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DUAL CONNECTIONS IN FINSLER GEOMETRY

TETSUYA NAGANO AND TADASHI AIKOU

Abstract. In the present paper, we generalize the notion of statistical
structure and its dual connection in Riemannian geometry to Finsler ge-
ometry. We shall show that the Berwald connection D of a Finsler manifold
is a statistical structure. In particular, as an application of this fact, we
shall show that, if the hh-curvature of the Berwald connection D vanishes
identically, then the given Finsler metric induces a Hessian metric on the
base manifold.

1. Introduction

LetM be a connected smooth manifold of dimM = n with a (semi-) Riemann-
ian metric h. A statistical structure in (M,h) is a symmetric linear connection
D satisfying the Codazzi equation (DXh)(Y,Z) = (DY h)(X,Z) for all vector
fields X,Y and Z on M , that is, Dh is totally symmetric. As is well-known,
for an arbitrary symmetric (0, 3)-tensor field C, the (1, 2)-tensor field S defined
by h(S(X,Y ), Z) = C(X,Y, Z) induces a statistical structure D on (M,h) by
D = ∇− S/2.

A linear connection D∗ on (M,h) defined by

Xh(Y, Z) = h(DXY,Z) + h(Y,D∗XZ)

is called the dual connection of D. If D is a statistical structure, then its dual D∗

is also a statistical structure on (M,h), and we have the relation ∇ = (D+D∗)/2
for the Levi-Civita connection ∇ of (M,h) (cf. [2]). Recently the geometry of
statistical structure becomes an interesting topics in differential geometry. In
particular, the interest in statistical structure arises from the study of affine
geometry and Hessian geometry (e.g., [7] and [10]). In [2], it is proved that the
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flatness of a statistical structure D implies the existence of a Hessian metric on
the base manifold M .

Since Finsler geometry includes Riemannian geometry as a special case, it is
natural to generalize the notions of statistical structure and the dual connection
in Finsler geometry. The aim of the present paper is to define a statistical
structure D and its dual connection D∗ in a Finsler manifold.

In Finsler geometry, the Chern connection ∇ is a standard tool for study-
ing Finsler manifolds, since ∇ satisfies the metrical condition and the symmet-
ric property (see Definition 3.1 below). In particular, if the given metric is
a Riemannian metric, then ∇ is just the Levi-Civita connection of the given
Riemannian metric. In the second and third section, we shall review some fun-
damental facts in Finsler geometry from [1].

On the other hand, the Berwald connection D satisfies the symmetric prop-
erty, but not the metrical condition. The Berwald connection D, however, plays
an important role for some topics in Finsler geometry. In particular, we shall
show that the Berwald connection is a statistical structure in this generalized
sense (Theorem 5.1). In the last section, as an application of this fact, we shall
show that, if the hh-curvature of the Berwald connection vanishes identically,
then the base manifold M admits a flat statistical structure in the original sense,
and thus M is a Hessian manifold (Theorem 6.1).

2. Finsler metrics and Cartan tensor

Let π : TM →M be the tangent bundle of a connected smooth manifold M .
We denote by v = (x, y) the points in TM if y ∈ π−1(x) = TxM . We introduce
a coordinate system on TM as follows. Let U ⊂ M be an open set with local
coordinate (x1, . . . , xn). By setting v =

∑
yi

(
∂/∂xi

)
x

for every v ∈ π−1(U), we
introduce a local coordinate (x, y) = (x1, . . . , xn, y1, . . . , yn) on π−1(U).

Definition 2.1. A function L : TM −→ R is called a Finsler metric on M if
1. L(x, y) ≥ 0, and L(x, y) = 0 if and only if y = 0,
2. L(x, λy) = λL(x, y) for ∀λ ∈ R+ = {λ ∈ R : λ > 0},
3. L(x, y) is smooth on TM× = TM\{0}

are satisfied. The pair (M,L) is called a Finsler manifold. For each X ∈ TxM ,
its norm ‖X‖ is defined by ‖X‖ = L(x,X).

