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CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS II

MASLINA DARUS

ABSTRACT. Let f be analytic in D = {z : |z| < 1} with f(0) = f/(0) —1 =0

and %f’(z) # 0. Suppose § > 0 and v > 0. For 0 < 8 < 1, the largest
z

a(B, d,7) is found such that

2f"(z z2f'(z 2f' (2 14 2\«
(514 210 iy (£ED)) L) (142)
f(z) f(2) f(z) l1-2z
/ B
. z2f'(2) < 142 .
f(2) 1-=z
The result solves the inclusion problem for certain subclass of analytic
functions involving starlike and convex functions defined in a sector. Further

we investigate the inclusion problem involving addition of powers of convex
and starlike functions.

1. INTRODUCTION

Let S denote the class of normalised analytic univalent functions f defined by
f(z) =2+ ganz" for z € D = {z: |2| < 1}. It is well-known [7], [2] that
f € C(«) implies f € S*(3) where

1 -2«
22—2a(] — 22a—1)

. (

if v £ =,

8=

if a =

N =N =

2log?2
and C(«a) denotes the class of analytic convex functions satisfying
Z//Z)
Re <1 + ) >«
f'(2)

for 0 < a < 1 and S(0) denotes the class of analytic starlike functions satisfying

“(%3)>5

for 0 < 8 < 1, and that this result is best possible. Nunokawa and Thomas [5]
proved the analogue of this result for function defined via a sector as follows:
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Theorem 1.1. Let f be analytic in D, with f(0) = f'(0) —1 = 0. Then for
0<pB<1landzeD,

zf"(z) 142\%®
1+ f/(Z) %(1_,2)

implies

zf'(2) 1+2\"
(1.1) e <<1_Z> :
where

2

(1.2) a(ﬁ):;arctan tanﬂ—;+ — B - |

1-p5) 2 (1+p) 2 (305577r
and «(B) given by (1.2) is the largest number such that (1.1) holds.

Subsequently, Marjono and Thomas [3] extended this and proved:

Theorem 1.2. Let f be analytic in D, with f(0) = f'(0)—1 =0 and @f’(z) #£0,
z
and, 0 < B8 <1 be given. Then for § >0 and z € D,

b (1 X Zf”(z)) . 6)zf’(z) . (1 +Z)a(ﬁ,5)

f'(z) f(2) 1—2
implies
z2f'(z) 1+2\°
1.
- o)
where
2 O 62
(1.4) a(B,0) = - arctan | tan 5 + -3 153 ; ,
(1-8) 2 (1+8) 2 cos
and «(B,6) given by (1.4) is the largest number such that (1.3) holds.
Recently, Darus [1] gave the following:
Theorem 1.3. Let f be analytic in D, with f(0) = f'(0)—1 =0 and /() f'(z) #0.

z
Suppose A >0 and A+ p > 0. Then for 0 < 8 <1,

() s ()

implies

()
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for z € D, where
(1.6)

BA
i—p 1+ ’

Ctmi-0) 2 (1+6) 2 cosin

and a(B, A\, p) given by (1.6) is the largest number such that (1.5) holds.

2
a(B, A p) = - arctan | tan %T +

Next we consider a more general case involves convex and starlike functions.
2. REsSULT

Theorem 2.1. Let f be analytic in D, with f(0) = f/(0)—1 =10 an
Suppose 6 >0 and v > 0. For 0 < g <1,

(o) o0 (R R <29

a8y 20

implies
fe) (142
@1) e <(1—z>’
for z € D, where
(2.2) a(B,0,7) = %arctan tanﬂ77r + =3 ps 113 + B,
~y1-8) 2 (1+8) 2 cosﬂ—7r

2
and a(,96,7) given by (2.2) is the largest number such that (2.1) holds.

We shall need the following lemma.

Lemma 1 ([4]). Let F be analytic in D and G be analytic and univalent in D,
with F(0) = G(0). If F £ G, then there is a point zg € D and {y € §D such that
F(|z] < |z0]) € G(D), F(z0) = G({o) and z20F'(z0) = m(oG' (o) for m > 1.

!
Proof of Theorem 2.1. Write p(z) = 2 (z)7 so that p is analytic in D and p(0) = 1.

f(2)

Thus we need to show that

sap!(2) + (e < (122)

B
142
o< (1)
whenever a = (3, 0,7).

a(B) B
Let h(z) = <1 + Z) and ¢q(z) = <i> so that |argh(2)] < —a(ﬁ)ﬂ and
-z

implies

1—=z 1 2
|arg q(2)] < 771‘ Suppose that p £ ¢, then from Lemma 2.1, there exists zg € D and
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Co € 0D such that p(z9) = q(¢o) and p(|z| < |z0|) C ¢(D). Since p(zo) = q(¢o) # 0,
1+ ¢
1—2¢o
that » > 0, (if » < 0, the proof is similar) and Lemma 2.1 gives

it follows that (p # 4+1. Thus we can write ri = for r # 0. Next assume

52p/(2) +p(2)? = mdlod (Co) + v4(¢o)?

2.3 m r2)i
(23) = ('y(ri)ﬁ + %) (ri)ﬁ.

