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ON NONLINEAR CONNECTIONS IN HIGHER ORDER
LAGRANGE SPACES

MARCEL ROMAN

ABSTRACT. Considering a Lagrangian of order k, we determine a nonlinear
connection N on Tk M such that the horizontal and vertical distributions

to be Lagrangian subbundles for the presymplectic structure given by the

Cartan-Poincaré two-form wﬁ .

1. INTRODUCTION

We denote by (T*M, % M), k > 1, the space of tangent bundle of order
k over a smooth, real, n-dimensional manifold M, [5]. Local coordinates (z*)
on M induce local coordinates (z¢,y(V? ... y®?) on T*M, where for a k-jet
j&p € TFM, the coordinate functions are defined as follows

1d*(a o p)

Rl i 1,....k}.
ol dte t:O’O‘E{’ ok}

Y () =
The tangent structure of order k, J is defined as follows, [6],

(k=1)i

J ®dy

, 0 . 0
iy = (COL AT
®dx' + Dy @dy\" 4 -+ Dy

= ay(l)i

The foliated structure of 7% M allows for k regular, integrable, vertical distri-
butions, Vi_q+1 = Ker J* = Im Jk=o+1 o € {1,... k}.
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The following k vertical vector fields are globally defined on T*M and they
are called Liouville vector fields:

Ty =y 4 9y ey

0 0
oy oy By’

Lo =J2Ty), ac{l1,2,... k}.
A semispray is a globally defined vector field S on T*M that satisfies the

equation JS = I'y. Therefore, a semispray S, which is a vector field of order
k + 1, which can be expressed as follows

0

— (i Y (2)i .. (ki ___ 2 _
(1.1) S=y ozt 2y ay(l)i T +hy ay(k—l)i
. 0
_ i (1) (k)
(k+1)G (z, 9", ...,y )8y(k)i

and it is perfectly determined by its coefficient functions G*(z,y™), ... y®*).

A nonlinear connection, or a horizontal distribution on T%M is a regular
distribution N: w € T¥M + N(u) C T, T* M such that the following direct sum
holds true:

(1.2) T (T"M) = N(u) ® Ni(u) & -+ ® Nyp—1(u) @ Vi (u),

where Ny = J(N),N,—1 = J* 1(N), a € {3,...,k}. The adapted basis to this
decomposition is given by

1) 6 1) 0
Szt Sy(i” "7 sytk=1)i” gy ki |

where, [7]:
5_ = 8, — N9 0 . JL
oxt Ozt (I)Z Oy (k)z Oyk)i’
(1.3) 5y(1)1 8y(1)1 (1)1 ay@)] (kfi) ay(k)J
0 - = 0 - 9 -
Sy(E=Di — gy(k=1)i (1)1 Oyk)i
The functions N7, N7, ..., N7, are called the local coefficients of the nonlinear

1 (2 (k)
connection N.
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The dual basis of the previous adapted basis is given by {dxi, ytr . 5y(k)i}’
where:
1)i 1)i i ]
syWi = gy + M*;da?,
(1)
6y(2)i _ dy(Q)i + Mijdy(l)j + M"jdwj,
(1.4) W ©

k)i k)i i g (k=1)j i g
SyFt = dy®) +dey( )J+...+dele
1 (k)
The functions M ji, M ji, e M ji are called the dual coefficients of the nonlin-

1) (@ (k)
ear connection N.

2. CARTAN-POINCARE FORMS FOR A HIGHER ORDER LAGRANGIAN

Let us consider a regular Lagrangian of order k, (k > 1), L(z?, y(M?, ... 3R,
The metric tensor is given by the symmetric d-tensor field:

1 0’L

(2'1) Gij = iay(k)iay(k)jv

which has maximal rank on T*M, rank ||g;;|| = n.
For a regular Lagrangian of order k, we consider the following Cartan-Poincaré
one-forms, [4]:

oL ; oL .
o _ - LA iy M COL
(2.2) 0¢ =djL = ay(a)idac ++ ay(kia)ialy , ae{l,... k}
We consider also the following Cartan-Poincaré two-forms:
oL , oL .
a _ gpa i, (a)i
ac{l,..., k}.