The differential π∗ of the submersion π : TM× → M induces an exact se-
quence

(2.1) 0 −→ V
i−→ T (TM×) π∗−→ T̃M −→ 0,

where V is the vertical subbundle which is locally spanned by {∂/∂yj}j=1,...,n on
π−1(U), and T̃M = {(y, v) ∈ TM× × TM v ∈ Tπ(y)M} is the pullback bundle
of TM by π∗.
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Since the natural local frame field {∂/∂xi}i=1,...,n on U is identified with
the one of T̃M on π−1(U), we use the notation X =

∑
(∂/∂xi) ⊗ Xi for a

section X of T̃M . Furthermore, since kerπ∗ = V , the morphism π∗ is given by
π∗ =

∑
(∂/∂xi)⊗ dxi.

On the other hand, since T̃M is naturally identified with V ∼= kerπ∗, any
section X of T̃M is considered as a section of V . We denote by XV the section
of V corresponding to X ∈ Γ (T̃M):

X =
∑ ∂

∂xi
⊗Xi ⇐⇒ XV =

∑ ∂

∂yi
⊗Xi.

A Finsler metric L is said to be convex if F = L2/2 is strictly convex on each
tangent space TxM , that is, the Hessian (Gij) defined by

(2.2) Gij(x, y) =
∂2F

∂yi∂yj

is positive-definite. In the sequel, we assume the convexity of L. Then T̃M
admits a metric G defined by G(X,Y ) =

∑
GijX

iY j for all X =
∑

(∂/∂xi)⊗Xi

and Y =
∑

(∂/∂xj)⊗ Y j . We also set

Cijk =
1
2
∂Gij

∂yk
=

1
4

∂3L2

∂yi ∂yj ∂yk
.

Then we define a symmetric tensor field C : ⊗3 T̃M → R by

(2.3) C(X,Y, Z) =
∑

CijkX
iY jZk

for all sections X,Y, Z of T̃M . It is trivial C vanishes identically if and only if
G is a Riemannian metric on M . This tensor field C is called the Cartan tensor
field.

The multiplier group R+ ∼= {cI ∈ GL(TM×); c ∈ R+} ⊂ GL(TM×) acts on
the total space by multiplication mλ : TM× 3 v = (x, y) → λv = (x, λy) ∈
TM× for ∀λ ∈ R+. This action induces a canonical section E of V defined by
E(v) = (v, v) for all v ∈ TM . We shall consider E as a section of T̃M , and we
denote it by the same notation E . This section E is called the tautological section
of T̃M . Then it is easily shown that L =

√
G(E , E) and

(2.4) C(E , ·, ·) ≡ 0.

3. Chern connection

The vertical subbundle V of the submersion π : TM× →M is uniquely deter-
mined. A subbundle H ⊂ T (TM×) complementary to V is called a horizontal
subbundle:

(3.1) T (TM×) = V ⊕ T̃M ∼= V ⊕H.
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An Ehresmann connection of π is a selection of horizontal subbundles. An
Ehresmann connection is given by a T̃M -valued 1-form θ satisfying

(3.2) θ(XV ) = X

for every sectionX of T̃M . If an Ehresmann connection θ is given, the subbundle
H := ker θ is a horizontal subbundle. In the sequel of the present paper, we shall
denote by Ak(T̃M) the space of smooth T̃M -valued k-forms on TM×.

Since we are concerned with the tangent bundle, the bundle T̃M is also
naturally identified with the horizontal subbundle H, and any section X ∈
A0(T̃M) is considered as a section of H. We denote by XH the section of H
corresponding to X ∈ A0(T̃M):

X =
∑ ∂

∂xi
⊗Xi ⇐⇒ XH =

∑ δ

δxi
⊗Xi,

where we set {δ/δx1, . . . , δ/δxn} = (∂/∂xi)H . By the definitions above, we have

(3.3) π∗(XH) = X, π∗(XV ) = 0

and

(3.4) θ(XH) = 0, θ(XV ) = X

for every X ∈ A0(T̃M).
According to the decomposition (3.1), we get the splitting d = dV ⊕ dH of

the differential operator d on TM×:

dHf(X) = XH(f) and dV f(Y ) = Y V (f)

for every f ∈ C∞(TM×). Also any covariant exterior derivation ∇ : Ak(T̃M) →
Ak+1(T̃M) on T̃M has the splitting ∇ = ∇H ⊕∇V :

∇H
XY = ∇XHY and ∇V

XY = ∇XV Y

for all X,Y ∈ A0(T̃M) respectively.