Since m > 1, taking the arguments, we obtain

Br - mpBs(1+r?) B

arg (6z0p’(20) + 7p(z0)2) = arctan | tan — + + —,
146 ¢og 2T 2
~yritB cos —
2
§(1 412
> arctan | tan ﬁ_ﬂ- + M @’
2 146 ¢og 2T 2
~yritB cos —
2
5
> arctan tan%rJr -3 p 13 ; +6—27T,
— — T
-8 2 (1+8) 2 s
_ oB, 6,
2 )
1 3
where a minimum is attained when r = (%) .
Hence combining the cases r > 0 and r < 0 we obtain
a(B,0,v)m
DO < Jaxg (3200 (20) + 70(20)?)| < .
)
which contradicts the fact that |arg h(z)| < Q(LQ’WT, provided that (2.2)
holds.
To show that «(g,6,~) is exact, take a(3,0,7) < o < 1 so that for some Gy > 3
Bo

1
tz . Then from the minimum

we can write o = «a(f, d,7). Now let p(z) =

principle for harmonic functions, it follows that

|i?f1 arg (62p'(2) + vp(2)?)
z|<

is attained at some point z = €% for 0 < # < 2. Thus
Bomi Bomi

. Bo . . Bo
8zp'(2) +yp(2)* = 7(7“9 ) e 2 4 0 ( sin ) e 2,

1 —cosf sin 6 1 —cosf
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and so taking ¢ = cos 6, we obtain

arg (02p'(2) + yp(2)?)

Bo

- T Bod Bo
= arctan | tan T + =5 155, )

y1-t) 2 (1+¢t) 2 COS%

and elementary calculation shows that the minimum of this expression is attained
when t = y. Thus completes the proof of Theorem 2.1. O

Particular choices for ¢ and 7 give the following interesting corollaries. First
when § = 1 we have

Corollary 2.1. Let f be analytic in D, with f(0) = f'(0)—1 =0 and @f’(z) #
0. Then fory >0 and 0 < < 1,
) L (zf’(Z))> 2f'(2) (1 + z)a“’“)
1+ T o0 (7)) 5+ (i
implies
zf'(2) 1+2\7”
@ " (1 = z> |
for z € D, where
a(ﬁ,l,'y):%arctan tan%rJr -3 b 153 + 5.
-8 2 (148) 2 s
Similarly, when v = 1, we obtain
Corollary 2.2. Let f be analytic in D, with f(0) = f'(0)—1 =0 and @f’(z) #
0. Then for § >0 and 0 < <1, :
" ’ / a(p,6,1)
(1 220) 4 () L < (122)
((+55) ra-0 (7)) st < (2
implies
zf'(2) 1+2\7”
1) - (1 - z> |
for z € D, where
a(ﬁ,é,l):%arctan tan%rJr -3 ps T + B.
1-5) 2 (1+8) 2 cosZ

Finally, when § =« = 1, we have the following interesting result.
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Corollary 2.3. Let f be analytic in D, with f(0) = f'(0)—1=0 and @f’(z) 2
0. Then for0 < <1,
2f7(2)\ 2f(z) (14 2\*PLD
<1+ () > e (1_Z>

implies

') (1+2)°

f(z) A (1 — z) '
for z € D, where

a(@l,l):%arctan tanﬁ—;+ =5 g - 8

1-0"2 (1+8) 2 cos’n

Remark 2.1. We note that limg_1a(3,1,1) = 2, which suggests from Theorem 2.1

that ,
() e = ()
implies
T 1

However if we let 8 = 1, the right hand side in (2.3) is real and the method of proof
in Theorem 2.1 breaks down.

Next we give the following;:

f(z)

Theorem 2.2. Let f be analytic in D, with f(0) = f'(0)—1 =0 and —=
z

Suppose A < B and 0 < A < 1. Then for0 < <1,

(LE) + 1+ 28 f/(z))A (o Z)a(w)

f'(z) #0.

f(2) J'(2) f(z) 1—=2
implies
2f(7) (1 + z)ﬁ
(2.4) ) <\1—2) >
for z € D, where
(2.5)
AT
AB)* sin —
tan Bur + WIS 2

A=Bn) A +8u)

2 (A=Bw) 2T (A Bp) 7 cos T
(AB)* cos %T

2
a(B,\ p) = — arctan

1+

A=Bur) A+B8p)

(A= Bu) == (A+Bu) "= cos 47
and o8, \, ) given by (2.5) is the largest number such that (2.4) holds.




CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS II 133

2f'(2)
f(2)

o+ (35) < ()
per < (122)
whenever a = a(8, A, 1).

a(B) g
As before, let h(z) = (1 + Z> and ¢(z) = <1 + Z> so that

Proof. Write p(z) =
to show that

, so that p is analytic in D and p(0) = 1. Thus we need

implies

—z 1—z

a(B)m

larg h(z)] < —5

and |argq(z)| < ﬁ—; Suppose that p £ ¢, then from Lemma 2.1, there exists

zo0 € D and {y € 0D such that p(z9) = ¢(¢o) and p(|z| < |z0]) C ¢(D). Since
1
p(z0) = q(Co) # 0, it follows that ¢y # +1. Thus we can write ri = ( + <0> for

1-2¢o
r # 0. Next assume that r > 0, (if » < 0, the proof is similar) and Lemma 2.1 gives

o () v (542

= (ri)* + (M>A

2r
The result now follows by using the same arguments as before.
To show that a(8, A, p) is exact, we argue as in the proof of Theorem 2.1 so that

! B .
for some [y, again choose p(z) = ) = (H—Z) * with z = ¢ for 0 < 0 < 27

f(2) o

Thus with ¢ = cosf, we obtain

s+ (28)' - (12w s () o

and taking arguments, we have

() (554

AT
A i O
. Bopr Bp sin 5
an —— + O —Bom Ctoom)  Bopn
(A= Bop) = (A + fop) = cos ==
= arctan v ,
33 cos —
1+ 2

(A—Bon) (A+Bow)

(A= Bop) = (A + fop) = cos ez
and elementary calculation shows that the minimum of this expression is attained

when t = %. Thus the proof of Theorem 2.2 is complete. O

Remark 2.2. When A\ =yt = 1 we obtain Theorem 1.1.
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