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CONTRACTIVE CONDITIONS AND COMMON FIXED
POINTS

VYOMESH PANT

Abstract. In this paper we obtain common fixed point theorems under
the Lipschitz type analogue of a strict contractive condition by using the
notion of R - weak commutativity of type (Ag). In the setting of our re-
sults, we use the property (E.A) introduced by Aamri and Moutawakil [1]
and compare these with the results proved by using the notion of noncom-
patiblity introduced by Pant [4]. Simultaneously, we provide contractive
condition which ensure the existence of a common fixed point; however, the
mappings are discontinuous at the common fixed point. We, thus, provide
one more answer to the problem of Rhoades [10]. Our theorems extend the
results of Pant and Pant (Theorem 2.1 Pant [6]), Pant, R.P. [5, Theorem
2]), Pant Vyomesh [8] and Singh and Kumar [11].

1. INTRODUCTION

In 1986, Jungck [2] generalized the notion of weak commutativity by intro-
ducing the concept of compatible maps. Two self maps f and g of a metric
space (X, d) are called compatible if lim

n→∞
d(fgxn, gfxn) = 0, whenever {xn} is

a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t in X. From the definition it follows that the maps f and g are called
noncompatible if they are not compatible. Thus f and g will be noncompatible
if there exists at least one sequence {xn} such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t in X but lim
n→∞

d(fgxn, gfxn) is either non - zero or non - existent.

In the study of common fixed points of compatible mappings we often require
assumptions on the completeness of the space or continuity of the mappings
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involved besides some contractive condition but the study of fixed points of
noncompatible mappings can be extended to the class of nonexpansive or Lips-
chitz type mapping pairs even without assuming the continuity of the mappings
involved or completeness of the space.

In 1994 Pant [3] defined the notion R-weakly commuting mappings. Two
mappings A and S are called R-weakly commuting at a point x if

d(ASx, SAx) ≤ Rd(Ax, Sx)

for some R > 0. A and S are pointwise R-weakly commuting if given x ∈ X, ∃
R > 0 such that d(ASx, SAx) ≤ Rd(Ax, Sx). In view of a paper by Pant [4],
it may be observed that pointwise R - weak commutativity is

(i) equivalent to commutativity at coincident points; and
(ii) a necessary, hence minimal, condition for the existence of common fixed

points of contractive type mappings.

It will be pertinent to note that the compatiblity of mappings implies point-
wise R - weak commutativity, since compatible maps commute at their co-
incidence points. However, as shown in the examples on the following lines,
pointwise R - weakly commuting maps need not be compatible.

In 1997, Pathak et. al. [9] gave an analogue of R-weak commutativity by in-
troducing the concept of R-weak commutativity of type (Ag). Using the notion
of R - weak commutativity Pant and Pant [6] (read with [7]) proved a common
fixed point theorem (Theorem 2.1) under strict contractive condition. Pant
([4, Theorem 2 and Theorem 3]) used the notion of R - weak commutativity of
type (Ag) and proved common fixed point theorems for a pair of maps which
are discontinuous at their coincidence points.

Aamri and Moutawakil [1] introduced the property (E.A) and thus gener-
alized the notion of noncompatible maps. Let f and g be two selfmappings
of a metric space (X, d). We say that f and g satisfy the property (E.A) if
there exists a sequence {xn} such that limn fxn = limn gxn = t for some t in
X. If two maps are noncompatible, then they satisfy the property (E.A). The
converse, however, is not necessarily true. To support our assertion, we quote
examples from [1].

Example 1 ([1]). Let X = [0, +∞). Define T, S : X → X by

Tx =
x

4
,

Sx =
3x

4
, ∀x ∈ X

Consider the sequence {xn} = 1
n
. Clearly lim

n
Txn = lim

n
Sxn = 0. Then T and

S satisfy property E.A.

Example 2 ([1]). Let X = [2, +∞). Define T, S : X → X by

Tx = x + 1,
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Sx = 2x + 1, ∀x ∈ X

Suppose that property (E.A) holds; then there exists in X a sequence {xn}
satisfying limn Txn = limn Sxn = t, for some t ∈ X. Therefore, lim

n
xn = t− 1

and lim
n

xn = (t−1)
2

.

Then t = 1, which is a contradiction since 1 /∈ X. Hence T and S do not
satisfy property E.A.

In the following lines, we prove fixed point theorems (Theorem 1 and The-
orem 2) using the property (E.A). These theorems generalize several results
including those of Pant [6] (read with [7]), Pant, R.P. [5] (Theorem 2 and
Theorem 3), Pant, Vyomesh [8] and Singh and Kumar [11]. In Theorem 3
we use the aspect of noncompatible maps in place of the property (E.A) and
show that the mappings are discontinuous at their common fixed point. Thus
Theorem 3 provides one more answer to the problem regarding the existence
of contractive definition which is strong enough to guarantee the existence of
common fixed point but does not force the maps to become continuous ([10]).