We remark here that for k > 1, the regularity of the Lagrangian L implies the
fact that rank(w¥) = 2n < (k+ 1)n = dim(T*M). We refer to w¥ as to the
canonical presymplectic structure of the Lagrangian L.

3. NONLINEAR CONNECTION

Now, our question is: Can we find an adapted basis such that the horizontal
distribution to be Lagrangian subbundle for the presymplectic structure wf?
Taking into account (1.3) this is equivalent with the determination of the coef-
ficients of a nonlinear connection N.
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As we know, [1], in the ¥ = 1 case, we consider the canonical nonlinear
connection and we have wy, = 2g;;0y? Adz". It follows that in the basis (dz*, 6y*)
of the cotangent bundle, the matrix of wy, is

0 2gﬂ
=295 0 )~

For k > 1, we consider the Cartan-Poincaré two-form:

oL 4
k _

_Lpe (oL N 6 [ OL \| i
— 2 [ Sad \ gy dat \ Oyk)i * t

(3.1) g oL Wi A i 4+
57 \ Gyt oyl Ndx' +
0 OL . .
(k—1)j 7
+ Sy <8y(k>"> oy Adx

+ 2gji6y(k)j A dz'.

We are looking for a nonlinear connection on 7% M such that the presymplectic
structure of the lagrangian L to be: wh = 2gji5y(k)7 A dz', i.e. to have the
following matrix:

0
. Okn
—2gji (k4+1)nx (k+1)n

This is equivalent with the vanishes of all coefficients from (3.1), except the last
one. We will obtain the coefficients of the nonlinear connection N.

We have:
g oL 9L .
syk-17 (ayw) =0 = W—ﬁ;%mﬁo
Therefore, we find the first coefficient for the nonlinear connection:
J R 0?L
(32) N™ — 7gmz

(1)] 2 8y(k_1)jay(k)i )

) oL
Now, we take ( ) = 0 and we obtain the second coefficient of

5y(k*2)j 8y(k)7f
the nonlinear connection:
1, . 0%L , 0%L
(3.3) NG = 9™ g~ Nisd A
J 2 8y(k Q)Jﬁy(k) (1)7 2 8y(k 1) ay(k)

(2)
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oL

M) = 0 we obtain the (k — 1)*" coefficient of the
y 3

. é
Finally, from W (

nonlinear connection V:

N i L1 0L
(k—jl) 2 ay(l)jay(’c)i (Uj 2 8y(2)7'8y(k)i
(3.4) o o 9L
— =g .
(kfé) 2 8y(k—1)r8y(k)l
Consequently, the coefficients N}, N}, ..., N7 are unique determined.
1) 2 (k—1)
We have:

Theorem 3.1. With respect to a transformation of the local coordinates
(xi,y(l)i, e y(k)i) — (fi,ﬂ(l)i7 o ,ﬂ(k)i) on TEM, the coefficient of the non-
linear connection N are transformed by the rule:

N oxm™ o7 N oy

(2

ayt o dxm (1)j Oxi
~. 9™ oTt oL oy
Nom ;;j - 3;7" NG+ 8yxm NG - ga:j ’
(35 @ (2) (1)
. azm ~i ~(1)i ~(k—2)i ~(k—1)i
’maszaxm i 8ymNTS’ +"'+8y7mN"f—8y7j-
(k—1) O ox (k1) Oz (k—2) ox ) ox

Proof. A transformation of local coordinates

(xi’ y(l)i7 o ’y(k)i) . <§i’ g(l)i7 o ,g(k)z)

on the manifold T*M is given by, [7]:

; ; ox'
~i __ ~i 1 n _
T =7(x, ..., z"), rank||axj|| =n,
i 27 (g
J 57 v
~(1)i ~(1)i
gy = 01y 0T o)
977 oy Y
Ry = TV GOV ey O
oxJ 8y(1)ﬂ 8y(k*1)j ’
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Also, we have the identities, [7]:

oyl oylati)i k)i ) )

y_ 9 :-~-:y7,7 (a:O,...,k’—l;y(O)’:m’).

oxI Oy Oyk—a)j
With respect to the previous transformation of local coordinates, the natural
basis is changed by the following rule:

