INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

Balancing Information Preservation and Data
Volume Reduction: Adaptive Flow Aggregation in
Flow Metering Systems

Adrian Pekar, Laszlo A. Makara, Winston K. G. Seah, and Oscar Mauricio Caicedo Rendon

Abstract—The critical role of network traffic measurement
and analysis extends across a range of network operations, en-
suring quality of service, security, and efficient resource man-
agement. Despite the ubiquity of flow-level measurement, the
escalating size of flow entries presents significant scalability is-
sues. This study explores the implications of adaptive gradual
flow aggre- gation, a solution devised to mitigate these challeng-
es, on flow information distortion. The investigation maintains
flow records in buffers of varying aggregation levels, iteratively
adjusted based on the changing traffic load mirrored in CPU
and memory utilization. Findings underscore the efficiency of
adaptive gradual flow aggregation, particularly when applied
to a specific buffer, yielding an optimal balance between infor-
mation preservation and memory utilization. The paper high-
lights the particular significance of this approach in Internet
of Things (IoT) and contrasted environments, characterized by
stringent resource constraints. Consequently, it casts light on
the imperative for adaptability in flow aggregation methods, the
impact of these techniques on information distortion, and their
influence on network operations. This research offers a founda-
tion for future studies targeting the development of more adap-
tive and effective flow measurement techniques in diverse and
resource-limited network environments.

Index Terms—adaptive computing, gradual flow aggregation,
flow measurement, data reduction, performance optimization

I. INTRODUCTION

As the digital age progresses, networks become increasingly
complex, connecting myriad devices and applications. Each of
these applications and services possesses unique requirements,
making the task of managing and understanding network traffic
of paramount importance. This management hinges on effec-
tive traffic measurement and analysis. The significance of this
task goes beyond mere data monitoring. It provides essential
data for operations such as SLA compliance evaluation, QoS
provisioning, intrusion detection, and traffic management [1].

The predominant approach to understanding network traffic
is through flow level analysis [2]. Conceptually, a “flow”
represents a series of packets, moving from a source to a

A. Pekar and L. A. Makara are with the Department of Networked Systems
and Services, Faculty of Electrical Engineering and Informatics, Budapest
University of Technology and Economics, Budapest, Hungary.

A. Pekar is also with the HUN-REN-BME Information Systems Research
Group, Budapest, Hungary.

W. K. G. Seah is with the School of Engineering and Computer Science,
Victoria University of Wellington, Wellington, New Zealand

O. M. Caicedo Rendon is with the Department of Telematics Engineering,
Engineering Telematics Group, Universidad del Cauca, Popayédn, Colombia

Corresponding author: A. Pekar (e-mail: apekar@hit.bme.hu)

DOI: 10.36244/1CJ.2023.3.9

82

destination, that share some common attributes. It is a foun-
dational concept that serves as the basis for the more complex
methodologies discussed in this paper. However, as networks
expand in complexity and size, grappling with the expanding
magnitude of flow records becomes an uphill task. Several
strategies aim to manage this via adaptive aggregation of flow
records, wherein flow records are dynamically consolidated
based on certain parameters to streamline the data without
losing significant detail.

However, as traffic volumes surge, particularly under heavy
loads, the very technique of adaptive flow aggregation can
alter the richness and reliability of traffic information. This
distorted information can directly impede the efficiency of
network operations, making it crucial to understand flow
aggregation’s true implications. Particularly, with the growing
emphasis on the Internet of Things (IoT) and similar network
environments where resources are often constrained, under-
standing this balance becomes critical. As edge computing
starts to overshadow cloud-based solutions, especially in the
IoT landscape, ensuring minimum resource consumption while
maintaining data richness becomes indispensable.

Given this backdrop, our research delves into the realm
of adaptive flow aggregation, probing its effects on flow
size distortion—a critical metric determining the reliability
of traffic management. Specifically, our exploration involves
analyzing flow records organized across buffers with vary-
ing degrees of aggregation, which are dynamically generated
based on traffic loads reflected through CPU and memory
utilization.

One of our pivotal observations reveals that employing
adaptive flow aggregation can achieve a desirable trade-off.
Specifically, a certain degree of aggregation resulted in a
marginal information loss of just 2.42%, a compromise that
significantly optimizes resource utilization. This insight is
particularly vital in settings like IoT where there is a press-
ing need to maximize data integrity while operating within
constrained resources. The distinguishing contributions of this
paper encompass:

(i) A deep dive into how differential aggregation levels, par-
ticularly in light of fluctuating traffic volumes, influence
the fidelity of flow information.

(ii) The introduction of the SEE indicator, a novel metric to
quantify information biases induced by flow aggregation.
SEE provides a rigorous gauge of estimation errors in
flow size—a cornerstone for gauging the repercussions
of adaptive aggregation on flow data.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

mailto:apekar%40hit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2023.3.9

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

(iif)y The exploration into the aftereffects of adaptive flow
aggregation on flow size distortion, enriched by SEE’s
integration.

Our research accentuates the pressing need for truly adaptive
flow aggregation methodologies, underscoring their implica-
tions on data fidelity and overall network operations. We
aspire that our insights catalyze the development of refined,
adaptive flow measurement techniques tailored for diverse and
resource-challenged network settings.

The rest of this paper is structured as follows: Section II
provides a succinct background on flow measurement, aggre-
gation, and its adaptive variants. Section III reviews relevant
literature in the domain. In Section IV, we outline our research
design, highlighting our novel gradual aggregation scheme,
adjustment strategies, preliminaries, and measurement tech-
niques. Section V presents the findings of our study, analyzed
to enhance comprehension of our approach. Discussions on
these results are in Section VI, while Sections VII and VIII
delve into their broader significance. Finally, Section X offers
reflections on our research.

II. BACKGROUND

This section provides a brief yet comprehensive overview
of network traffic flow aggregation in a context relevant to the
scope of this paper. From exploring the dynamics of network
traffic flow, through presenting an overview of the process
of flow aggregation, to considering the principle of adaptive
flow aggregation, this section sets the stage for the subsequent
methodology of our study.

A. The Dynamics of Network Traffic Flow

Presently, the most prevalent method for network mea-
surement is the collection of traffic data at the flow level,
commonly known as flow export [3]. The term flow denotes a
group of packets that possess a shared key and pass through a
specific observation point within a determined period [4]. This
shared flow key is typically characterized by a five-element
tuple, including the source and destination IP addresses, source
and destination ports, and the protocol.

Traffic data, such as flow features—for instance, all packets
related to a specific flow quantified in bytes—and the corre-
sponding flow keys, often designated as flow properties, are
contained in the flow records. Network management tasks rely
on the analysis of these flow records, where the most crucial
data is procured from the packet headers encapsulated in the
flow features. Analyzing these records includes descriptive
calculations like determining the minimum, mean, standard
deviation, and maximum of the flow sizes along with the
packet inter-arrival time statistics.

In a conventional flow-based measurement scenario, the
flow records traverse through several platform components
positioned at different layers, as illustrated in Figure 1. The
procedure typically involves organizing the captured packets
into flows in a flow cache, after which they are intermittently
exported to a data collector. The collector then either stores
the data in a data store or forwards them directly for further
analysis and visualization [2].

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

Adaptive Flow Aggregation in Flow Metering Systems

| flows
l flow export |

| data collection |

;

data

organising packets store
into flows !

T |

data analysis |
| packet capture |

Fig. 1. General architecture of a flow measurement platform.

However, the enormous quantity of measurement data
presents several challenges [5] as they traverse through the
platform’s components, right from packet capture to data
analysis. Making sense of the intricate, ever-expanding data
for operational purposes is a daunting task. The processing
essential for both online and offline analysis poses consider-
able challenges, often due to a lack of sufficient resources to
manage flow-related tasks efficiently, accurately, and sustain-
ably [6].

B. The Impact of Tuple Variations on Potential Flow Entries

In the realm of IP flow measurement, the flow cache plays
a pivotal role by aggregating packets into flows using various
combinations of a five-tuple. This aggregation results in flow
entries, which provide a comprehensive view of network
traffic. The nature and number of these entries can vary based
on the specifics of the tuple in use and the practicalities of
network operations.

