Acta Mathematica Academiae Paedagogicae Nyiregyhdziensis
21 (2005), 155-160

www.emis.de/journals

ISSN 1786-0091

APPROXIMATION PROPERTIES OF PARTIAL SUMS OF
FOURIER SERIES

T. KARCHAVA

ABSTRACT. In this paper we find class of functions for which the Lebesgue
estimate can be improved.

Let C (]0,27]) denote the space of continuous function f with period 2m. If
f € C([0,2x]) then the function

wp(éaf) = Sup sup |Ap(x;h7f)‘7wl (&f) :w(é’f)
T |h|<§

is called the modulus of continuity of the function f, where
Ay (zsh, f) = f(z+h)—f(z),
AIH—I (J},h,f) :Ap(x+h7hvf) _Ap(x;hvf)'
Denote by Lipa the class of function f € C ([0, 27]) for which w (4, f) < ¢ (f) 6*
and let S, (f,x) be the n-th partial sum of the trigonometric Fourier series of the

function f.
The estimation of Lebesgue (see [Dz, p. 116], or [Ba, Ch. 1])is well known

I =50 (Dl < 0 (5.1 ) tog o +2).

Generalization of this estimation were studied by Chanturia [Ch], Oskolkov [Os],
Karchava [Ka]. The questions devoted to estimation the uniform deviation of f
from its partial Fourier sums with respect to the Walsh, Vilenkin (bounded and
unbounded case) systems were discussed by Fine [Fi], Onnewer [On] Tevzadze [Te],
Gat [G4).

In this paper we consider the following characteristic of function f

p (0,85 f) = sup sup Y _|A, (zi;h, f),
T k<65
where z; = x + (i — 1) h.
There arises a question: for what subclasses of classes of C ([0, 27]) the Lebesgue
estimate can be improved?
We prove that the following are true

2000 Mathematics Subject Classification. 41A10.
Key words and phrases. Fourier series, Lebesgue estimation, modulus of continuity.

155



156 T. KARCHAVA

Theorem 1. Let f € C([0,27]). Then

17 = S0l <)y P BRI

k=1
Corollary 1. Let the function f has a finite number of intervals of monotonicity
on [0,27] and f € Lipa,0 < a < 1. Then
c(f, )

n&

Corollary 2. Let the function f has a finite number of intervals of convexity or
concavity on [0, 2], then

I =S Dlle < e (5:).

Corollary 3. Let the function f has a finite number of intervals of monotonicity
on [0,27]. Then

1= Dlle<etns [ 25 a
1/n

Proof of Theorem 1. Let T, (x) be Vale-Poisson polynomial which provides best
approximation of function f in the space C ([0, 27]) (see [Dz]), in particular

TM@:%/fu+ﬂ%@Mu%/WHMﬁ§L

Denote
gt)=f@+t)+f(@—t)—2f(x) =Ty (x+1t) — T, (z —t) + 2T}, (x).
It evident that
©p (k,0,Tn) < cpp (K0, f)

and
N e oot
1 - Py + Q,, where P, < .0, < <.
(1) iggl - S Pr+ Qn where Py < 5. Qn <
We write
@ [awpiwd= [s0(D.0) - )i [0 = e
0 0 0
Since it
sinn
Dn( ) - t

is bounded function and
lg (t)] <4E, (f),
we have

7 sinnt

® Ja0 (Do) -2 )it < ek ),
0

where F,, (f) is best approximation of function f.
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On the other hand

T/n m/n
sinnt sinnt
(1) [ o= at) <lglle [ 5t < e (6).
0 0

Combining (2)—(4) we have

o) [o®Dawat= [ o™ e+,
0 0
where
v < cEn(f).
It is evident that
gt . n—1 "D/ .
oo™ =% [ o=
In F=1 i
7r/n

-1 7Tk * sinnt
= n t + 7Tk t
k=1 0

)
s
(=)

) (s

3

n 1

(6) =!

Sﬂ' g<UO+7Tk ( ].
k=1 u+t
< — uo—|—7rk: —1)*
T
- = g u—|—7rk wk
n—1
ug +
o Zg( ot )
k=1
=I1+1I,

where

sup
u

X_: u+7k\ (—1)"
Pt u+ wk
It is clear that

@ 1< ldle Y 5 =0 (B, (1).
k=1

Denote
ug + 7k
—

U =
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Using Abel transformation and (1), for I we obtain

n—1 k
II = Zg(uk) (_]i)

k=1

<X () —g () 3 N ’
k=1 i=k+1
+ =19 (u1) (_il)
n—2 B (_ k+1

<> (g (urga) g(uk))< ok +Pk+Qn>
k=1
+ g(ul)z—: (_il)
n—2 N (_1 k+1

<D (g (urgr) — g (ur)) o | T O (En(f))
k=1
n—2 T k+1

— Y (s Tg) C 0 1)
k=1

Iterating this inequality we obtain
_1)k+1

ZA (“kz )( 2%

Z ’“’”’g)’ +O(En(f).

IT<c(p + O (E, (f))

Using Abel transformation we obtain

- k
S il <5 S e (w7 0)

1 =2 m
+n_2 ‘Ap (Ulmﬁg) )
k=1
consequently,
I1=0 (i %pp (k %,g) +0 (B, (f)))
®) o
=0 (;kzwp( 3 uf))

Combining (5)—(8) we complete the proof of the Theorem 1.
Proof of Corollary 1. Since

o1 (Z0) <etne (Zir) <en ()
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we have

k=1 k=1
_elINn 1 _clfa)
- po P k2—a - no

d

Proof of Corollary 2. Since the function f has a finite number of intervals of con-
vexity or concavity on [0, 27| we have

®2 (ka(saf) = C(f)w(57f)7
consequently from Theorem 1 we get,

n

17 =50 (Dlle <032 e (] DEEUMENT

O

Proof of Corollary 3. From the fact that the function f has a finite number of
intervals of monotonicity on [0, 27] we write

o (1 50) < ene ().

then using Theorem 1 we complete the proof of Corollary 3 in the following way

nka;.
1F = S (Dl < ka(7 )<c<f>2%

k=1

Ile——w(E 1 w(t, f) )
<c(f)=) —%—<c(f) —
ni—= (k/n)” n "IZ ¢
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