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MAXIMAL (C,α, β) OPERATORS OF TWO-DIMENSIONAL
WALSH-FOURIER SERIES

USHANGI GOGINAVA

Abstract. The main aim of this paper is to prove that for the boundedness
of the maximal operator σα,β

∗ from the Hardy space Hp

(
I2

)
to the space

Lp

(
I2

)
the assumption p > max {1/ (α + 1) , 1/ (β + 1)} is essential.

We denote the set of non-negative integers by N. For a set X 6= ∅ let X2 be
its Cartesian product X×X taken with itself. By a dyadic interval in I := [0, 1)
we mean one of the form

[
l2−k, (l + 1) 2−k

)
for some k ∈ N, 0 ≤ l < 2k. Given

k ∈ N and x ∈ [0, 1), let Ik(x) denote the dyadic interval of length 2−k which
contains the point x. The Cartesian product of two dyadic intervals is said
to be a rectangle. Clearly, the dyadic rectangle of area 2−n × 2−m containing
(x1, x2) ∈ I2 is given by In,m (x1, x2) := In (x1) × Im (x2). We also use the
notation mes (A) for the Lebesgue measure of any measurable set A.

Let r0 (x) be a function defined by

r0 (x) =

{
1, if x ∈ [0, 1/2),

−1, if x ∈ [1/2, 1),

r0 (x + 1) = r0 (x) .

The Rademacher system is defined by

rn (x) = r0 (2nx) , n ≥ 1 and x ∈ [0, 1).

Let w0, w1, . . . represent the Walsh functions, i.e. w0 (x) = 1 and if

n = 2n1 + · · ·+ 2nr

is a positive integer with n1 > n2 > · · · > nr then

wn (x) = rn1 (x) · · · rnr (x) .
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The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1∑

k=0

wk (x) .

Recall that

D2n (x) =

{
2n, if x ∈ [0, 2−n) ,

0, if x ∈ [2−n, 1) .

The Kronecker product (wn,m : n,m ∈ N) of two Walsh systems is said to
be the two-dimensional Walsh system. Thus

wn,m

(
x1, x2

)
:= wn

(
x1

)
wm

(
x2

)
.

The partial sums of the two-dimensional Walsh-Fourier series are defined as
follows:

Sn,mf
(
x1, x2

)
=

n−1∑
i=0

m−1∑
j=0

f̂ (i, j) wi,j

(
x1, x2

)
,

where the number

f̂ (i, j) =

∫

I

f
(
u1, u2

)
wi,j

(
u1, u2

)
du1du2

is said to be the (i, j)th Walsh-Fourier coefficient of the function f .
The norm (or quasinorm) of the space Lp (I2) is defined by

‖f‖p :=




∫

I2

∣∣f (
x1, x2

)∣∣p dx1dx2




1/p

(0 < p < +∞) .

The σ-algebra generated by the dyadic rectangles {In,m (x1, x2) : x, y ∈ I}
will be denoted by Fn,m (n,m ∈ N) , more precisely,

Fn,m = σ
{[

k2−n, (k + 1) 2−n
)× [

l2−m, (l + 1) 2−m
)

: 0 ≤ k < 2n, 0 ≤ l < 2m
}

,

where σ (A) denotes the σ-algebra generated by an arbitrary set system A.
Denote by f =

(
f (n,m), n ∈ N

)
two-parameter martingale with respect to

(Fn,m, n, m ∈ N) (for details see, e.g. [6, 9]). The maximal function of a
martingale f is defined by

f ∗ = sup
n,m∈N

∣∣f (n,m)
∣∣ .

In case f ∈ L1 (I2), the maximal function can also be given by

f ∗
(
x1, x2

)
= sup

n,m∈N

1

mes (In(x1)× Im(x2))

∣∣∣∣∣∣∣

∫

In(x1)×Im(x2)

f (u, v) dudv

∣∣∣∣∣∣∣
,

(x1, x2) ∈ I2.
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For 0 < p < ∞ the Hardy martingale space Hp(I
2) consists all martingales

for which

‖f‖Hp
:= ‖f ∗‖p < ∞.