The five-tuple used for flow measurement in IP networking
typically consists of the following:

1) Source IP Address: 1Pv4 addresses have a 32-bit length,
leading to 232 possible addresses. IPv6 addresses, on the
other hand, have a 128-bit length, leading to 2!28 possible
addresses.

2) Destination IP Address: Same as above.

3) Source Port: There are 65,536 possible port numbers
(ranging from 0 to 65,535).

4) Destination Port: Same as the source port.

5) Protocol: The IP protocol field is 8 bits, so there are 28
or 256 possible values. However, not all 256 values are
used in practice. Common protocols include TCP, UDP,
and ICMP. For simplicity, we use the full range of 256
possible values.

In Table I, the potential combinations of these elements
showcase the vast number of unique flow entries one could
encounter in IP networking. Evidently, the magnitude of
possible combinations is colossal, especially when factoring in
the expansive address space of IPv6. However, as more fields
from the five-tuple are excluded, the number of combinations
decreases substantially.

It is important to note that these figures represent a theoret-
ical maximum. In practice, IP flow measurement on a specific
network segment does not capture all these combinations
because of the inherent nature of network design and purpose,

83

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

TABLE 1
THE TOTAL NUMBER OF POSSIBLE TUPLES FOR DIFFERENT
COMBINATIONS

Tuple Combination | 1Pv4 | IPv6
Src IP, Dst IP, Src Port, Dst Port, Proto | 1.1 x 10?8 | 1.2 x 107
Dst IP, Src Port, Dst Port, Proto | 1.1 x 102} | 1.5 x 1043
Src Port, Dst Port, Proto | 1.1 x 10'3 | 1.1 x 103
Dst Port, Proto | 1.7 x 107 1.7 x 107
Proto 256 256

hence observing only a subset of potential traffic patterns.
This highlights the nuanced and comprehensive scope of flow
measurements in IP networks, drawing a distinction between
theoretical possibilities and real-world observations.

C. The Process of Flow Aggregation

Flow aggregation serves as a popular method to stream-
line the handling of measurement data. It primarily aims to
combine several underlying measurement data points into a
single, unified record. The merging process is governed by
properties whose values may remain static or fluctuate over
time. It should be noted that flow records are themselves rep-
resentations of aggregated traffic, with flow features compiled
from information sourced from packet headers.

However, flow aggregation stands as a higher abstraction
level where the properties of multiple flow records are syn-
thesized according to specific criteria, yielding a more concise
representation of the original data. This aggregation results
in consolidated flow records that maintain the overall traffic
properties and characteristics, albeit with a broader granularity
and diminished detail.

While aggregation invariably results in flow records with
lesser information richness about network traffic, the informa-
tion loss incurred is substantially less than that observed in
sampling-based methods [7]. In certain traffic dynamics, these
methods can overlook entire flows, typically those composed
of a solitary packet or very few packets. This limitation has led
to the development of existing flow aggregation techniques [8],
[9] which employ partial aggregation of flow records deemed
non-essential. The process is facilitated by gradual flow key
reduction—that is, a step-by-step reduction in the count of flow
properties that function as flow keys—in order to safeguard
crucial information and preserve accuracy.

However, without the careful calibration of aggregation
intensity, achieving the appropriate granularity of flow-level
information becomes challenging. Ensuring optimal levels of
aggregation becomes essential in maintaining the delicate
balance between data manageability and the preservation of
pertinent information.

D. The Principle of Adaptive Flow Aggregation

Adaptive systems leverage iterative adjustments to their
parameters based on predefined criteria to ensure that the
system operates optimally or as close to optimal conditions as
possible. Adaptive aggregation adheres to a similar principle—
modifying aggregation according to one or more criteria to

84

enhance system operation. Such criteria could include the flow
size (measured in bytes), CPU or memory utilization by the
flow measurement process, link bandwidth utilization of the
capture device, or a combination thereof.

For instance, if flow aggregation is adjusted in response
to CPU utilization, the number of processed packets can be
perceived as directly proportional to the CPU utilization by
the flow metering tool. When the traffic volume increases,
the count of captured packets also escalates, subsequently
intensifying the resource utilization of flow measurement. In
contrast, a decline in traffic leads to a decreased packet count,
thereby reducing the associated resource utilization. This re-
ciprocal relationship allows the definition of different network
traffic load levels—such as low, moderate, and high. These
levels serve as markers for estimating how the traffic load is
registered by flow measurement, enabling the adjustment of
flow aggregation accordingly.

Adaptive flow aggregation proves beneficial as it applies
a relatively less destructive degree of aggregation contingent
upon the release of additional resource capacity. As a result,
more informational value is preserved when fluctuations in re-
source capacity permit. This advantage is particularly notable
in the context of constrained IoT operations, which often face
limitations in processing capability and memory. Furthermore,
as recent advancements in IoT solutions demonstrate a trend
towards transitioning computational logic from the cloud to
the edge [10], the need for low resource consumption while
preserving information value is increasingly crucial.

Contrarily, traditional flow aggregation with static operation
introduces a consistent level of distortion to flow-level infor-
mation, irrespective of resource availability. This can result in
unavoidable information loss during memory overflow events.
Notably, although adaptive flow aggregation employs more
aggressive merging under high loads, it helps to maintain
information integrity even when the flow cache overflows (i.e.,
when the memory is entirely filled). Despite the fact that this
approach might result in lower information granularity in the
aggregated flow records, it ensures no information is lost in
overflow situations. Furthermore, the process of gradual flow
key reduction is specifically designed to mitigate the erosion
of relevant information.

III. RELATED WORK

The domain of network management has witnessed exten-
sive research, but only a few studies have specifically honed in
on flow aggregation. An earlier work, Aguri, offers a distinct
approach to aggregation-centric traffic profiling suitable for
real-time, long-term, and wide-area traffic monitoring [9], [11].
Unlike conventional methods that rely on predefined filter
rules to classify traffic types, Aguri aggregates low-volume
flows until they become distinctly identifiable. This ensures
even minor traffic types are not overlooked. With its capacity
to generate concise profiles spanning source and destination
addresses and protocols, Aguri adeptly monitors traffic, spots
anomalies, and counters threats like DDoS attacks.

Diving deeper into the nuances of flow aggregation, Cheng
et al. [12] proposed an Aggregation Flow Measurement

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

(AFM). This scheme reconfigures traffic clusters leveraging
the quintessential five fields of a fine-grained flow. Central
to this method is dynamic sampling that adeptly recalibrates
in response to traffic shifts. Instead of direct packet value
recordings, it banks on estimates, optimizing CPU resource
allocation. Adding finesse to this approach is a secondary pro-
cess that prioritizes heavy-tailed flows during flow information
updates. This dual-pronged strategy ensures rich information
capture and impeccable estimation accuracy while judiciously
pruning smaller flows to streamline flow cache.

In assessing these methodologies, it is clear that adapta-
tion has been progressively factored into flow aggregation
techniques. While Aguri offers a unique perspective on traf-
fic profiling without considering real-time adaptation, AFM
brings resource utilization, specifically CPU dynamics, into
the fold. However, packet sampling entails a loss of granular-
ity, potential inaccuracies, challenges in rare event detection,
inconsistent accuracy across flows, and a lapse in bursty traffic
information capture. The added layer of flow sampling in AFM
aggravates these issues as flows, once organized, could be
counterproductively discarded.

Gradual Flow Key Reduction by Irino et al. [8] presents
a more refined approach. It orchestrates flows based on
predetermined criteria—like the volume of transported
octets in descending order. Only flows surpassing a user-
defined significance threshold are retained; the rest undergo
iterative aggregation. This proactive strategy curtails network
congestion and safeguards upper-tier platform components,
as visualized in Figure 1. However, despite its valuable
insights, this method does not fully embrace ‘adaptation.’ It
misses reacting to pivotal aspects such as resource utilization
by measurement tools or the fluidity of network traffic.
Undoubtedly, there is still a broader spectrum of criteria,
like the full range of network traffic dynamics, that might
further refine the granularity and efficiency of flow-level data
processing.