3.1. Definition of Chern connection. In this subsection, we shall recall the
definition of Chern connection from [4] and [1].

Definition 3.1. The Chern connection on (M,L) is a covariant exterior deriva-
tion ∇ : Ak(T̃M) → Ak+1(T̃M) determined by the following conditions.

(1) ∇ is symmetric:

(3.5) ∇π∗ = 0.

(2) ∇ is almost G-compatible:

(3.6) ∇HG = 0,

where we take the Ehresmann connection θ defined by

(3.7) θ = ∇E .
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Remark 3.1. From the assumption (3.5), we can easily show that the T̃M -valued
1-form θ defined by (3.7) is an Ehresmann connection. In [4] or [8], this θ is
called the Cartan’s non-linear connection. It is known that θ defined by (3.7)
is uniquely obtained from the given Finsler metric L. The definition (3.7) of θ
and the homogeneity of L gives

(3.8) ∇H
XE = 0

for every X ∈ A0(T̃M). This equation means that the horizontal subbundle
H = ker θ is invariant by the action m• of R+. ¤

The assumption (3.5) is equivalent to

(3.9) ∇H
XY −∇H

Y X − π∗[XH , Y H ] = 0

and

(3.10) ∇V
Y X − π∗[Y V , XH ] = 0,

and the assumption (3.6) is equivalent to

(3.11) dHG(X,Y ) = G(∇HX,Y ) +G(X,∇HY )

for all X,Y ∈ A0(T̃M).

3.2. Torsion T∇ and curvature R∇ of ∇. In this subsection, we shall recall
the definitions of torsion and curvature of the Chern connection ∇ defined in
the previous subsection. We also recall some propositions concerned with torsion
and curvature (cf. [1]).

Definition 3.2. The torsion T∇ ∈ A2(T̃M) of ∇ is defined by

(3.12) T∇ = ∇θ.
Because of (3.3), we obtain T∇(XV , Y V ) = 0 for all X,Y ∈ A0(T̃M). If we

define THH
∇ (X,Y ) := T∇(XH , Y H) and THV

∇ (X,Y ) := T∇(XH , Y V ), then (3.3)
and (3.4) give

(3.13) THH
∇ (X,Y ) = −θ[XH , Y H ]

and

(3.14) THV
∇ (X,Y ) = ∇H

XY − θ[XH , Y V ]

for all X,Y ∈ A0(T̃M). The following is easily obtained.

Proposition 3.1. The horizontal part THH
∇ and the mixed part THV

∇ satisfy

(3.15) THH
∇ (X,Y ) + THH

∇ (Y,X) ≡ 0

and

(3.16) THV
∇ (X,Y )− THV

∇ (Y,X) ≡ 0



108 TETSUYA NAGANO AND TADASHI AIKOU

for all X,Y ∈ A0(T̃M). Furthermore the mixed part THV
∇ satisfies the following

(3.17) THV
∇ (X, E) = 0.

Definition 3.3. The curvature R∇ ∈ A2(End(T̃M)) of ∇ is defined by

(3.18) R∇ = ∇2.

Similarly to the torsion T∇, we obtainR(XV , Y V ) ≡ 0 for allX,Y ∈ A0(T̃M).
We set RHH

∇ (X,Y )Z := R(XH , Y H)Z and RHV
∇ (X,Y )Z := R(XH , Y V )Z. We

list up some identities concerning with R∇.
The symmetry assumption (3.5) gives

Proposition 3.2. The horizontal part RHH
∇ and the mixed part RHV

∇ satisfy
the followings:

(3.19) RHH
∇ (X,Y )Z +RHH

∇ (Y, Z)X +RHH
∇ (Z,X)Y ≡ 0,

(3.20) RHV
∇ (X,Y )Z −RHV

∇ (Z, Y )X ≡ 0.

The definition of T∇ implies T∇ = R∇E . Thus we get

Proposition 3.3. The curvature R∇ and the torsion T∇ satisfies the relation
T∇ = R∇E:
(3.21) RHH

∇ (X,Y )E = THH
∇ (X,Y ),

(3.22) RHV
∇ (X,Y )E = THV

∇ (X,Y ).

