Fourier formulas, as it takes place in the simplest cases, for example in the case of
the uniform convergence. Indeed for many known systems (trigonometric, Haar,
Walsh, Vilenkin systems) it is true that every series with respect to those systems
which converge everywhere to a summable function, is the Fourier series of this
function. But the point is that the sum of everywhere convergent orthogonal series
can fail to be Lebesgue integrable. For example, it is known (see [65]) that the
series

∞∑

k=2

sin kx

ln k

converges everywhere but fails to be the Fourier-Lebesgue series. This kind of
examples can be given for the other above mentioned systems as well. To integrate
such series, one needs nonabsolutely convergent integrals. In the cases where the
sum is integrable in one or another known general sense, the question is whether
the coefficients can be determined by Fourier formulas in which the integral is
understood in the same particular sense. The complete solution of the problem
of recovering the coefficients of a convergent series with respect to some system
is found if a general process of integration is developed so that any everywhere
convergent series with respect to the considered system is the Fourier series of its
sum in the sense of the defined integral.

It is no wonder that the theory started with the classical trigonometric case.
Here the first solution of the problem of defining an integral so powerful that the
sum of any everywhere convergent series is integrable and the coefficients can be
computed by generalized Fourier formulas is due to Denjoy. He introduced in
[13] a very complicated definition of a second order integral called the totalization
T2s , which recaptures a function from its second Riemann symmetric derivative.
The difficulty of the T2s-totalization process which involves a transfinite sequence of
operations, led other authors to look for an easier solution of the coefficient problem.
J. Marcinkiewicz and A. Zygmund, J.C. Burkill, R.D. James and some other authors
produced a Perron type integrals reducing the problem to the one of recovering a
function from its second order symmetric derivative (see [58] for details). The
latest step in this direction was done by D. Preiss and B. Thomson in [34] who
produced a first order Henstock-Kurzweil type integral which itegrates approximate
symmetric derivatives. As for the multidimensional case, the uniqueness problem
for rectangularly convergent multiple trigonometric series was solved only in 1991
by Tetunashvili [55] (see also [35]) and independently in 1993 by Ash, Freiling and
Rinne [2]. This brought meaning to the problem of recovering the coefficients for
these series. A multidimensional generalization of Preiss and Thomson symmetric
integral or any other multidimensional integral which solves the coefficients problem
in higher dimension is not obtained yet up to now. Nethertheless, the coefficient
problem can be solved in a roundabout way on the bases of Tetunashvili method
using iterated integration (see [48]).

The first step toward a resolution of the coefficient problem in the Walsh case was
taken by Arutunyan and Talalyan [4] and by Crittenden and Shapiro [12] who solved
the problem for the Walsh series convergent to a Lebesgue integrable function. In
the former paper the case of Haar series was also covered. Next, different versions
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of the uniqeness theorem for Walsh and Haar series with sums integrable in the
Denjoy-Perron and Denjoy-Khinchine sense were obtained (see [3], [39], [40], [60]).

The first integral solving the coefficient problem for Haar (and Walsh) series was
introduced in [38] in a descriptive form. A costructive definition of Denjoy type,
based on transfinite induction, was given in [42] and later, independently, in [25].
The coefficient problem for Vilenkin series was examined in [43]

It is an advantage of application of the Henstock-Kurzweil theory that it pro-
vides a unifying approach to the coefficient problem for many orthogonal systems,
including the multidimensional case. The choice of the Henstock-Kurzweil type
(or Perron-type) integral with respect to the particular basis is determined by the
system and by the type of convergence under consideration. While the symmetric
basis is a natural choice for the classical trigonometric case, the P-adic basis and
the respective derivatives and integrals appear in a natural way in the theory of the
Vilenkin system.

A starting point for an application of the P-derivative and the P-integral to the
theory of Vilenkin series is an observation that due to martingale properties of the
partial sums Smk

(where mk are defined by (2)) of a series with respect to the
system (3), the integral

∫
Ik

r
Smk

defines an additive interval-function τ(I) on the
family of P-intervals (Yoneda call it quasi-measure, see [37], [64] and [66]), and for
this function

(9) Smk
(x) =

τ(I(k)
x )

|I(k)
x |

.

at each P-adic irrational point. For P-adic rational points the sutuation is compli-
cated by the fact that there are two basic sequences {I(k)

x } convegent to x. So we
prefer not to use the above equality at such points. (We would not have this prob-
lem if we considered the series on the group G(P) instead of the interval [0, 1), with
Haar measure on it and with additive function τ defined on the algebra generated
by cosets instead of the one generated by P-intervals. But we prefer the real line
setting to be able to cover also the case of the Haar system.)