9 7@5;‘ i ogi 9 oyki 9
Ozt Ozt 9x7  Ox' gyi ozt oy’
) aghi 9 ayki 9

oy ayMi g7 T gy mi g

o oy 9
dyR)i — gyk)i gy(k)i”
Taking into account last formulas, we have
oL oy®i oL
oyk)i — gyk)i gy(k)j

and consequently, we obtain
0*L oyk)I gglk—1r 0*L oy ggk)i 0%L

Ay Rigyk=1m — gy (k)i gy(k=1)m gyk)jgy(k=1r = gy (k=1)m gy (k)i gy(k)i gy (k)
But,

ag(k)r _ ag(l)r and 20, — o2
yth—1m ~ “ggm Jir = gyigy®r

1 ..
Now, contracting by 59”, we obtain

0x) 0z" ~, Oy 97

NI = . il
)y 0zt ox™ 4y * dxm Oxv
and finally,
~i ~ ~(1)r
Nt oz’ _ N 8:5"? B oy .
(1) ox™ (1) oxJ ox™

Similarly, in order to check the second relation from (3.5), we calculate
9L

B9 EYi oy (= 1 for the third relation we calculate

and so on, for

O

9°L
Dy ()i gy (k—3)m

the last relation we calculate Wﬁ%-
Now, considering the following notations:

- 1 . 0L
(36) M =39 ya=angymn

ae{l,....,k—1},
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we obtain:

Proposition 3.1. The relationship between the coefficients N N ..., N

»n  ©@ (k—1)
of the nonlinear connection N and the coefficents given in (3.6) is expressed by:

N =M
CONNNCY
N =M™ — M"™N",
@ @ O

N™ = M™ — M™N", — - — M™ N7, .
(k=1)  (k=1) (k-2) (1) (1) (k—2)

Indeed, replacing (3.6) in (3.2),(3.3) and (3.4) we have the conclusion. There-

fore, the system of functions < M7, M, ..., M7 5 is the system of dual coef-
1 (@ (k=1)
ficients of the nonlinear connection V.

Ezample 3.1. Let R = (M, gi;(x)) be a Riemannian space and Prol®> R™ its
prolongation of order 2, [8].
We consider the Liouville d-vector fields, [7]:

Z(l)m _ y(l)m7

3.8
(3.8) L@m _ % [qu)m AW 0d]

where 7/ () are the Christoffel symbols and the operator I" is given by:

.0 .0
I = y(Mi 2 4 9y -,
Ve T gy

Considering the Lagrangian L = g;;(x)z"?2(F)J we remark that the first
coeflicient N'}' of our nonlinear connection is the same with the first coeflicient
1)
from nonlinear connections determined by I. Bucataru, [2], M. de Leon, [4], and
R. Miron, [7], i.e. is expressed by:

Nij = Mij = ")’;:h(x)y(l)h-
(1) (1)

Now, for the last coefficient of the nonlinear connection N ij, we have:
(k)
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Theorem 3.2. The skew symmetric part of the coefficient Nij is expressed as
(k)
follows:

N L( oL L
0= 4 \ 9zioy®i — 9xioy®i

(3.9) o1
am Z (N jSM im NisM jm) .

a=1 (k—a) (@) (k—a)

where M j; = gimM’}I
(k) (k)

Proof. For the last coefficient of the nonlinear connection N ij we have to consider
(k)
the first coefficient from (3.1):

176 oL 1) oL
(310) 2 {59«” (&W”) b’ (51/(’“”)]
We obtain:
1
Ny =5 | Nji—Ni
(k) (k) (k)

(3.11)

0% 0°L
1
2

L L
(1)] y(l)may(k)i (1)1 ay(l)may(k)j

B)
1 0’L 0’L
— Ty Nmm—NTm )
2 Iy gy 1)y yk)i

where Nji = gimN?
(k) (k)
The condition (3.10) determines uniquely the skew symmetric part of the
coefficient N7, only. |
(k)

For the symmetric part we need a supplementary condition. In the k£ = 1
case, I. Bucataru proved that the symmetric part is uniquely determined by a
metric condition, [3].

So far, we have a whole family of nonlinear connections that are determined
by the presymplectic structure wf. These connections are derived directly from
the Lagrangian L and does not use the canonical semispray.
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