The almost G-compatibility assumption (3.6) gives

Proposition 3.4. The curvature R∇ and the torsion T∇ satisfy the followings:

(3.23) G(RHH
∇ (X,Y )Z,W )+G(RHH

∇ (X,Y )W,Z)+2C(THH
∇ (X,Y ), Z,W ) = 0

G(RHV
∇ (X,Y )Z,W ) + G(Z,RHV

∇ (X,Y )W ) +

+ 2(∇H
XC)(Y, Z,W ) + 2C(THV

∇ (X,Y ), Z,W ) = 0(3.24)

This last identity gives

(3.25) RHV
∇ (X, E) = 0

4. Dual connections

In this section, we shall introduce the notion of dual connection in Finsler
geometry. Let (M,L) be a Finsler manifold, and θ the Ehresmann connection
defined by (3.7). Let D = DH⊕dV be a symmetric Finsler connection satisfying

(4.1) DE = θ.

Under this assumption, the horizontal part THH
D of the torsion TD = Dθ coin-

cides with THH
∇ , and therefore we denote it by THH in the sequel. Furthermore,



DUAL CONNECTIONS IN FINSLER GEOMETRY 109

similarly to the case of Riemannian geometry[10], we callD a statistical structure
of (T̃M,G) if

(4.2) (DH
XG)(Y, Z) = (DH

Y G)(X,Z)

is satisfied for all X,Y, Z ∈ A0(T̃M).

Definition 4.1. A Finsler connection D∗ = D∗H ⊕ dV is called the dual con-
nection of a statistical structure D if D∗ satisfies

(4.3) XHG(Y, Z) = G(DH
XY, Z) +G(Y,D∗HX Z)

for all X,Y, Z ∈ A0(T̃M).

Proposition 4.1. The dual connection D∗ of a statistical structure D is sym-
metric.

Proof. It is trivial that (DH
XG)(Y, Z) is symmetric in Y and Z, and thus we have

(DH
XG)(Y, Z) = XHG(Y, Z)−G(DH

XY, Z)−G(Y,DH
XZ)

= XHG(Z, Y )−G(DH
XZ, Y )−G(Z,DH

XY )

= (G(DH
XZ, Y ) +G(Z,D∗HX Y ))−G(DH

XZ, Y )−G(Z,DH
XY )

= G(Z,D∗HX Y )−G(Z,DH
XY )

and (DH
Y G)(X,Z) = G(Z,D∗HY X)−G(Z,DH

Y X). Consequently we have

(DH
XG)(Y, Z)− (DH

Y G)(X,Z)

= G(Z,D∗HX Y )−G(Z,DH
XY )−G(Z,D∗HY X) +G(Z,DH

Y X)

= G(Z,D∗HX Y −D∗HY X)−G(Z,DH
XY −DH

Y X)

= G(Z,D∗HX Y −D∗HY X)−G(Z, π∗[XH , Y H ])

= G(Z,D∗HX Y −D∗HY X − π∗[XH , Y H ])

= G(Z, (D∗π∗)(XH , Y H))

for all X,Y, Z ∈ A0(T̃M). Since G is nondegenerate, we have shown that D∗ is
symmetric if and only if D is a statistical structure. ¤

From the definition (4.3), the following proposition is obtained immediately.

Proposition 4.2. Let D∗ be the dual connection of a statistical structure D.
Then we have

(4.4) DHG+D∗HG = 0,

and therefore the dual D∗ is also a statistical structure of (T̃M,G).
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Form Proposition 4.1 and 4.2, for a statistical structure D, the covariant
exterior derivation (D + D∗)/2 satisfies the symmetric condition (3.5) and the
almost G-compatibility (3.6), and thus the uniqueness of Chern connection ∇
gives ∇ = (D +D∗)/2. Therefore, we have

Theorem 4.1. Let D∗ be the dual connection of a statistical structure D of
(T̃M,G). Then the Chern connection ∇ of (T̃M,G) is given by

(4.5) ∇ =
1
2
(D +D∗)

Furthermore the dual of D∗ coincides with D, that is, D∗∗ = D.

Let RD∗ = D∗2 be the curvature of the dual connection D∗. We investigate
the relation between the curvatures RHH

D and RHH
D∗ .