If f ∈ L1 (I2) then it is easy to show that the sequence (S2n,2m (f) : n, m ∈ N)
is a martingale. If f is a martingale, that is f = (f (n,m) : n,m ∈ N) then the
Walsh-Fourier coefficients must be defined in a little bit different way:

f̂ (i, j) = lim
k,l→∞

∫

I2

f (k,l)
(
x1, x2

)
wi(x

1)wj(x
2)dx1dx2.

The Walsh-Fourier coefficients of the function f ∈ L1 (I2) are the same as
the ones of the martingale (S2n,2m (f) : n,m ∈ N) obtained from the function
f .

The (C,α, β) means of the two-dimensional Walsh-Fourier series of the mar-
tingale f is given by

σα,β
n,m(f, x1, x2) =

1

Aα
n−1

1

Aβ
m−1

n∑
i=1

m∑
j=1

Aα−1
n−i A

β−1
m−jSi,jf

(
x1, x2

)
,

where

Aα
n :=

(1 + α) . . . (n + α)

n!

for any n ∈ N, α 6= −1,−2, . . .. It is known ([10]) that Aα
n ∼ nα.

For the martingale f we consider the maximal operator

σα,β
∗ f = sup

n,m
|σα,β

n,m(f, x1, x2)|.

The (C, α) kernel defined by

Kα
n (x) :=

1

Aα
n−1

n∑

k=1

Aα−1
n−jDk (x) .

In the one-dimensional case, Fine [1] proved that the (C, α) means σα
nf of a

function f ∈ L (I) converge a.e. to f as n →∞. The maximal operator σα
∗ f :=

sup
n
|σα

nf | (0 < α < 1) of the (C,α) means of the Walsh-Paley Fourier series

was investigated by Weisz [8]. In his paper Weisz proved the boundedness of
σα
∗ : Hp → Lp when p > 1/ (1 + α). The author [3] showed that in Theorem of

Weisz the assumption p > 1/ (α + 1) is essential. In particular, we proved that
the maximal operator σα

∗ of the (C, α) means of the Walsh-Paley Fourier series
is not bounded from the Hardy space H1/(α+1) (I) to the space L1/(α+1) (I).

For double Walsh-Fourier series it is known [5] that the (C, α, β) means
σα,β

n,mf → f in Lp norm as n,m →∞ whenever f ∈ Lp (I2) for some 1 ≤ p < ∞.



212 USHANGI GOGINAVA

On the other hand, in 1992 Móricz, Schipp and Wade [4] proved with respect
to the Walsh-Paley system that

σn,mf =
1

nm

n∑
i=1

m∑

k=1

Si,k(f) → f

a.e. for each f ∈ L log+ L([0, 1)2), when min {n,m} → ∞. In 2000 Gát
proved [2] that the theorem of Móricz, Schipp and Wade above can not be
improved. Namely, let δ : [0, +∞) → [0, +∞) be a measurable function
with property limt→∞ δ(t) = 0. Gát proved [2] the existence of a function
f ∈ L1(I2) such that f ∈ L log+ Lδ(L), and σn,mf does not converge to f a.e.
as min{n,m} → ∞. That is, the maximal convergence space for the (C, 1)
means of two-dimensional partial sums is L log+ L(I2). Weisz [7] investigated
the maximal operator of (C,α, β) means of two-dimensional Walsh-Fourier se-
ries and proved that the maximal operator σα,β

∗ f is bounded from Hp (I2) to
Lp (I2) if 1/ (1 + α) , 1/ (1 + β) < p < ∞. In [7] Weisz conjectured that for
the boundedness of the maximal operator σα,β

∗ from the Hardy space Hp (I)
to the space Lp (I) the assumption p > 1/ (α + 1) , 1/ (1 + β) is essential. We
give answer to the question and prove that the maximal operator σα,β

∗ of the
(C,α, β) (0 < α ≤ β ≤ 1) means of the two-dimensional Walsh-Fourier series
is not bounded from the Hardy space H1/(α+1) (I2) to the space L1/(α+1) (I2).
The following is true.

Theorem 1. Let 0 < α ≤ β ≤ 1. Then the maximal operator σα,β
∗ of the

(C,α, β) means of the two-dimensional Walsh-Fourier series is not bounded
from the Hardy space H1/(α+1) (I2) to the space L1/(α+1) (I2).