In a notable shift, recent studies increasingly integrate flow
aggregation with Heavy Hitter (HH) flow detection [13], [14].
Central to this detection is a threshold demarcating HHs from
their non-HH counterparts. Recognizing the challenges posed
by anomalous traffic patterns on measurement tools, Hu et
al. [15], [16] introduced a dynamic strategy utilizing adaptive
flow aggregation. At the heart of the methodology is the
insight that a significant proportion of network attacks mani-
fest as non-HH patterns, predominantly generating a plethora
of short-lived flows. The primary application of this method
finds relevance in scenarios like Denial of Service (DoS)
attacks that target the same destination IP address, and worm
attacks with identical source IP addresses. In response to these
situations, their approach combines a two-dimensional hash
table structure with a tiered clustering system. Once sorted,
the traffic within these clusters is aggregated into metaflows,
mitigating issues related to memory and export bandwidth,
while preserving the accuracy of legitimate flows.

Pekar et al. [17] introduced a technique inspired by Gradual
Flow Key Reduction but extended its application to the domain
of HH detection. This method tailors the aggregation of flow

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

Adaptive Flow Aggregation in Flow Metering Systems

records to match the characteristics of the traffic and the
specific objectives of the monitoring process. For instance, this
could include anomaly detection or flow-based accounting of
transferred data volumes. In this scheme, HHs are maintained
in the flow cache, while non-HHs are aggregated in dedicated
buffers, following a hierarchy defined by flow key precedence.
However, the work examines the adaptive aggregation of flow
records exclusively through the prism of reduction efficacy
in relation to HH detection, thereby also neglecting to explore
the performance efficacy, particularly in relation to information
distortion and resource consumption.

Building upon the theme of HH detection in software-
defined data center networks, Bi ez al. [18] sculpted a dynamic
threshold, examining the nexus between elephant thresholds
and network traffic dynamics in data centers. Drawing parallels
with the optimal receive system of baseband signal trans-
mission, they unearthed an equilibrium between positive and
negative false rate detections by studying the overlap of two
flow probability distribution curves.

In a similar vein, Wang et al. [19], [20] differentiated flows
into short and long categories, applying a fluid threshold. The
unique twist in their approach is the distinct management
of these flows: short flows are shepherded by distributed
algorithms, while long ones are entrusted to centralized solu-
tions. This method is further enhanced by capitalizing on end-
hosts for precise flow tagging and curtailing overhead through
centralized algorithms.

Lastly, Liu et al. [21] leveraged the Dynamical Traffic
Learning algorithm. This tool facilitates real-time dynamic
configuration of threshold values, ensuring swift and efficient
identification of HH flows with minimal latency and overhead.

Pivoting from flow record data to table rule management,
Saha et al. [22] hones in on flow table rule aggregation.
Focusing on QoS, flow table entry aggregation, and IoT, their
adaptive scheme reduces flow-rules volume without sacrificing
IoT traffic’s QoS. A key-based mechanism empowers user
choice over OpenFlow match-fields. Balancing QoS path
selection and switch flow-table use, the “Best-fit” heuristic
adaptively selects a QoS path to minimize network flow-rules.

Navigating the intricate orchestration of the small flows
emblematic of modern mobile core networks and IoT, Minh
et al. [23] introduces the "flow tree’, a controller-based binary
search tree-like structure mirroring the OpenFlow switch table.
By exploiting the wildcard of a flow’s dstIP, the method
manages the tree responsively to network shifts, resulting in
a flow table that is more efficient and trimmer than standard
OpenFlow tables.

Taking a step further, Phan et al. [24] developed a mech-
anism to optimize traffic flow monitoring in SDN-based net-
works. It adjusts flow table entries in SDN switches based on
the detailed traffic information required by systems such as
intrusion detection or traffic engineering. Instead of a fixed
threshold, the method uses a machine-learning algorithm to
determine optimal entry limits. This continual assessment
ensures SDN switch performance remains optimal.

Lastly, in an endeavor to streamline table occupancy in
SDNs, Jia et al. [25] showcases a flow-table aggregation

85

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

strategy. Through dynamic address and port rewriting, the
method aggregates multiple same-destination flows from
varied sources into a singular flow entry. This approach
drastically reduces core-layer SDN switch table occupancy,
proving effective even in environments with dispersed IP
address allocations. The method can operate in both software-
defined IPv4 and IPv6 networks, though it does not provide
explicit adaptability features.

In reflection, while foundational groundwork in flow mea-
surement has been laid by prior research, there is a distinct
evolution from static criteria to more dynamic, HH detection-
driven approaches. Nevertheless, predominant focus areas have
been network security and measurement data reduction. The
overarching challenge has been to comprehensively blend
adaptability, precision in aggregation, and nuanced flow han-
dling. The landscape, enriched by these advancements, still
beckons for solutions that holistically address the multifaceted
challenges of modern network environments.

Our study steps into this gap with an innovative approach.
Through the adaptive multi-buffer flow measurement strategy,
we aim to navigate beyond the traditional confines of prior
research. Our methodology fuses adaptability with structured
aggregation, ensuring that flow data is managed judiciously
and resourcefully. By doing so, we intend to shed light on
the impact of adaptive flow aggregation on information bias
and flow measurement instrumentation, providing a roadmap
for improved network traffic management. In essence, our
approach endeavors to set a new course in extracting mean-
ingful insights from flow data, even in environments marked
by resource variability. To our knowledge, this paper is the
first effort in bridging this particular domain gap.

IV. METHODOLOGY

This section delves into our methodology designed to study
adaptive gradual flow aggregation. We pay special attention
to the aggregation and adaptation techniques, foundational
assumptions, primary propositions, and our evaluative metrics.

A. Gradual Flow Aggregation Scheme

Anchoring our strategy is the Gradual Flow Key Reduction
mechanism [8]. This technique systematically and progres-
sively aggregates flow data, trimming flow key elements as
data navigate a sequence of buffers. It pivots on two fundamen-
tal components: the flow key precedence and the multi-buffer
structure.

1) Flow Key Precedence: The linchpin of our strategy is
the preordained Flow Key Precedence. This order determines
the hierarchy of flow key element reduction. As we traverse
each level of reduction, we witness flow records of differing
granularity—starting from the most detailed, progressively
becoming more aggregated.

2) Multi-buffer Structure: Our multi-buffer structure em-
bodies a delicate equilibrium between data granularity and
resource constraints, setting forth a well-considered data re-
duction route. Under the assumption of a standard five-tuple
flow key precedence as ‘protocol’ > ‘src_port’ > ‘dst_port’

86

> ‘src_ip’ > ‘dst_ip’, we detail the flow granularity across
buffers as follows:

e Main Flow Cache (Buffer B0): Retains the entire flow
key set, guaranteeing maximum information fidelity.

o Buffer BI: Initiates aggregation by removing ‘dst_ip’,
leaving behind ‘protocol’, ‘src_port’, ‘dst_port’, and
‘src_ip’.

o Buffer B2: Proceeds further by excluding ‘src_ip’, encom-
passing only ‘protocol’, ‘src_port’, and ‘dst_port’.

o Buffer B3: Excludes ‘dst_port’ next, safeguarding ‘proto-
col” and ‘src_port’.

o Buffer B4: At its apex of aggregation, only the ‘protocol’
remains.

Even though rooted in the predominant five-tuple, our
methodology displays inherent adaptability. We ensure that
the buffer configuration aligns with the diversity of flow
key elements, thereby providing versatility for various flow
definitions.

3) Gradual Flow Aggregation Operation: The aggregation
cycle commences by targeting the lowest-ranking flow key.
Resultant flow records, housed in buffer By, present the least
coarse granularity. Subsequent aggregation then zeroes in on
the next flow key, now the lowest-ranked of the survivors.
The records emanating from this second aggregation tier
are stationed in buffer Bg, presenting a marginally coarser
granularity view.

This iterative process persists through subsequent flow keys,
ushering in an incremental level of flow granularity with every
pass. The culmination is the aggregation of the highest-ranking
flow key, where the consequent flow records—residing in
buffer By—capture the coarsest granularity snapshot.

In summation, the Gradual Flow Aggregation strategy
adeptly manages data granularity, striking a harmonious bal-
ance between storage efficiency and insightful flow data rich-
ness.