2. Main Results

Theorem 1. Let f and g be selfmappings of a complete metric space (X, d)
such that

(i) fX ⊂ gX, where fX denotes the closure of range of the mapping f ,
(ii)

d(fx, fy) < max{d(gx, gy), k
[d(fx, gx) + d(fy, gy)]

2
,

[d(fy, gx) + d(fx, gy)]

2
} 1 ≤ k < 2,

whenever the right hand side is positive. If f and g be R-weakly commuting
of type of type (Ag) satisfying the property (E.A), then f and g have a unique
common fixed point.

Proof. Since f and g satisfy the property (E.A), there exists a sequence {xn}
in X such that

(1) lim
n

fxn = lim
n

gxn = t

for some t in X. Since t ∈ fX ⊂ gX, there exists some point u in X such that
t = gu where t = limn gxn. If fu 6= gu, the inequality

d(fxn, fu) < max{d(gxn, gu), k
[d(fxn, gxn) + d(fu, gu)]

2
,

[d(fu, gxn) + d(fxn, gu)]

2
},
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On letting n →∞ yields

d(gu, fu) < max{d(gu, gu), k
[d(gu, gu) + d(fu, gu)]

2
,
[d(fu, gu) + d(gu, gu)]

2
},

= k
[d(fu, gu)]

2
< k(fu, gu),

a contradiction. Hence fu = gu.
Since f and g are R - weak commutating of type (Ag), we get

d(ffu, gfu) ≤ R(d(fu, gu)) = 0

that is, ffu = gfu. If fu 6= ffu, using (ii) again, we get

d(fu, ffu) < max{d(gu, gfu), k
[d(fu, gu) + d(ffu, gfu)]

2
,

[d(ffu, gu) + d(gu, gfu)]

2
} = k

[d(fu, gfu)]

2
< d(fu, ffu),

a contradiction. Hence fu = ffu = gfu and fu is a common fixed point
of f and g. Uniqueness of the common fixed point follows easily. Hence the
theorem. ¤

We now give an example to illustrate the above theorem.

Example 3. Let X = [2, 20] and d be the usual metric on X. Define f, g : X →
X as

f(x) =

{
2 if x = 2 or > 5

6 if 2 < x ≤ 5

g(x) =





2 if x = 2

12 if 2 < x ≤ 5
(x+1)

3
if x > 5.

Then f and g satisfy all the conditions of the above theorem and have a
unique common fixed point at x = 2. It can also be verified that f and g are
R - weakly commuting of type (Ag) mappings and satisfy the property (E.A).

As our next result, we generalize the above theorem and prove a common
fixed point theorem for four mappings.

Theorem 2. Let (A, S) and (B, T ) be selfmaps of a metric space (X, d) sat-
isfying the conditions

(i) AX ⊂ TX, BX ⊂ SX,
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(ii) d(Ax,By) < max{d(Sx, Ty),
k

2
[d(Ax, Sx) + d(By, Ty)],

1

2
[d(Ax, Ty) + d(By, Sx)]} 1 ≤ k < 2,

Let one of the mapping pairs (A, S) or (B, T ) be pointwise R - weakly com-
muting of type (Ag) satisfying the property ( E.A). If the range of one of the
mappings be a complete subspace of X then A, B, S and T have a unique
common fixed point.

Proof. Let B and T satisfy the property (E.A). Then there exists a sequence
{xn} in X such that Bxn → t and Txn → t for some t in X. Since BX ⊂ SX,
for each xn there exists yn in X such that Bxn = Syn. Thus Bxn → t, Txn → t
and Syn → t. We claim that Ayn → t. If not, there exists a subsequence {Aym}
of {Ayn}, a positive integer M and a number r > 0 such that for each m ≥ M
we have

d(Aym, t) ≥ r, d(Aym, Bxm) ≥ r,

d(Aym, Bxm) < max{d(Sym, Txm),
k

2
[d(Aym, Sym) + d(Bxm, Txm)]

1

2
[d(Aym, Txm) + d(Bxm, Sym)]} < d(Aym, Sym) = [d(Aym, Sxm)],

a contradiction. Hence Ayn → t.
Suppose SX is a complete subspace of X. Then, since Syn → t, there exists

a point u in X such that t = Su. If Au 6= Su, the inequality

d(Au,Bxn) < max{d(Su, Txn),
k

2
[d(Au, Su) + d(Bxn, Txn)]

