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ABSOLUTE CONVERGENCE OF THE DOUBLE SERIES OF

FOURIER – HAAR COEFFICIENTS

ALEXANDER APLAKOV

Abstract. In this paper we study the absolute convergence of the double
series of Fourier-Haar coefficients of the class PBVp.

1. Introduction

The problems related to the behaviour of single series of Fourier-Haar are well
studied [9]. Namely, P. Ulianov [14] and B. Golubov [8] received the results re-
lated to the problems of absolute convergence of the series of Fourier–Haar coeffi-
cients. Some generalization of these results related were received by Z. Chanturia
[3], T. Akhobadze [1], U. Goginava [7] and by the author [2]. In the term of modu-
lus of smoothness the problem of absolute convergence of the series of Fourier-Haar
coefficients was studied by V. Krotov [10]. Multidimensional analogies correspond-
ing to the results of V. Krotov were formulated in the works of V. Tsagareishvili
[13] and G. Tabatadze [12].

The estimates of Fourier coefficients of functions of bounded fluctuation with
respect to Walsh system were studied in [11] and with respect to Vilenkin system
were studied by G. Gát and R. Toledo [4].

We consider the double Haar system {χn (x) × χm (y) : n, m = 0, 1, 2, . . .} on the
unit square I2 = [0, 1] × [0, 1]. As usual, Lp

(

I2
)

(p > 1) denotes the set of all

measurable functions defined on I2, for which

‖f‖p =





1
∫

0

1
∫

0

|f (x, y)|
p
dxdy





1
p

< ∞

and C
(

I2
)

is the space of continuous functions on I2 equipped with maximum
norm

‖f‖c = max
x,y∈I

|f (x, y)| .

If f ∈ L
(

I2
)

, then

Cn,m (f) =

1
∫

0

1
∫

0

f (x, y) χn (x) χm (y) dxdy

is the (n, m)th Fourier-Haar coefficient of f .
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We say that f ∈ Lip α on [0, 1]
2
, if

‖f (· + h, · + η) − f (·, ·)‖c = O
(

(

h2 + η2
)

α
2

)

, α ∈ (0, 1] .

We have the following theorem.

Theorem A ([12]). a) Let f ∈ Lip α on [0, 1]
2
, α ∈ (0, 1]. If β > 0 and γ + 1 <

β
(α+1)

2 , then
∞
∑

n=1

∞
∑

m=1

(nm)
γ
|Cn,m (f)|

β
< ∞.

b) Let γ + 1 = β
(α+1)

2 , for some α ∈ (0, 1). Then there exists a function fα ∈
Lip α for which

∞
∑

n=1

∞
∑

m=1

(nm)γ |Cn,m (fα)|β = ∞.

The case for γ = 0 was considered earlier by V. Tsagareishvili [13].
Let f ∈ Lp

(

I2
)

. The partial integrated modulus of continuity are defined by

ω1 (δ1, f)p = sup
{

‖f (x + u, y) − f (x, y)‖p : |u| 6 δ1

}

,

ω2 (δ2, f)p = sup
{

‖f (x, y + v) − f (x, y)‖p : |v| 6 δ2

}

.

We also use the notion of the mixed integrated modulus of continuity. It is
defined as follows

ω1,2 (δ1, δ2, f)p

= sup
{

‖f (x + u, y + v) − f (x + u, y) − f (x, y + v) + f (x, y)‖p :

|u| 6 δ1, |v| 6 δ2

}

, f ∈ Lp

(

I2
)

.

It is not difficult to show that

(1) ω1,2 (δ1, δ2, f)p 6 2
√

ω1 (δ1, f)p

√

ω2 (δ2, f)p.

We study the problem of absolute convergence of the series of Fourier-Haar
coefficients for the classes of functions with bounded partial p-variations, which
were first considered by U. Goginava (see [5] for p = 1 and [6] for p > 1).

Definition. A function f : I2 → R is said to be of bounded partial p-variation
(

f ∈ PBVp

(

I2
))

if there exists a constant K such that for any partition

∆1 : 0 6 x0 < x1 < x2 < . . . < xn 6 1,

∆2 : 0 6 y0 < y1 < y2 < . . . < ym 6 1,

we have

V1 (f)p = sup
y

sup
∆1

n−1
∑

i=0

|f (xi, y) − f (xi+1,y)|
p

6 K,

V2 (f)p = sup
x

sup
∆2

m−1
∑

j=0

|f (x, yj) − f (x, yj+1)|
p

6 K.

Given a function f (x, y), periodic in both variables with period 1. Denote by

∆h1f (x, y)1 = f (x + h1, y) − f (x, y) ,

∆h2f (x, y)2 = f (x, y + h2) − f (x, y) ,

∆h1,h2f (x, y) = ∆h1 (∆h2f (x, y)2)1 = ∆h2 (∆h1f (x, y)1)2
= f (x, y) − f (x + h1, y) − f (x, y + h2) + f (x + h1, y + h2) .
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2. Main Results

The main results of this paper are presented in the following propositions.