In higher dimension we consider rectangular partial sums

(10) Sj(x) =
j1∑

n1=0

. . .

jm∑
nm=0

an

m∏

i=1

χni(xi)

where j = (j1 . . . , jm) and denoting mk = (mk1 , . . . , mkm) where k = (k1, . . . , km)
we get for the additive function

(11) τ(I(k)
r ) =

∫

I
(k)
r

Smk

a multidimensional analogue of (9):

(12) Smk
(x) =

τ(I(k)
x )

|I(k)
x |

.

for any point x with all the coordinates P-adic irrational.
Another simple observation, which is essential for establishing that a given

Vilenkin series is the Fourier series in the sense of some general integral, is the
following
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Proposition 4. Let some integration process A be given which produces an integral
additive on IP . A series

(13)
∑

anχn

is the Fourier series of an A-integrable function f if and only if τ(I) = (A)
∫

I
f for

any P-interval I

This means that in order to get a solution of the problem of recovering the
coefficients from the sum f of a series (13) we are to prove that f is integrable in a
certain sense A and P-interval function (11), defined by this series, is the indefinite
A-integral of f .

Now the equalities (9) and (12) reveal a close connection between type of con-
vergence of the series and differential properties of the function τ . In particular in
one-dimentional case the equality (9) implies immediately that if a Vilenkin series
converges at a P-adic irrational point x to a sum f(x) then τ is P-differentiable at
x and f(x) is its P-derivative.

To consider this relationship in higher dimension we need to recall definitions of
different types of convergence of a multiple series. We say that series (13) is rectan-
gularly convergent to f(x) at x if its rectangular partial sums (10) are convergent
to f(x) when mini ji → ∞. We say that the series (13) is r-regular rectangularly
convergent, 0 < r ≤ 1, to f(x) at x if in the previous definition we consider only
those rectangular sums (10) for which mini ji/ maxi ji ≥ r. Therefore we get from
(12) that if a series (13) converges rectangularly or r-regular rectangularly at a
point x with P-adic irrational coordinate to a sum f(x) then τ is P-differentiable
or Pr-differentiable at x and DPτ(x) = f(x) or DPrτ(x) = f(x), respectively.

All the above observations imply that the problem of recovering the coefficients of
a series (13) from its sum can be reduced to the problem of recovering the additive
P-interval function τ from its derivative in the respective sense, and this latter
problem can be considered in terms of the integration theory discussed in Section
3.

As the equality (12) says nothing about the differentiability of τ at points with
P-adic rational coordinates and also at points of a possible exceptional set where we
know nothing about convergence of the considered series, we need some information
related to the behavior of τ on the set of nondifferentiability which would implies
that the variational measure Vτ is equal zero on that exceptional set. Then we can
hope to recover τ from its derivative, existing a.e., by using some of the results
stated in Section 3. Such a nice behavior of τ on the exeptional set can be obtained
either from the convergence condition or from some additional growth assumption
imposed on the series. For example, it can be easily shown, in the one-dimensional
case, that if the coefficints of a series (13) satisfy the condition limn→∞ an = 0
(which is a consequence of the convergence of the series at least at one point) then
τ is P-continuous everywhere. As P-continuity of τ on a countable set E obviously
implies Vτ (E) = 0 we can apply Theorem 6 to get in the one-dimensional case (see
[50])

Theorem 8. Suppose that the series (13) (in one dimension) is convergent to a
function f everywhere on [0, 1) exept possibly on a countable set. Then f is P-
integrable on [0, 1] and (13) is P-Fourier series of f .
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In this theorem we can weaken the assumption of convergency supposing that
the series is convergent only a.e. and its partial sums Smk

are bounded at each
point exept possibly on a countable set. In the case of bounded sequence P even
the apriori assumption of convergency a.e. can be dropped. We can replace this
assumption by boundeness of the sums Smk

(x) at each point and then the equality
(9) and Proposition 3 can be applied to the real and to the imaginary parts of the
series.

In the case of the multiple series (13) (and also multiple Haar series) convergent
rectangularly, the coefficient can be recovered by a Perron-type integral P ∗P which
is defined by strongly P-continuous major and minor functions which satisfy (6)
everywhere except, possibly, on a set of points with P-irrational coordinates (see
Remark 1 and [43]). So we have

Theorem 9. Let the sequence (1) be bounded. If a series (13) is convergent rectan-
gularly everywhere on the unit interval of Rm to a function f then f is PP -integrable
and (13) is PP -Fourier series of f .