1

2
[d(Au, Txn) + d(Bxn, Su)]}

on making n → ∞ yields d(Au, Su) = 1
2
[d(Au, Su)], a contradiction. Hence

Au = Su. Since A and S are Pointwise R-weak commutative of type (Ag)
maps, there exists R1 > 0 such that d(AAu, SAu) ≤ R1d(Au, Su) = 0, that is
AAu = SAu and AAu = ASu = SAu = SSu. Since AX ⊂ TX, there exists
a point w in X such that Au = Tw. We assert that Tw = Bw. If Bw 6= Tw,
then by (ii), we get

d(Au,Bw) < max{d(Su, Tw),
k

2
[d(Au, Su) + d(Bw, Tw)],

1

2
[d(Au, Tw) + d(Bw, Su)]} =

1

2
d(Bw, Au) < d(Bw,Au),

a contradiction. Hence Au = Bw = Tw = Su. Pointwise R-weak commuta-
tivity of type (Ag) of B and T implies that BBw = TBw and BBw = BTw =
TBw = TTw. Now if Au 6= AAu, then by (ii), we get
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d(Au,AAu) = d(AAu, Bw) < max{d(SAu, Tw),

k

2
[d(AAu, SAu)+d(Bw, Tw)],

1

2
[d(AAu, Tw)+d(Bw, SAu)]} = d(AAu,Au),

a contradiction. Thus Au = AAu = SAu and Au is a common fixed point of
A and S. Similarly Au = Bw is a common fixed point of B and T . The proof
is similar when TX is assumed to be a complete subspace of X. The cases
that AX or BX be complete subspace of X are similar to the cases that TX
or SX respectively be complete since AX ⊂ TX and BX ⊂ SX. Uniqueness
of the common fixed point follows easily. Hence the theorem. ¤

We now give an example to illustrate the above theorem.

Example 4. Let X = [2, 20] with the usual metric d. Define A,B, S and
T : X → X, as follows,

Ax = 2 for all x,

Bx =

{
2 if, x = 2 or > 5

8 if, 2 < x ≤ 5,

Sx =

{
x if, x ≤ 8

8 if, x > 8,

T2 = 2,

Tx =

{
12+x if, 2 < x ≤ 5

x-3 if, x > 5.

Then A, B, S and T satisfy all the conditions of the Theorem 2.2 and have a
unique common fixed point at x = 2.

It can be verified in the above example that B and T are R-weakly com-
muting type (Ag) maps and satisfy the property (E.A).

Remark 1. Singh and Kumar [11] have assumed that the mapping pairs com-
mute at their coincidence point. In view of the discussion in the introductory
section, the condition of Singh and Kumar [11] is equivalent to the condition
that the mappings are assumed R-weekly commuting. Our theorems, therefore,
improve the results of Singh and Kumar [11].

Above two theorems have been proved by using the (E.A) property. The
(E.A) property was introduced by Aamri and Moutawakil [1] by generalizing
the notion of noncompatible maps introduced by Pant [5]. It is, however,
pertinent to mention here that if we replace the notion of noncompatibility by
the (E.A) property, we get a contractive condition which ensures the existence
of common fixed point for mappings which are discontinuous at the common
fixed point. Thus we provide one more answer to the problem of Rhoades [10].
We show this in the following theorem.
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Theorem 3. Let (A, S) and (B, T ) be pointwise R-weakly commuting selfmaps
of type (Ag) of a metric space (X, d) satisfying the conditions

(i) AX ⊂ TX, BX ⊂ SX,

(ii) d(Ax,By) < max{d(Sx, Ty),
k

2
[d(Ax, Sx) + d(By, Ty)]

1

2
[d(Ax, Ty) + d(By, Sx)]} 1 ≤ k < 2

If mappings in one of the pairs (A, S) or (B, T ) be noncompatible and the range
of one of the mappings be a complete subspace of X then A,B, S and T have
a unique common fixed point and the fixed point is a point of discontinuity.

Proof. First suppose that B and T be noncompatible maps. Then there exists
a sequence {xn} in X such that

(2) lim
n

Bxn = t and lim
n

Txn = t

for some t ∈ X but lim
n

d(BTxn, TBxn) is either nonzero or non existent.