B. Enhanced Gradual Flow Aggregation: A Refined Approach

Our proposed methodology optimizes the original Gradual
Flow Aggregation scheme, introducing structure, adaptability,
and improved data management. Central to this refinement is
a multi-buffer structure reminiscent of the original method.
However, what sets our method apart is its disciplined, se-
quential flow aggregation. Contrary to the original method,
which allowed flow records the potential freedom to transition
directly from the primary buffer to the last, our approach
ensures flow records aggregate over only one flow key el-
ement when transitioning between consecutive buffers. This
mandates a smoother, less abrupt data reduction, leading to
enhanced information preservation.

Our methodology also integrates an improved threshold
mechanism. Each buffer possesses its specific threshold, which
can be consistent or varied across buffers. This threshold
serves as a deciding factor, determining the flows to retain
or those designated for aggregation. Moreover, by adjusting
this mechanism to be responsive to resource utilization, we
achieve a delicate balance between preserving pertinent flow
details and efficiently managing resources.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

flow buffers with different
levels of aggregation

(]

=

packets < g i g

Oodo 5
B ‘ | adaptive
< NFStream flows threshold

flow (NFPlugin)

measurement + N

Fig. 2. Workflow from flow measurement achieved by NFStream to adaptive gradual flow aggregation implemented as an NFPlugin.

A notable innovation is the provision to redirect overflowing
flows to subsequent buffers when a buffer reaches its capacity.
This ensures that the aggregation process remains structured,
even under significant network traffic demands. Furthermore,
the last buffer, B4, is designed to capture all possible network
flows, thus offering a holistic aggregation framework.

In summary, our enhanced methodology, characterized by
its tiered flow key element reduction and dynamic threshold
mechanism, not only minimizes the risk of sudden data reduc-
tions but also provides a more resource-efficient, organized,
and information-rich flow aggregation process compared to
its predecessor.

C. Proof-of-Concept Implementation

Our methodology for enhanced gradual flow aggregation
was built upon the NFStream framework [26], a Python-
based tool engineered for rapid, flexible, and expressive data
handling.

NFStream’s robustness stems from its hybrid design, blend-
ing Python’s accessibility with the speed of C. At the heart of
this design is the NFlow structure, defined in C. This structure
represents a network flow, encapsulating core attributes such as
the five-tuple flow key, and is further enriched with additional
flow statistics and metadata. These metadata are organized into
multiple categories, including core features, L7 visibility, post-
mortem statistics, and SPLT details. Users can dynamically
toggle these feature sets on or off during flow measurement,
offering a bespoke network analysis environment. Each of
these features is stored in a specific variable type, tailored
to accommodate its potential maximum value size.

NFStream not only simplifies the transition from raw net-
work measurements to refined data science analytics due to its
core functions in flow measurement and feature computation
but also shines with its extendable architecture. This extensi-
bility, particularly evident in the integration of custom network
functionalities via the NFPlugin component [26], allowed us
to embed our adaptive gradual flow aggregation directly as an
NFPlugin. This integration was facilitated by the use of four
distinct buffers (B1-B4), which collaboratively operate along-
side NFStream’s primary flow cache, as illustrated in Figure 2.
These buffers are designed to retain flow records with varying
granularities.

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

D. Resource Utilization-driven Adaptability

Our approach to flow aggregation is adaptive, with the
degree of aggregation varying in accordance with changes
in resource utilization by the flow meter. The number of
processed flows has been found to be directly proportional to
resource utilization [27]. Essentially, an increase in network
traffic, leading to a growing number of flows, results in
a concurrent rise in CPU and memory load. Conversely, a
reduction in traffic, and thus the number of flows, leads to a
decrease in resource utilization. Assuming that the temporal
aspect of the flow meter’s resource utilization aligns with its
flow cache load, we designed our aggregation process to reflect
the changes of its CPU and memory usage.

With the above in mind, our methodology involves ongoing
monitoring of CPU and memory utilization. This yields a
set of n observations denoted as O = 04,0¢41,...,014n
(t = 0,1,...,k). Each observation is the average CPU and
memory usage at time ¢, or o = (cpus + memoryy)/2. CPU
time and memory usage are combined in our methodology
to provide a more comprehensive measure. Analyzing these
two metrics separately might overlook scenarios where one
resource is heavily utilized while the other is not, resulting
in a misleading representation of the overall system load.
By combining these metrics, a more holistic and accurate
assessment of the current state of system resource utilization
is obtained. Furthermore, each observation, o;, is expressed as
a percentage, representing the proportion of the total available
CPU and memory resources that are currently being used.
Therefore, the value of o, in our approach can range from
0 to 100%.

The average resource utilization, represented as o, is then
calculated using the following formula:

k
Z Ot+i
Ehw i k> ow.
o= P ’ = (1)
Z Ot+i
%, otherwise.

The sliding window of size w is employed to ensure that
our assessment of average resource utilization is up-to-date
and sensitive to recent changes, by considering only the last

87

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

w observations. However, at the beginning of our monitoring
process, it may take some time to accumulate w observations.
The second case in the equation accounts for this scenario,
where the average resource utilization is calculated using all
available observations, instead of just the last w. Once we
have collected at least w observations, the first case will be
used to calculate the average resource utilization, effectively
implementing the sliding window approach.

Achieving adaptability involves comparing average resource
utilization (o) between consecutive times, ¢t — 1 and . The
aggregation threshold is adjusted based on the difference
between o;_1 and 0. This can be formally expressed using
the following formula:

T, + (‘Jt—l — Jt|)% of Tt—l: if o1 <oy
T, — (‘Jt—l — Ut|)% of Tt—l: if o1 >0y
0, otherwise.

Ty =

@)
where

T;+1 = signifies the aggregation threshold for time ¢ + 1;

T, = represents the currently employed aggregation
threshold at time ¢;

Ty 1 = refers to the aggregation threshold used at time
t—1;

o1 = designates the previous average resource
utilization as measured by CPU and memory load
at time ¢ — 1;

o; = indicates the current average resource utilization
as measured by CPU and memory load at time ¢.

Equation (2) ensures that the aggregation threshold is regu-
larly fine-tuned in accordance with variations in traffic load as
manifested in CPU and memory utilization. As such, resource
utilization near its maximum will trigger more aggressive flow
aggregation, while lower resource utilization will result in a
lesser degree of flow aggregation.

The degree of aggregation is based on a threshold 7". Flows
that transfer bytes (flowpytes) equal to or exceeding 7' are
preserved in their original state. Conversely, flows that transfer
fewer bytes than what 7" prescribes are gradually aggregated
within the buffers.

Aggregation commences once a buffer reaches its maximum
capacity. Prior to adding a flow entry into the flow cache,
the current buffer’s capacity is assessed. Should it be at full
capacity, the aggregation procedure is invoked. Flows adhering
to the adaptively adjusted threshold remain intact within their
existing buffer. Conversely, flows falling short of the threshold
undergo aggregation. This entails discarding the flow key of
the underlying buffer before relocating the flows to said buffer.
This process is consistent across all buffers: each time a
buffer reaches its limit, aggregation ensues, relegating flows
to subsequent buffers characterized by diminished information
retention capacities.

E. Assumptions
Our experimental evaluation is anchored on several founda-
tional assumptions.
1) Hierarchy of Flow Features: Building upon the guidance
of [8] and [17], we delineated a hierarchy for flow

88

features, sequenced from highest to lowest precedence
as: protocol, source port, destination port, source IP, and
destination IP. This structure aims to replicate a genuine
scenario, ensuring that flows in the concluding buffer
(By) can be differentiated based purely on their protocol
identifiers.

2) Aggregation and Flow Movement: We postulate that ag-

gregation happens solely within each discrete buffer, with
the flow cache being an exception. Flow records transition
from the primary flow cache towards the buffer By, as
illustrated in Figure 2. This directional progression of
records guarantees that transporting a record from the
flow cache to B; is more cost-efficient than shifting
records between buffers Bs and B4. This movement
approach is optimized to curtail information loss, espe-
cially for flow records with significant byte transfer. To
further impede information loss during synchronization,
a flow record’s relocation is restricted to one move per
aggregation cycle.