Theorem 4.2. Let D∗ be the dual connection of a statistical structure D of
(T̃M,G).

(1) The horizontal part RHH
D and RHH

D∗ of D and D∗ are related by

(4.6) G(RHH
D (X,Y )Z,W )+G(Z,RHH

D∗ (X,Y )W )+2C(THH(X,Y ), Z,W ) = 0.

(2) The dual connection D∗ satisfies RHH
D∗ = 0 if and only if D satisfies

RHH
D = 0.

Proof. From (4.2), we have

[XH , Y H ]G(Z,W )

= [XH , Y H ]HG(Z,W ) + [XH , Y H ]V G(Z,W )

= G(D[XH ,Y H ]HZ,W ) +G(Z,D∗[XH ,Y H ]HW ) + [XH , Y H ]V G(Z,W )

for all X,Y, Z,W ∈ Γ (T̃M). From (3.13) we note that

[XH , Y H ]V G(Z,W )

= (D[XH ,Y H ]V G)(Z,W ) +G(D[XH ,Y H ]V Z,W ) +G(Z,D[XH ,Y H ]V W )

= −2C(THH(X,Y ), Z,W ) +G(D[XH ,Y H ]V Z,W ) +G(Z,D∗[XH ,Y H ]V W ),

since DV = D∗V = dV . Hence we obtain

[XH , Y H ]G(Z,W ) = −2C(THH(X,Y ), Z,W )

+G(D[XH ,Y H ]Z,W ) +G(Z,D∗[XH ,Y H ]W ).

On the other hand

XHY HG(Z,W ) = G(DH
XD

H
Y Z,W ) +G(DH

Y Z,D
∗H
X W )

+G(DH
XZ,D

∗H
Y W ) +G(Z,D∗HX D∗HY W )
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implies

[XH , Y H ]G(Z,W ) = G(DH
XD

H
Y Z −DH

Y D
H
XZ,W )

+G(Z,D∗HX D∗HY W −D∗HY D∗HX W ),

and therefore we obtain (4.6).
We suppose RHH

D = 0 (resp. RHH
D∗ = 0). Then (4.1) implies

THH(X,Y ) = RHH
D (X,Y )E = RHH

D∗ (X,Y )E = 0

for all X,Y ∈ Γ (T̃M). Hence we obtain RHH
D∗ = 0 (resp. RHH

D = 0) from
(4.6). ¤

5. Berwald connection

There exists another canonical Finsler connection which plays an important
role for some topics in Finsler geometry. For the Ehresmann connection θ by
(3.7), the Finsler connection D = dV ⊕DH on T̃M defined by

(5.1) DH
XY = θ[XH , Y V ]

is called the Berwald connection in a Finsler manifold (M,L). From the equa-
tion (3.14) and the definition (5.1), we obtain a relation between the Chern
connection ∇ and the Berwald connection D:

(5.2) DH
XY = ∇H

XY − THV
∇ (X,Y )

Then, from (4.7) and (4.17), it follows that D defined by (5.1) satisfies (4.1),
and thus D is a Finsler connection in the sense of previous section. Furthermore
D defined by (5.1) symmetric, namely, Dπ∗ = 0. In fact, from (3.14) and (3.16)
we have

(Dπ∗)(XH , Y H) = DH
XY −DH

Y X − π∗[XH , Y H ]

= ∇H
XY − THV (X,Y )−∇H

Y X + THV
∇ (Y,X)− π∗[XH , Y H ]

= 0

and (Dπ∗)(XV , Y H) = DV
XY − π∗[XV , Y H ] = 0, since DV = dV .

The almost G-compatibility and the relation (4.2) induce the following

(5.3) (DH
XG)(Y, Z) = G(THV

∇ (X,Y ), Z) +G(Y, THV
∇ (X,Z)).

On the other hand, if we set X = E in (3.24), then (3.20) and (3.22) give

G(THV
∇ (Z, Y ),W ) +G(Z, THV

∇ (W,Y )) + 2(∇H
E C)(Y,Z,W ) = 0,

and therefore (5.3) is equivalent to

(5.4) (DH
XG)(Y,Z) = −2(∇H

E C)(X,Y, Z),

and from (4.4)

(5.5) (D∗HX G)(Y, Z) = 2(∇H
E C)(X,Y, Z).
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for all X,Y, Z ∈ A0(T̃M). Thus Proposition 4.1 implies

Theorem 5.1. The Berwald connection D and its dual connection D∗ are sta-
tistical structures on the Finsler bundle (T̃M,G).