Since BX ⊂ SX, for each xn there exists yn ∈ X such that Bxn = Syn. Thus
Bxn → t, Txn → t and Syn → t. We claim that Ayn → t. If not, there exists
a subsequence {Aym} of {Ayn}, a positive integer M and a number r > 0 such
that for each m ≥ M we have

d(Aym, t) ≥ r, d(Aym, Bxm) ≥ r

and

d(Aym, Bxm) < max{d(Sym, Txm),
k

2
[d(Aym, Sym) + d(Bxm, Txm)],

1

2
[d(Aym, Txm) + d(Bxm, Sym)]} < d(Aym, Sym) = [d(Aym, Bxm)],

a contradiction. Hence Ayn → t.
Suppose that SX is a complete subspace of X. Then, since Syn → t, there

exists a point u ∈ X such that t = Su. If Au 6= Su, the inequality

d(Au,Bxn) < max{d(Su, Txn),
k

2
[d(Au, Su) + d(Bxn, Txn)],

1

2
[d(Au, Txn) + d(Bxn, Su)]}

on making n → ∞ yields d(Au, Su) ≤ 1
2
[d(Au, Su)], a contradiction. Hence

Au = Su. Since A and S are pointwise R-weak commutative mappings of type
(Ag); there exists R1 > 0 such that d(AAu, SAu) ≤ R1d(Au, Su) = 0, that is
AAu = SAu and AAu = ASu = SAu = SSu. Since AX ⊂ TX, there exists
a point w ∈ X such that Au = Tw. We assert that Tw = Bw. If Bw 6= Tw,
then by (ii), we get
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d(Au,Bw) < max{d(Su, Tw),
k

2
[d(Au, Su) + d(Bw, Tw)],

1

2
[d(Au, Tw) + d(Bw, Su)]} = d(Bw, Au)/2 < d(Bw,Au),

a contradiction. Hence Au = Bw = Tw = Su. Pointwise R-weak commuta-
tivity of type (Ag) of B and T implies that BBw = TBw and

BBw = BTw = TBw = TTw.

Now if Au 6= AAu, then by (ii), we get

d(Au,AAu) = d(AAu, Bw) < max{d(SAu, Tw),

k

2
[d(AAu, SAu)+d(Bw, Tw)],

1

2
[d(AAu, Tw)+d(Bw, SAu)]} = d(AAu,Au),

a contradiction. Thus Au = AAu = SAu and Au is a common fixed point of
A and S. Similarly Au = Bw is a common fixed point of B and T . The proof
is similar when TX is assumed to be a complete subspace of X. The cases
that AX or BX be complete subspace of X are similar to the cases that TX
or SX respectively be complete since AX ⊂ TX and BX ⊂ SX. Uniqueness
of the common fixed point follows easily.

We now show that the mappings are discontinuous at the common fixed
point. If possible, first suppose B is continuous at the common fixed point
t = Au = Bw. Then considering the sequence {xn} as assumed in (2) we get
lim

n
BBxn = Bt = t and lim

n
BTxn = Bt = t. R-weak commutativity of type

(Ag) now implies that d(BBxn, TBxn) ≤ Rd(Bxn, Txn). On letting n → ∞
this yields lim

n
TBxn = Bt = t. This, in turn, yields lim

n
d(BTxn, TBxn) =

d(Bt,Bt) = 0. This contradicts the fact that lim
n

d(BTxn, TBxn) is either

nonzero or non existent for the sequence {xn} of (2). Hence B is discontinuous
at the fixed point. Next, suppose that T is continuous. Then for the aforesaid
sequence {xn} new get lim

n
TBxn = Tt = t and lim

n
TTxn = Tt = t. In view of

these limits, the inequality,

d(At,BTxn) < max{d(St, TTxn),
k

2
[d(At, St) + d(BTxn, TTxn)],

1

2
[d(At, TTxn) + d(BTxn, St)]}

yields a contradiction unless lim
n

BTxn = TTxn = Tt = t. But

lim
n

BTxn = Tt = t

and lim
n

TBxn = Tt = t contradicts the fact that lim
n

d(BTxn, TBxn) is either

nonzero or non existent. Thus both B and T are discontinuous at their common
fixed point. Similarly it can be shown that A and S are also discontinuous at
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the common fixed point. Thus all the A,B, S and T are discontinuous at the
common fixed point. This establishes the theorem. ¤

We now illustrate the above theorem by way of the following example.

Example 5. Let X = [2, 20] and d be the usual metric on X. Define A,B, S, T :
X → X by

Ax =

{
2 if, x = 2

3 if, x > 2,

Bx =

{
2 if, x = 2 or ≥ 5

6 if, 2 < x < 5,

x =

{
2 if, x = 2

6 if, x > 2,

Tx =





2 if, x = 2

7 + x if, 2 < x < 5
1+x

2
if, x ≥ 5.

Then A,B, S and T satisfy all the conditions of above theorem and have
a unique common fixed point x = 2. It can be verified in this example that
A,B, S and T satisfy contractive condition of the above theorem. It can also
be seen that A and S satisfy the property (E.A) and all the mappings A,B, S
and T are discontinuous at the common fixed point.
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