3) Adaptive Thresholding: The adaptation mechanism hinges

4)

5)

6)

on the threshold 7', dictated by the overall data volume in
the flow, denoted as flowpyes. Our prototype harnesses a
universal threshold influencing all buffers, encompassing
the flow cache. Future studies should probe into the
advantages of individual thresholds for each buffer.
Sliding Window Size: For our prototype evaluation, we
fixed the sliding window size at 10 elements. This choice
is underpinned by thorough examination of diverse set-
tings and the resultant outcomes. Yet, more investigation
is warranted to gain deeper insights into the ramifications
of varied window sizes.

Memory Consumption and Flow Record Size: Our results
are simplified with the assumption that each flow record
consumes 21 bytes, given by the size of the flow key. The
memory consumption of flow keys in NFStream are:

o Source & Destination IPv4 Address: 8 bytes each

e Source & Destination IPv6 Address: 16 bytes each

o Source & Destination Port: 2 bytes each

« Protocol Identifier: 1byte

This culminates in a memory consumption of 21 bytes
for IPv4 flow records and 37 bytes for IPv6 flow records.
For instance, storing 1 million IPv4 flow records would
require approximately 20.96 MB. Nonetheless, for actual
memory allocations, the results should be multiplied
by the size of the complete feature set, computed as
the sum of all feature sizes. Factoring in the 86 flow
features NFStream can measure amplifies the memory
requirements, emphasizing the need for effective memory
management in IP flow measurement.

TCP Flow Record Aggregation: During the aggregation
phase for TCP flow records, TCP flags are omitted. This
is because these flags, being intrinsically flow-specific,
lose their informational significance upon aggregation,
rendering them redundant in the aggregated context.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

E. Information Bias in Adaptive Flow Aggregation

Through the process of aggregation, the information value
of flow records diminishes, and this effect intensifies with
increasingly aggressive flow aggregation, a consequence of
surging resource utilization. Nevertheless, the impact on traffic
management-related activities is direct and substantial. Infor-
mation bias, in this context, refers to the distortion of flow
size data resulting from the aggregation process. As the flow
records are aggregated and the granularity of the information
reduces, the interpretation of these records can become less
precise, or “biased”.

Consider the varied sensitivities of different applications
to this information bias. For example, application type clas-
sification and DoS attack detection are highly sensitive to
information bias. In application type classification, a detailed
breakdown of the flow is essential to accurately identifying
the type of application from its network patterns. Similarly,
DoS attack detection relies heavily on identifying anomalies
or spikes in individual flows, which can be obfuscated by
aggregated data.

On the other hand, certain applications might be less
affected by this bias. Accounting applications, for instance,
often focus on the overall data transfer volume, which can
be accurately measured even with aggregated flow data. Load
balancing, too, is typically concerned with overall network
utilization across multiple routes or servers, rather than the
details of individual flows, and thus may remain largely
unaffected by the aggregation process.

Therefore, understanding the effects of adaptive gradual
flow aggregation on the value of flow size information, par-
ticularly in relation to the saturation of flow cache size, is
critical. It is a balancing act between maintaining network
performance and retaining the precision necessary for certain
network tasks. Quantifying how flow size-based aggregation
across the buffers B — B, contributes to information bias can
provide key insights that improve network traffic management.
It is worth noting that while ‘information bias’ may not be a
universally recognized term in this context, it serves effectively
to describe the phenomenon discussed here.

G. Dataset Preparation and Ground Truth Establishment

Our study utilized the UNIV1 dataset [28], [29], a publicly
accessible traffic trace collected from a university campus data
center. The dataset encompasses a wide array of services,
including system backups, distributed file system hosting, e-
mail servers, web services, and multicast video streams.

Organization of packets into forward, backward, and bidi-
rectional flows was carried out using NFStream, with the
passive and active expiration of flows set to NFStream’s
default of 120 and 1800 seconds, respectively. The resultant
dataset comprised a total of 468,905 IP flows distributed
across 14 distinct protocols. Specifically, UDP, TCP, and other
protocols (such as ICMP, IGMP, EGP, IGP, ESP, and AH)
accounted for 270,028, 196,305, and 2,572 flows respectively.

The CDF of flow sizes is displayed in Figure 3. Detailed
analysis revealed that around 85% of flows were smaller than
10 kB, with the majority of the data (20 kB and larger)

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

Adaptive Flow Aggregation in Flow Metering Systems

1.0

0.8+

0.6 4

CDF

0.4 4

0.2

0.0

10° 10° 107 10°
Flow size [Bytes|

Fig. 3. Flow Size Distribution.

concentrated in the top 5% of flows. Interestingly, less than 10
packets generated roughly 70% of the flows, while a mere 2%
of all flows originated from more than 100 packets. We also
discovered that about 14% of all flows in the UNIV1 dataset
transferred data larger than 10 kB in size. This observation
is consistent with findings in [29], which reported that 10%
of the flows transport the majority of the traffic. The slight
difference between our measurements and these findings can
be attributed to variations in flow metering methodologies and
the flow expiration timeout used.

Given our observations and the significant influence of flow
size on our adaptive aggregation implementation, we selected
the transmitted number of bytes in the flow (flowpytes)
as the primary metric for our evaluation. Consequently, we
established the flow size threshold at 13.4 kB, which has
been recognized as the optimal threshold for the UNIV1
dataset concerning flow size [30]. This threshold served as
the benchmark for our evaluation.

H. Quantifying Information Bias with Size Estimation Error

To study the impact of adaptive gradual flow aggregation on
information bias, we introduce Size Estimation Error (SEE).
The SEE is a measure of the error in the estimated flow size
for flows within the buffers (B1-Bj,) at the conclusion of each
measurement interval, relative to the memory size m.

1) Definition of SEE: SEE serves as an indicator of the
average number of flows merged within the buffers and
the relative change in their sizes compared to their original
dimensions. For any given buffer ¢ (B;), we calculate SEE as:

SEE; = |B;| x (i X). 3)

In this equation, SEE; is a preliminary estimation of the
Size Estimation Error for buffer i. We employ the hat (*)
notation to signify a preliminary value or estimate within the
statistical framework.

89

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

2) Normalization of SEE and Definition of SEE Vector:
To acquire a normalized SEE (SEF;) that provides a relative
estimation error for each buffer, we normalize each SEEi as
follows:

SEE;

SEE; = —p————
Z]‘=1 SEE;

“
Each SEE; now represents the normalized size estimation
error for buffer ¢, providing a proportionate share of the total
estimation error.
We then compile these normalized size estimation errors
into a single vector, referred to as the SEE vector:

SEE = (SEE,, SEE,, SEFE;, SEEy). (5)

We operate under the premise that the sum of all SEFE;
values is 1, and each SEE; is equal to or greater than 0, i.e.,
St SEE; =1, SEE;>0.

3) Adaptive Gradual Flow Aggregation and SEE Implemen-
tation: Our implementation of adaptive gradual flow aggrega-
tion encompasses two potential scenarios for transferring flows
from a lower-ranked buffer B,, to a higher-ranked buffer B,, ;1.
In striving for a realistic environment, we set the memory limit
of each buffer to 10,000 bytes, aligning with the parameter
settings proposed by [14].

The first scenario comes into play when the memory reaches
saturation, necessitating memory clearance. Consequently, the
adaptive gradual flow aggregation relocates flows into lower-
ranked buffers, with a particular focus on moving the smallest-
sized flows between buffers.

In the second scenario, the system iteratively examines the
flows in buffers B; — B, based on the size of the flowyytes
parameter (cf. Section IV-D). The flows are then tagged and
moved in accordance with the actual threshold 7'. As the
system nears the memory limit, it begins to reposition the
flow records relative to the current system utilization, adhering
to the adaptive gradual flow aggregation scheme discussed in
Section IV-A.

4) Evaluation of Information Bias: After distributing all
the flows across buffers By — B4, we contrast the results
to quantify the information bias induced by adaptive gradual
flow aggregation on the flow size feature. Importantly, our
method retains all necessary metadata for reverting aggregated
flows over the buffers back to their original form, enabling an
accurate efficacy evaluation.

V. RESULTS

This section delineates the quantitative ramifications of
adaptive gradual flow aggregation. Initially, it assesses the
parameters of a system operating under constraints. Subse-
quently, it explicates the influence of adaptive flow aggregation
in a multi-buffer system arrangement.