Similar theorem holds for multiple Haar series.
In the case of r-regular rectangular convergence analogous theorems were ob-

tained for Haar and Walsh series (see [33]), using Perron integral with respect to
the regular dyadic basis defined by major and minor functions on which some more
delicate continuity conditions are imposed.

We can also consider a case where series is r-regular convergent for any r ∈ (0, 1]
(note that it is not the same as just rectangular convergence!). In this case the
Mawhin-type integral (see Definition 4) (or its Perron-type analogue) is appropriate.

In Section 3 we have mentioned that the Newton P-integral and the Denjoy-
Khinchine integral are noncompatible. The example by which this noncompatibility
is obtained can be used to proof the following (see [51])

Theorem 10. There exists a series (13) (in one dimension ) with coefficients
convergent to zero such that its sums Smk

are convergent everywhere on [0, 1) to a
Denjoy-Khinchine-integrable function f , but this series is not the Fourier series of
f in the sense of the Denjoy-Khinchine integral.

However, if we replace the assumtion related to the convergence of the sums
Smk

in this theorem by the condition that the entire sequence of the partial sums
converges, then the following result is true (see [51]).

Theorem 11. If the series (13) (in one dimension) with respect to the Vilenkin
system defined by a bounded sequence P converges everywhere on [0, 1) (with the
possible exeption of some countable set) to a Denjoy-Khinchine-integrable function
f , then this series is the Fourier series of f in the sense of the Denjoy-Khinchine
integral.

On application of some other type of generalized integrals to the theory of Walsh
and Haar series see [47] and [49]

5. P-integral in inversion formula for multiplicative transform

The problem of uniqueness can be considered also for the continual analogues of
the Vilenkin system, i.e. for the case where a P-adic group not being compact, is
locally compact and so the system of characters is not descrete.
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We recall the appropriate definitions (see [1]). Consider a double sequence of
natural numbers

(14) R = {. . . , p−j , . . . , p−2, p−1, p1, p2 . . . , pj , . . .}
where pj ≥ 2 for j ∈ Z \ {0} and two its subsequences: the right one P = {pj}∞j=1

and the left one P ′ = {p−j}∞j=1. We set m0 = 1, mk =
∏k

s=1 ps and m−k =∏k
s=1 p−s.
For a given sequence (14) we define the group G(R) of sequences

x = {. . . , x−j , . . . , x−2, x−1, x1, x2 . . . , xj , . . .}
where 0 ≤ xj ≤ pj − 1, j ∈ Z \ {0} and x−j = 0 for j > k(x) ≥ 1 with group
operation defined as coordinatewise addition module pj for the jth coordinate. The
dual group of the group G(R) is isomorphic to the group G(R′) which is defined
in a similar way by a sequence symmetrical to the sequence (14):

R′ = {. . . , p′−j , . . . , p
′
−2, p

′
−1, p

′
1, p

′
2 . . . , p′j , . . .}

with p′j = p−j for j ∈ Z \ {0} (see [1]). Then the character χ(·, y) of G(R)
corresponding to y ∈ G(R′) can be described as

χ(x, y) = exp


2πi




k(y)∑

j=1

xj y−j

pj
+

k(x)∑

j=1

x−j yj

p−j





 .

As in the compact case, we can consider an element of the group G(P) as the
coefficients of the R-adic expansion

k(x)∑

j=1

x−jm−j+1 +
∞∑

j=1

xj

mj

of a non-negative number and in this way we can map this group on the set R+ of
the non-negative reals. The same can be done with the group G(R′). So the above
characters χ(x, y) can be treated as functions on R+ ×R+.

The problem of recovering the coeficients can be generalized to the case of this
system of characters coming to be in this case a problem of establishing an inversion
formula for a multiplicative transform of the form

∫ +∞
0

a(x)χ(x, y)dx.
To formulate a result in this direction we define by the above sequences P and P ′

the respective integrals, as in Section 3, and extend those integrals to any interval
[0, n, n=1,2,. . . , in a natural way. Then we get (see [50])

Theorem 12. Suppose that a function a : R+ → C is locally P-integrable and the
improper P-integral ∫ +∞

0

a(x)χ(x, y)dx

is convergent everywhere on R+, except possibly on a countable set, to a finite
function f(y). Then f is locally P ′-integrable and

a(x) = lim
n→∞

(P ′)
∫ mn

0

f(y)χ(x, y)dy a.e. on R+.
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