A Finsler manifold (M,L) is called a Landsberg space if the Berwald con-
nection D coincides with the Chern connection ∇. In this case, from (4.5), we
have

Proposition 5.1. If (M,L) is a Landsberg space, then the Berwald connection
D and its dual D∗ coincide with the Chern connection ∇.

6. Finsler manifolds satisfying RHH
D = 0

The class of Berwald space which is characterized by RHV
∇ = 0 or RHV

D = 0
has been studied by [11], and the classification of Berwald spaces is obtained. If
a Finsler manifold (M,L) satisfies RHH

∇ ≡ 0, then the metric G on T̃M induces
a flat Riemannian metric on M , and thus M is locally Euclidean (cf.[1]).

On the other hand, the class of Finsler manifolds satisfying RHH
D ≡ 0 has

not been studied enough yet. In the sequel, we shall show that, if a Finsler
manifold (M,L) satisfies RHH

D = 0, then the metric L induces a Hessian metric
g on M . Here a Riemannian manifold (M, g) is said to be a Hessian manifold
if the following conditions are satisfied (cf. [10]).

(1) There exists a flat affine connection D on M ,
(2) the metric g =

∑
gijdx

i ⊗ dxj is given by the Hessian of some function
ψ with respect to the affine coordinate (x1, . . . , xn) of D, that is, g is
given by the covariant derivative Ddψ of the 1-from dψ:

gij =
∂2ψ

∂xi∂xj
.

We suppose that RHH
D = 0. Then, the Ricci identity TD = RDE gives THH =

0, and thus the horizontal subbundleH is integrable. Hence there exists a section
v : M → TM× satisfying v∗θ = 0. Such a section v is called a horizontal section
(cf. [1]). Since v satisfies v∗ ◦ dV = 0, we obtain

(6.1) d ◦ v∗ = v∗ ◦ dH .

Lemma 6.1. Suppose that the horizontal part RHH
D of the Berwald connection

D vanishes identically. Then the induced connection v∗D by a horizontal section
v is a flat affine connection on M .

Proof. We denote by ωi
j the connection form of D with respect to the local frame

field {∂/∂x1, . . . , ∂/∂xn}. If we set

RHH
D

∂

∂xj
=

∑ ∂

∂xi
⊗Ωi

j ,
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the curvature form Ωi
j is given by Ωi

j = dHωi
j +

∑
ωi

l ∧ωl
j , and thus the assump-

tion means that Ωi
j = 0.

On the other hand, the connection form of v∗D is given by v∗ωi
j . Hence, from

(6.1), the curvature of v∗D is given by

d(v∗ωi
j) +

∑
(v∗ωi

j) ∧ (v∗ωl
j) = v∗(dHωi

j +
∑

ωi
l ∧ ωl

j) = v∗Ωi
j .

Consequently v∗D is flat. ¤

By Theorem 4.2 and Lemma 6.1, if D satisfies RHH
D = 0, then the induced

connection v∗D∗ is also a flat affine connection on M . We set D = v∗D and
D∗ = v∗D∗. We also denote by g =

∑
Gij(x, v(x))dvi ⊗ dvj =

∑
gijdx

i ⊗ dxj

the induced Riemannian metric v∗G on M . Then the condition (4.3) implies
the following relation:

(6.2) Xg(Y,Z) = g(DXY, Z) + g(Y,D∗XZ)

for all X,Y, Z ∈ Γ (TM). Furthermore, D and D∗ are symmetric affine con-
nections such that Dg and D∗g are totally symmetric. Therefore, if RHH

D = 0
is satisfied, then (M, g,D) and (M, g,D∗) are flat statistical manifolds. As is
well-known (cf. [2]), if (M, g,D) is flat, then M is locally Hessian.

Theorem 6.1. If the curvature RHH
D of the Berwald connection D vanishes

identically, then M admits a flat statistical structure, and therefore M is locally
a Hessian structure (D, g).
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