A. Bounds of a Constrained System Operation

Gauging the necessities and constraints for full-fledged,
dependable flow metering presents a formidable challenge. In
spite of only a fraction of the traffic being measured, the

90

—&— Main flow cache memory consumption

—-@— Resource utilization O

10000 4

3000 A

6000

4000 A

Flow cacle size [Bytes]
CDF [Percentage|

2000 A

0.0 0.1 0.2 0.3 0.4 0.
Resource Utilization O [Percentage]

ot

Fi

g. 4. Correlation between flow occupancy and resource utilization O.

network invariably houses more devices than the metering
system. This culminates in a vast discrepancy between the
resources available for traffic generation and those for traffic
measurement, leading to a pronounced resource asymmetry. To
quantify this asymmetry, our initial step involved examining
the bounds for constrained operation of our prototype imple-
mentation devoid of active adaptive gradual flow aggregation.

Figure 4 visualizes the correlation between per-buffer flow
occupancy size and resource utilization, denoted as O. The
left y-axis signifies buffer memory usage in bytes, the right
y-axis represents the distribution of flow sizes via CDF, and
the x-axis denotes resource utilization O, which comprises
memory and CPU loads. The system’s behaviour is depicted
in Figure 4 through two curves: (i) the distribution of flow
occupancies relative to O, marked using rectangular markers,
and (if) the CDF relative to O, indicated using dot markers.

Figure 4 reveals that a surge in the number of flow records
in the flow cache directly leads to a significant increase
in resource utilization O, which is composed of memory
and CPU loads. Consequently, the maximum memory cap of
10,000 bytes is attained at a resource utilization as low as
4.81%. As the observation of additional flows sustains the
memory load at 100%, the combined resource utilization O
promptly escalates beyond 40%. This translates to both a
subpar operation of the system and the dropping or discarding
of packets and flows. We also noted that there is a 9.88%
chance of observing 10% O at a memory load of 1,420 bytes.

This implies that memory saturation, regardless of flow
creation and maintenance, substantially elevates the O param-
eter of a given device. Therefore, flow meters ought to be
calibrated with respect to memory limits to prevent reaching
the saturation level. In situations where such conditions are
unattainable, adaptive gradual flow aggregation can aid in
guaranteeing a reliable system operation.

B. Implications of Adaptive Gradual Flow Aggregation

Adaptive gradual flow aggregation is conducted relative to
the actual memory load, capped at 10,000 bytes, and CPU
utilization. This leads to the distribution of flows among indi-

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

—&— Buffer memory consumption
-@- Size Estimation Error
10000 A
7 8000 A
z
g 6000 4 'é
Z <
: E
24000 1 =
It =)
8 1)
£}
2000
” L T T T T T
Flow Cache B B, By By
Flow buffer
Fig. 5. Correlation between the size of per-buffer flow occupancy and SEE.

vidual buffers. With this in mind, we explored SEE resulting
from this distribution. Accordingly, packets in the UNIV]
were arranged using adaptive gradual flow aggregation, and
the buffer status was examined post-operation. Note that, for
the evaluation of this approach’s operational conditions, flow
expiration causing flows to be flushed from the cache(s) was
disregarded.

Figure 5 illustrates the correlation between the size of per-
buffer flow occupancy and SEE. The left y-axis signifies buffer
memory usage in bytes, the right y-axis represents SEE, and
the z-axis denotes the flow buffers. Figure 5 portrays the
system behavior via two curves: (i) the distribution of flow
occupancies between the buffers, marked using rectangular
markers, and (ii) the SEE for each buffer, indicated using dot
markers.

Figure 5 reveals that the buffers’ occupancy by flows
decreased logarithmically due to gradual flow reduction. The
most substantial reduction occurred in buffer B4, which ag-
gregates flows over the flow key with the highest rank—the
protocol identifier (cf. Section IV-A). Quantitatively, the SEE
amounted to 75.49%, signifying a considerable information
loss of all the UNIV1 flows. Nevertheless, this occurred at
the cost of a significant reduction factor, implying all flows
moved into this buffer were aggregated to yield 14 entries,
each 21 bytes in size (UNIVI1 contains 14 unique protocols,
as discussed in Section IV-G).

Shifting towards a configuration devoid of adaptive gradual
aggregation, the ratio discernibly shifts in favor of preserv-
ing information value, albeit at the expense of deteriorated
memory utilization. Empirically, buffer B3, which aggregates
UNIV1 flows over the flow keys with the second-highest rank,
yielded an SEE of 21.63%, consuming 540 bytes of buffer
memory. Buffer By presented a further improvement, with an
SEE of 2.42% at a memory utilization of 960 bytes. Finally,
aggregation over buffer B resulted in an SEE of 0.46%,
occupying 3,840 bytes of memory.

In light of the above, adaptive gradual flow aggregation over
B appears to offer the most optimal balance, providing an
excellent compromise between preserving maximum informa-

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

Adaptive Flow Aggregation in Flow Metering Systems

tion value and minimal memory utilization, as demonstrated
in Figure 5. Buffer B, aggregates flow records over the flow
key with the second-lowest rank among all flow keys, thereby
the information contained in the aggregated flow records has
a less fine level of granularity compared to complete flow
records, inevitably leading to information loss. Quantitatively,
this approach aggregated 20,434 flows in By from a total
of 468,905 flows in UNIV1, translating to a loss of 2.42%.
This could be considered a reasonable trade-off for enhanced
resource utilization. Furthermore, the extent of loss can be
mitigated by bolstering the physical hardware, specifically
the allocated memory. Nevertheless, adaptive gradual flow
aggregation significantly improved the system operation under
limited constraints. It can aid in achieving optimal resource
utilization while retaining the maximum information value
embedded in the flow records.

VI. DISCUSSION

The adaptive gradual flow aggregation mechanism presented
in this research study aims to optimize the balance between
memory utilization and information value preservation in the
context of network flow metering. The results shed light on
the implications of adopting this mechanism, particularly in
scenarios where the system is resource-constrained.

In a context where there exists a significant asymmetry
between traffic generation and traffic measurement resources,
our adaptive flow aggregation technique comes into play. It
addresses the problem by efficiently distributing flows across
multiple buffers, a fact underpinned by our results that high-
light the performance of the mechanism under constrained
operation.

Equally important is the role of SEE, a measure introduced
to quantify the error in flow size estimation. Through the use
of SEE, we can understand and assess the trade-off between
memory utilization and information preservation. Indeed, our
findings show that, as the level of flow aggregation increases,
SEE increases too, which translates to greater information loss.
However, it is noteworthy that the amount of information loss
varies significantly across buffers, with some buffers offering
an optimal trade-off.

Our results revealed that saturation, irrespective of the oc-
currence of flow creation and maintenance, causes the resource
utilization parameter O of a given device to rise significantly.
This underlines the importance of appropriately configuring
flow meters concerning memory bounds to prevent reaching
the saturation level. In scenarios where this is not feasible,
adaptive gradual flow aggregation can ensure reliable system
operation.

It was also observed that the application of adaptive flow
aggregation resulted in a reduction in the total number of flow
records in the cache, with a corresponding decrease in the
SEE. The interplay between memory utilization and informa-
tion preservation became apparent, illustrating the trade-offs
involved. The buffer occupancy, and consequently the SEE,
decreased logarithmically due to gradual flow reduction. While
this led to a loss in information, it also enhanced system
performance by significantly reducing memory usage.

91

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

Adaptive Flow Aggregation in Flow Metering Systems

An intriguing finding was the optimal balance achieved
with adaptive gradual flow aggregation over buffer By. This
offered an excellent trade-off between maximum information
value and minimal memory utilization. Buffer By aggregates
flow records over the flow key with the second-lowest ranking
among all flow keys, implying the information contained in
the aggregated flow records has a coarser level of granularity
compared to complete flow records. This led to an inevitable,
yet acceptable, information loss. Nevertheless, with enhanced
physical hardware or increased allocated memory, the degree
of this loss can be minimized, hinting at potential avenues for
improvement.