Theorem 1. Let f ∈ PBVp

(

I2
)

, p > 1 and β > 2p
1+p

. Then

∞
∑

n=0

∞
∑

m=0

|Cn,m (f)|
β

< ∞.

Theorem 2. Let f ∈ PBVp

(

I2
)

, p > 1 and α < 1
2p

− 1
2 . Then

∞
∑

n=0

∞
∑

m=0

[(n + 1) (m + 1)]α |Cn,m (f)| < ∞.

Theorem 3. Let f ∈ PBVp

(

I2
)

, p > 1 and β > 0, α + 1 < β
(

1
2p

+ 1
2

)

. Then

∞
∑

n=0

∞
∑

m=0

[(n + 1) (m + 1)]
α
|Cn,m (f)|

β
< ∞.

Since Lip 1
p
⊂ PBVp in case p > 1 the sharpness of Theorems 1-3 follows from

the works [12, 13].

3. Auxiliary results

Lemma 1. Let f ∈ PBVp

(

I2
)

, p > 1. Then

ωi (δ, f)p 6 3
1
p δ

1
p Vi (f)p (i = 1, 2), 0 < δ < 1,

where Vi (f)p is a partial p-variation of function.

Using the method of [8], we can easily obtain the validity of Lemma 1.

4. Proof of main results

Proof of Theorem 1. We write

∞
∑

n=0

∞
∑

m=0

|Cn,m (f)|
β

=

∞
∑

n=0

|Cn,0 (f)|
β

+

∞
∑

m=1

|C0,m (f)|
β

+

∞
∑

n=1

∞
∑

m=1

|Cn,m (f)|
β

.
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Let n = 2n1 + i, m = 2m1 + j, n1 = 0, 1, . . . i = 1, . . . , 2n1 , m1 = 0, 1, . . . , j =
1, . . . , 2m1 . Then using Hölder inequality, from the Lemma 1 we get

2n1
X

i=1

|C2n1+i,0 (f)|p

= 2
pn1
2

2n1
X

i=1

˛

˛

˛

˛

˛

˛

˛

˛

1
Z

0

0

B

B

@

2i−1

2n1+1
Z

2i−2

2n1+1

»

f (x, y) − f

„

x +
1

2n1+1
, y

«–

dx

1

C

C

A

dy

˛

˛

˛

˛

˛

˛

˛

˛

p

6 2
pn1
2

2n1
X

i=1

2

6

6

4

1
Z

0

0

B

B

@

2i−1

2n1+1
Z

2i−2

2n1+1

˛

˛

˛

˛

∆ 1

2n1+1
f (x, y)1

˛

˛

˛

˛

dx

1

C

C

A

dy

3

7

7

5

p

6 2
pn1
2

2n1
X

i=1

2

6

6

6

4

0

B

B

@

1
Z

0

0

B

B

@

2i−1

2n1+1
Z

2i−2

2n1+1

˛

˛

˛

˛

∆ 1

2n1+1
f (x, y)1

˛

˛

˛

˛

p

dx

1

C

C

A

dy

1

C

C

A

1
p

0

B

B

@

1
Z

0

2i−1

2n1+1
Z

2i−2

2n1+1

1dxdy

1

C

C

A

1− 1
p

3

7

7

7

5

p

6 2
pn1
2

1

2n1(p−1)

1
Z

0

1
Z

0

˛

˛

˛

˛

∆ 1

2n1+1
f (x, y)1

˛

˛

˛

˛

p

dxdy

6 2n1(1− p
2 )ωp

1

„

1

2n1+1
, f

«

p

6 2n1(1− p
2 )3

1

2n1
V

p

1 (f)
p

6 c2−

n1p

2 V
p

1 (f)
p
.

(2)

Let 2p
1+p

< β < p. Using Hölder inequality, from (2) we get

2n1
∑

i=1

∣

∣

∣C
(i)
n1,0 (f)

∣

∣

∣

β

6

(

2n1
∑

i=1

∣

∣

∣C
(i)
n1,0 (f)

∣

∣

∣

p

)

β
p

2n1(1− β
p )

6 2n1(1−β
p )
(

c2−
n1p

2 V
p
1 (f)p

)
β
p

6 c2n1(1− β
p )2−

n1β
2 6 c2n1[1− β

p
−

β
2 ].

(3)

By (3) and from the condition of the Theorem 1 we obtain

∞
∑

n=2

|Cn,0 (f)|β =
∞
∑

n1=0

2n1
∑

i=1

|C2n1+i,0 (f)|β 6

∞
∑

n1=0

2n1[1− β
p
−

β
2 ] < ∞.

Analogously, we obtain that

∞
∑

m=1

|C0,m (f)|
β

< ∞, for β >
2p

1 + p
.