In order to prove Theorem 1 we need the following lemma.

Lemma 1. ([3]) Let n ∈ N and 0 < α ≤ 1. Then∫

I

max
1≤N≤2n

(
Aα

N−1 |Kα
N (x)|)1/(α+1)

dx ≥ c (α)
n

log (n + 2)
.

Proof of Theorem 1. Let

fn

(
x1, x2

)
:=

[
D2n+1

(
x1

)−D2n

(
x1

)]
w2n−1

(
x2

)
.

Since

f̂n (ν, µ) =

∫

I

[
D2n+1

(
u1

)−D2n

(
u1

)]
wν

(
u1

)
du1

∫

I

w2n−1

(
u2

)
wµ

(
u2

)
du2

=

{
1, if ν = 2n, . . . , 2n+1 − 1, µ = 2n − 1,

0, otherwise,

we can write

Si,jfn

(
x1, x2

)
=

i−1∑
ν=0

f̂n (ν, 2n − 1) wν

(
x1

)
w2n−1

(
x2

)
(1)
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=





[Di (x
1)−D2n (x1)] w2n−1 (x2) , if i = 2n + 1, . . . , 2n+1 − 1, j ≥ 2n,

fn (x1, x2) , if i ≥ 2n+1, j ≥ 2n,

0, otherwise.

We have

f ∗n
(
x1, x2

)
= sup

i,j

∣∣S2i,2jfn

(
x1, x2

)∣∣ =
∣∣fn

(
x1, x2

)∣∣ ,

(2) ‖fn‖Hp
= ‖f ∗n‖p = ‖D2n‖p = 2n(1−1/p).

Let 1 ≤ N < 2n. Then from (1) we obtain

σα
2n+N,2n+1fn

(
x1, x2

)
=

=
1

Aα
2n+N−1

1

Aβ
2n+1−1

∣∣∣∣∣
2n+N∑
i=1

2n+1∑
j=1

Aα−1
2n+N−iA

β−1
2n+1−jSi,jfn

(
x1, x2

)
∣∣∣∣∣

=
1

Aα
2n+N−1

1

Aβ
2n+1−1

∣∣∣∣∣
2n+N∑

i=2n+1

2n+1∑
j=2n

Aα−1
2n+N−iA

β−1
2n+1−jSi,jfn

(
x1, x2

)
∣∣∣∣∣

=
1

Aα
2n+N−1

1

Aβ
2n+1−1

×

×
∣∣∣∣∣

2n+N∑
i=2n+1

2n+1∑
j=2n

Aα−1
2n+N−iA

β−1
2n+1−j

[
Di

(
x1

)−D2n

(
x1

)]
w2n−1

(
x2

)
∣∣∣∣∣

≥ c (α, β)

2nα2nβ

∣∣∣∣∣
N∑

i=1

Aα−1
N−i

[
Di+2n

(
x1

)−D2n

(
x1

)]
∣∣∣∣∣

∣∣∣∣∣
2n∑

j=0

Aβ−1
2n−j

∣∣∣∣∣

≥ c (α, β)

2nα

∣∣∣∣∣
N∑

i=1

Aα−1
N−i

[
Di+2n

(
x1

)−D2n

(
x1

)]
∣∣∣∣∣

=
c (α, β)

2nα

∣∣∣∣∣
N∑

i=1

Aα−1
N−iDi

(
x1

)
∣∣∣∣∣ .

Therefore,

σα,β
∗ fn

(
x1, x2

) ≥ sup
1≤N≤2n

∣∣σα
2n+N,2n+1fn

(
x1, x2

)∣∣

≥ c (α, β)

2nα
sup

1≤N≤2n

∣∣∣∣∣
N∑

i=1

Aα−1
N−iDi

(
x1

)
∣∣∣∣∣ .

Then from Lemma 1 and (2) we get
∥∥σα,β

∗ fn

∥∥
1/(α+1)

‖fn‖H1/(α+1)

≥ c (α, β)

2nα2−nα




∫

I

sup
1≤N≤2n

(
Aα

N−1 |Kα
N (x)|)1/(α+1)

dx




α+1
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≥ c (α, β)

(
n

log (n + 2)

)α+1

→∞ as n →∞.

Theorem 1 is proved. ¤
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