Overall, the results demonstrate the effectiveness and poten-
tial of our proposed adaptive gradual flow aggregation mecha-
nism. Despite the inherent information loss, the mechanism
significantly improves system operation under limited con-
straints and resource asymmetry. It achieves optimal resource
utilization while striving to retain the maximum possible
information value in the flow records. As such, it presents a
promising solution for environments constrained by memory
and processing resources.

VII. IMPLICATIONS

The absence of a systematic data reduction strategy, while
ensuring full preservation of information value, incurs higher
operational costs and risks a potential crash of the measure-
ment instrument as resource capacity reaches its limits. On the
other hand, the application of gradual flow aggregation reduces
the size of flow measurement data, thus lowering operational
costs, but inevitably distorts flow-level information. Our study
reveals that the operation of such a system can be further
optimized for better resource utilization through adaptability.

From a traditional viewpoint, achieving optimal operation
without adaptive flow aggregation seems impracticable as the
dual objectives of preserving information value and reducing
data volume are essentially mutually exclusive. Moreover,
optimizing for either of these objectives leads to increased
operational costs. In contrast, adaptive flow aggregation en-
ables system operation optimization by balancing between
information preservation and data volume reduction. The goal
of optimization, therefore, is to determine the aggregation
threshold for a given buffer n, given factors such as flow
record creation rate, buffer capacity, memory utilization, and
CPU utilization. The aim is to minimize the volume of flow
records while maximizing the preservation of information in
the flow records.

Our results show that optimizing system operation through
preliminary observation-based configurations can already yield
a more compact data volume while preserving considerable
information value, all without incurring additional operational
costs. This operation can be enhanced by solving the op-
timization problem to determine the optimal threshold per
buffer n, including the flow cache. However, further research
is necessary to establish the efficacy of algorithms designed
to solve this optimization problem. These investigations could
provide additional insight into the interplay between infor-
mation preservation, data volume reduction, and resource
utilization in flow metering systems.

92

VIII. BROADER APPLICATIONS AND FUTURE DIRECTIONS

Given the versatility and profound implications of network
monitoring, our study extends beyond merely reducing data
volume to encompass a broad spectrum of applications:

1) Quality of Service: Effective flow aggregation is instru-
mental in accurately monitoring service levels. By ensuring
network services consistently meet their designated quality
parameters, we can enhance SLA adherence and elevate the
overall network experience for users.

2) IoT and Edge Computing: The inherent constraints of
IoT devices and the trend towards edge computing highlight
the indispensability of adaptive flow aggregation. In these
settings, striking a balance between data richness and resource
efficiency is of paramount importance.

3) Software-Defined Networking: In the realm of SDNs, it
is essential to fine-tune flow table rules and guarantee efficient
load distribution. Our adaptive aggregation approach offers a
promising avenue for honing rule sets and optimizing traffic
management.

4) Attack Detection: Leveraging adaptive flow aggregation
allows for the efficient clustering of disparate anomalous
patterns. This capability can significantly bolster intrusion
detection systems and fortify network security frameworks.

Peering further into areas like attack detection and QoS,
we discern the potential for synergizing our adaptive flow
aggregation techniques with advancements in Al and machine
learning. Such a fusion could usher in predictive flow man-
agement, seamlessly navigating the dichotomy between pre-
serving information and reducing data volume. Moreover, we
envision subsequent research endeavors delving into various
contexts and proposing algorithmic solutions to the optimiza-
tion challenge we have underscored. Crafting these solutions
would enhance the potency of adaptive flow aggregation,
optimizing flow metering systems, especially in resource-
limited environments.

IX. CONCLUSION

In this study, we examined adaptive gradual flow aggrega-
tion as a methodology for coping with resource asymmetry in
flow metering systems. Our results illuminated the practical
implications of adaptive flow aggregation and highlighted the
inherent trade-off between memory utilization, CPU load,
and information preservation. By exploiting this trade-off,
we found that adaptive gradual flow aggregation could help
achieve a desirable balance between resource utilization and
the maintenance of maximum information value within the
flow records. In particular, we identified that buffer Bs of-
fered the most optimal balance, yielding a compromise loss
of 2.42%, which we consider acceptable in the context of
improved resource utilization.

Overall, our study underscores the potential of adaptive
gradual flow aggregation to improve resource utilization in
flow metering systems while preserving vital flow-level infor-
mation. Adhering to open science principles, we have made
the scripts used in our experiments publicly accessible'. We

Uhttps://github.com/FlowFrontiers/ AGFA

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

https://github.com/FlowFrontiers/AGFA

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:

believe this will facilitate a thorough comprehension of our
methodologies and encourage additional investigation in this
domain.

ACKNOWLEDGEMENT

This work was supported by the Janos Bolyai Research
Scholarship of the Hungarian Academy of Sciences. Supported
by the UNKP-23-5-BME-461 New National Excellence Pro-
gram of the Ministry for Culture and Innovation from the
source of the National Research, Development and Innovation
Fund. The work presented in this paper was supported by
project no. TKP2021-NVA-02. Project no. TKP2021-NVA-02
has been implemented with the support provided by the Min-
istry of Culture and Innovation of Hungary from the National
Research, Development and Innovation Fund, financed under
the TKP2021-NVA funding scheme.

REFERENCES

[1] B. Li et al., “A survey of network flow applications,” Journal of
Network and Computer Applications, vol. 36, no. 2, pp. 567-581,
2013. por: 10.1016/j.jnca.2012.12.020.

R. Hofstede et al., “Flow monitoring explained: From packet capture

to data analysis with netflow and ipfix,” IEEE Communications

Surveys Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.

por: 10.1109/COMST.2014.2321898.

S. Bauer et al., “On the evolution of internet flow characteristics,”

in Proceedings of the Applied Networking Research Workshop, ser.

ANRW °21, Proceedings of the Applied Networking Research

Workshop, 2021, pp. 29-35. por: 10.1145/3472305.3472321.

P. Velan, “Improving network flow definition: Formalization and

applicability,” in NOMS 2018 — 2018 IEEE/IFIP Network Operations

and Management Symposium, NOMS 2018 — 2018 IEEE/IFIP Net-

work Operations and Management Symposium, 2018, pp. 1-5.

por: 10.1109/NOMS .2018.8406203.

A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions

in traffic classification,” IEEE Network, vol. 26, no. 1, pp. 35-40,

2012. por: 10.1109/MNET.2012.6135854.

[6] S.Lee, K. Levanti,and H. S. Kim, “Network monitoring: Present and

future,” Computer Networks, vol. 65, pp. 84-98,2014.
pol: 10.1016/j.comnet.2014.03.007.

[7] S.Dong and Y. Xia, “Network traffic identification in packet sampling

environment,” Digital Communications and Networks,2022.
por: 10.1016/j.dcan.2022.02.003.

[8] H.Irino, M. Katayama, and S. Chaki, “Study of adaptive aggregation

on ipfix,” in Proceedings of the 7th Asia-Pacific Symposium on

Information and Telecommunication Technologies, Proceedings of the

7th Asia-Pacific Symposium on Information and Telecommunication

Technologies, 2008, pp.86-91. por: 10.1109/APSITT.2008.4653545.

K. Cho, R. Kaizaki, and A. Kato, “Aguri: An aggregation-based

traffic profiler,” in Quality of Future Internet Services, M. 1. Smirnov

et al., Eds., Quality of Future Internet Services, 2001, pp. 222-242.

por: 10.1007/3-540-45412-8_16.

[10] L.Kong et al., “Edge-computing-driven internet of things: A survey,”
ACM Comput. Surv.,2022, Just Accepted. por: 10.1145/3555308.

[11] K. Cho, R. Kaizaki, and A. Kato, “An aggregation technique for
traffic monitoring,” in Proceedings 2002 Symposium on Applications
and the Internet (SAINT) Workshops, 2002, pp. 74-81.
por: 10.1109/SAINTW.2002.994556.

[12] G. Cheng and J. Gong, “Adaptive aggregation flow measurement
on high speed links,” in Proceedings of the 11th IEEE Singapore
International Conference on Communication Systems (ICCS), 2008,
pp- 559-563. por: 10.1109/ICCS.2008.4737246.