ABSOLUTE CONVERGENCE OF SERIES. . . 37

Using Hölder inequality, by (1) and from Lemma 1 we get

2n1−1
∑

i=0

2m1−1
∑

j=0

∣

∣

∣

∣

∣

∣

∣

i+1
2n1
∫

2i
2n1

j+1
2m1
∫

2j

2m1

f (x, y) χ2n1+i (x) χ2m1+j (y) dxdy

∣

∣

∣

∣

∣

∣

∣

p

6 2p
n1+m1

2

2n1−1
∑

i=0

2m1−1
∑

j=0









2i+1

2n1+1
∫

2i

2n1+1

2j+1

2m1+1
∫

2j

2m1+1

∣

∣

∣∆ 1

2n1+1 , 1

2m1+1
f (x, y)

∣

∣

∣ dxdy









p

6 2p
n1+m1

2

2n1−1
∑

i=0

2m1−1
∑

j=0



















2i+1

2n1+1
∫

2i

2n1+1

2j+1

2m1+1
∫

2j

2m1+1

∣

∣

∣∆ 1

2n1+1 , 1

2m1+1
f (x, y)

∣

∣

∣

p

dxdy









1
p

×









2i+1

2n1+1
∫

2i

2n1+1

2j+1

2m1+1
∫

2j

2m1+1

1dxdy









1− 1
p











p

6 2p
n1+m1

2
1

2(n1+m1)(p−1)

1
∫

0

1
∫

0

∣

∣

∣∆ 1

2n1+1 , 1

2m1+1
f (x, y)

∣

∣

∣

p

dxdy

6 2(n1+m1)(1− p
2 )ωp

1,2

(

1

2n1+1
,

1

2m1+1
, f

)

p

6 2(n1+m1)(1− p
2 )2pω

p
2
1

(

1

2n1+1
, f

)

p

ω
p
2
2

(

1

2m1+1
, f

)

p

6 c2(n1+m1)(1− p
2 ) 2p

2
n1+m1

2

6 c2
(n1+m1)( 1

2
−

p
2 )

.

(4)

Let 2p
1+p

< β < p. Using Hölder inequality, by (4) we write

2n1−1
∑

i=0

2m1−1
∑

j=0

|C2n1+i,2m1+j (f)|β 6 c2(n1+m1)(1− p
2 )

β
p 2(n1+m1)(1− β

p )

= c2(n1+m1)[ β
2p

−
β
2 +1− β

p ]

= c2n1[1− β
2 −

β
2p ]2m1[1− β

2 −
β
2p ].

(5)

By (5) and from the condition of the Theorem 1 we get

∞
∑

n=1

∞
∑

m=1

|Cn,m (f)|
β

=

∞
∑

n1=0

∞
∑

m1=0

2n1−1
∑

i=0

2m1−1
∑

j=0

|C2n1+i,2m1+j (f)|
β

6 c

∞
∑

n1=0

2
n1[1− β

2
−

β
2p ]

∞
∑

m1=0

2m1[1− β
2 −

β
2p ] < ∞.

The proof of Theorem 1 is complete. �
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Proof of Theorem 2. We write

∞
∑

n=0

∞
∑

m=0

[(n + 1) (m + 1)]α |Cn,m (f)| =
∞
∑

n=0

(n + 1)α |Cn,0 (f)|

+

∞
∑

m=1

(m + 1)
α
|C0,m (f)| +

∞
∑

n=1

∞
∑

m=1

[(n + 1) (m + 1)]
α
|Cn,m (f)| .

Let β = 1. Then from (3) we get

2n1
∑

i=1

(2n1 + i + 1)α |C2n1+i,0 (f)| 6 c2n1α

2n1
∑

i=1

|C2n1+i,0 (f)|

6 c2n1α2n1( 1
2−

1
p ) = c2n1(α+ 1

2−
1
p ).

(6)

By (6) and from the condition of the Theorem 2 we obtain

∞
∑

n=0

(n + 1)
α
|Cn,0 (f)| =

∞
∑

n1=0

2n1
∑

i=1

(2n1 + i + 1)
α
|C2n1+i,0 (f)|

6 c

∞
∑

n1=0

2n1α

2n1
∑

i=1

|C2n1+i,0 (f)| 6 c

∞
∑

n1=0

2n1(α+ 1
2−

1
p) < ∞.

Analogously, we obtain that

∞
∑

m=1

(m + 1)α |C0,m (f)| < ∞, for α <
1

2p
−

1

2
.

Let β = 1. Then by (5) and from the condition of the Theorem 2 we get

∞
∑

n=1

∞
∑

m=1

[(n + 1) (m + 1)]
α
|Cn,m (f)|

6

∞
∑

n1=0

∞
∑

m1=0

2(n1+m1)α
2n1
∑

i=1

2m1
∑

j=1

|C2n1+i,2m1+j (f)|

6 c

∞
∑

n1=0

2n1(α+ 1
2−

1
2p )

∞
∑

m1=0

2m1(α+ 1
2−

1
2p ) < ∞.

The proof of Theorem 2 is complete. �

Combining the methods of Theorems 1-2 we can prove validity of Theorem 3.
Observe that the result of this paper can be proved in the same way for dimension
more than 2.
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