[2

—

3

—

[4

—

[5

—_

[9

—

SEPTEMBER 2023 « vOLUME XV * NUMBER 3

Adaptive Flow Aggregation in Flow Metering Systems

[13] K.-c.Lan and J. Heidemann, “A measurement study of correlations of
internet flow characteristics,” Computer Networks, vol. 50, no. 1, pp.
46-62,2006. por: 10.1016/j.comnet.2005.02.008.

[14] V.Sivaraman et al., “Heavy-hitter detection entirely in the data plane,”
in Proceedings of the Symposium on SDN Research, ser. SOSR *17,
Proceedings of the Symposium on SDN Research, 2017, pp. 164—176.
por: 10.1145/3050220.3063772.

[15] Y. Hu, D.-M. Chiu, and J.-S. Lui, “Adaptive flow aggregation — a
new solution for robust flow monitoring under security attacks,” in
10th IEEE/IFIP Conference on Network Operations and Management
Symposium, ser. NOMS *06, 10th IEEE/IFIP Conference on Network
Operations and Management Symposium, 2006, pp. 424-435.
por: 10.1109/NOMS .2006.1687572.

[16] Y. Hu, D. M. Chiu, and J. C. S. Lui, “Entropy based adaptive flow
aggregation,” IEEE/ACM Transactions on Networking, vol. 17, no. 3,
pp. 698-711,2009. por: 10.1109/TNET.2008.2002560.

[17] A. Pekar et al., “Adaptive aggregation of flow records,” Computing
and Informatics, vol. 37, no. 1, pp. 142-164,2018.

DOI: 10.4149/cai\ 2018\ 1\ 142.

[18] C.Bietal.,“On precision and scalability of elephant flow detection in
data center with SDN.,” in Proc. 32nd IEEE Global Communications
Conf. Workshops, ser. GLOBECOM’13, 2013, pp. 1227-1232.
por: 10.1109/GLOCOMW.2013.6825161.

[19] S. Wang et al., “Fdalb: Flow distribution aware load balancing
for datacenter networks,” in 2016 IEEE/ACM 24th International
Symposium on Quality of Service (IWQoS), 2016, pp. 1-2.
por: 10.1109/IWQ0S.2016.7590409.

[20] S. Wang et al., “Flow distribution-aware load balancing for the
datacenter,” Computer Communications, vol. 106, pp. 136-146,2017.
por: 10.1016/j.comcom.2017.03.005.

[21] Z. Liu et al., “An adaptive approach for elephant flow detection with
the rapidly changing traffic in data center network,” Int. J. of Network
Management, vol. 27,n0. 6,e1987,2017,¢1987 nem.1987.
poI: 10.1002/nem.1987.

[22] N. Saha, S. Misra, and S. Bera, “Qos-aware adaptive flow-rule
aggregation in software-defined iot,” in 2018 IEEE Global Commu-
nications Conference (GLOBECOM), 2018, pp. 206-212.
por: 10.1109/GLOCOM.2018.8647471.

[23] Q. T. Minh et al., “Flow aggregation for sdn-based delay-insensitive
traffic control in mobile core networks,” IET Communications,vol. 13,
no. 8, pp. 1051-1060, 2019. por: 10.1049/iet-com.2018.5194.

[24] T. V. Phan et al., “Destination-aware adaptive traffic flow rule
aggregation in software-defined networks,” in 2019 International
Conference on Networked Systems (NetSys), 2019, pp. 1-6.
por: 10.1109/NetSys.2019.8854510.

[25] W-K. Jia and X. Wang, “Flow aggregation for large-scale sdns with
scattered address space allocation,” Journal of Network and Computer
Applications, vol. 169, p. 102 787, 2020.
por: 10.1016/j.jnca.2020.102787.

[26] Z. Aouini and A. Pekar, “Nfstream: A flexible network data analysis
framework,” Computer Networks, vol. 204, p. 108 719, 2022.
por: 10.1016/j.comnet.2021.108719.

[27] Y.Fuetal., “Jellyfish: Locality-sensitive subflow sketching,” in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications,
IEEE, 2021, pp. 1-10. po1: 10.1109/INFOCOMA42981.2021.9488847.

[28] T.Benson, Data set for IMC 2010 data center measurement, University
of Wisconsin-Madison, 2010.
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html.

[29] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. 10th Internet Measurement
Conf.,ser.IMC 10, Proc. 10th Internet Measurement Conf., 2010, pp.
267-280. por: 10.1145/1879141.1879175.

[30] A. Pekar et al., “Knowledge discovery: Can it shed new light on
threshold definition for heavy-hitter detection?”” Journal of Network
and Systems Management, vol. 29, no. 3, p. 24,2021.
por: 10.1007/s10922-021-09593-w.

93

https://doi.org/10.1016/j.jnca.2012.12.020
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1145/3472305.3472321
https://doi.org/10.1109/NOMS.2018.8406203
https://doi.org/10.1109/MNET.2012.6135854
https://doi.org/10.1016/j.comnet.2014.03.007
https://doi.org/10.1016/j.dcan.2022.02.003
https://doi.org/10.1109/APSITT.2008.4653545
https://doi.org/10.1007/3-540-45412-8_16
https://doi.org/10.1145/3555308
https://doi.org/10.1109/SAINTW.2002.994556
https://doi.org/10.1109/ICCS.2008.4737246
https://doi.org/10.1016/j.comnet.2005.02.008
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1109/NOMS.2006.1687572
https://doi.org/10.1109/TNET.2008.2002560
https://doi.org/10.4149/cai_2018_1_142
https://doi.org/10.1109/GLOCOMW.2013.6825161
https://doi.org/10.1109/IWQoS.2016.7590409
https://doi.org/10.1016/j.comcom.2017.03.005
https://doi.org/10.1002/nem.1987
https://doi.org/10.1109/GLOCOM.2018.8647471
https://doi.org/10.1049/iet-com.2018.5194
https://doi.org/10.1109/NetSys.2019.8854510
https://doi.org/10.1016/j.jnca.2020.102787
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1109/INFOCOM42981.2021.9488847
https://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1007/s10922-021-09593-w

INFOCOMMUNICATIONS JOURNAL

Balancing Information Preservation and Data Volume Reduction:
Adaptive Flow Aggregation in Flow Metering Systems

Adrian Pekar received the Ph.D. degree in computer
science from the Technical University of KoSice, Slova-
kia, in 2014. Currently, he is a Senior Researcher with
the Department of Networked Systems and Services,
Budapest University of Technology and Economics,
Hungary. Prior to this, he held research, teaching, and
engineering positions in Slovakia and New Zealand.
His research interests include network and services
management, software-defined networking, network
function virtualization, and cloud computing.

Laszlo A. Makara earned his MSc degree from the
Department of Networked Systems and Services at the
Budapest University of Technology and Economics,
Hungary, in 2023. Presently, he is pursuing his PhD at
the same department, delving deeper into the world of
computer engineering and research. His research is pri-
marily focused on network and services management,
software-defined networking, and network program-
mability.

Winston K. G. Seah received the Dr. Eng. degree
from Kyoto University, Kyoto, Japan, in 1997. He is
currently a Professor of network engineering with the
School of Engineering and Computer Science, Victoria
University of Wellington, New Zealand. Prior to this,
he has worked for more than 16 years in mission-
oriented industrial research, taking ideas from theory
to prototypes, most recently, as a Senior Scientist with
the Institute for Infocomm Research, Singapore. He has
been actively involved in research in the areas of mobile
ad hoc and sensor networks and co-developed one of the first QoS models for
mobile ad hoc networks. His latest research interests include IoT, mobile edge
computing, SDN, network anomaly detection, and 5G ultra reliable low latency
and machine- type communications.

Oscar M. Caicedo Rendon (GS’11-M’15-SM’20) is
a full professor at the University of Cauca, Colombia,
where he is a member of the Telematics Engineering
Group. He received his Ph.D. degree in computer sci-
ence (2015) from the Federal University of Rio Grande
do Sul, Brazil, and his M.Sc. in telematics engineering
(2006) and his degree in electronics and telecommu-
nications engineering (2001) from the University of
Cauca. His research interests include network and ser-
vice management, NFV, SDN, and Machine Learning
for Networking.

94 SEPTEMBER 2023 -+ VOLUME XV * NUMBER 3

