Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 279-285 www.emis.de/journals ISSN 1786-0091

ON A CLASS OF LIE p-ALGEBRAS

CAMELIA CIOBANU

ABSTRACT. In this paper we study the finite dimensional Lie p-algebras, $\mathcal L$ splitting on its abelian p-socle, the sum of its minimal abelian p-ideals. In addition, some properties of the Frattini p-subalgebra of $\mathcal L$ are pointed out.

1. Introduction

In this section, we recall some notions and properties necessary in the paper.

Definition 1.1. A Lie *p*-algebra is a Lie algebra \mathcal{L} with a *p*-map $a \to a^p$, such that:

$$(\alpha x)^p = \alpha^p x^p$$
, for all $\alpha \in \mathbb{K}$, $x \in \mathcal{L}$, $x(ady^p) = x(ady)^p$, for all, $x, y \in \mathcal{L}$, $(x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} s_i(x,y)$ for all $x, y \in \mathcal{L}$,

where $is_i(x, y)$ is the coefficient of X^{i-1} in the expansion of $x(ad(Xu + y))^{p-1}$. A subalgebra (respectively, ideal) of \mathcal{L} is p-subalgebra (respectively, p-ideal) if it is closed under the p-map.

The notions of maximal p-subalgebra respectively maximal p-ideal of \mathcal{L} are defined as usual. The intersection of p-subalgebras (respectively p-ideals) is a p-subalgebra (respectively a p-ideal) of \mathcal{L} .

We denote by $\Phi_p(\mathcal{L})$ the *p*-subsubalgebra of \mathcal{L} obtained by intersecting all maximal *p*-subalgebras of \mathcal{L} and we call it the Frattini *p*-subalgebra of \mathcal{L} .

The largest p-ideal of \mathcal{L} included into $\Phi_p(\mathcal{L})$ is called the Frattini p-ideal and is denoted by $\mathcal{F}_p(\mathcal{L})$.

²⁰⁰⁰ Mathematics Subject Classification. 17B60, 17B66, 17B20.

Key words and phrases. Finite dimensional Lie p-algebra, p-ideal, p-subalgebra.

This paper was supported by the GAR 12/2007 - Contract 103/2008.

These are the corresponding notions to the Frattini subalgebra $\Phi(\mathcal{L})$ and the Frattini ideal $\mathcal{F}(\mathcal{L})$ for a Lie algebra.

We shall use the following notations:

- [x, y] is the product of x, y in \mathcal{L} ;
- $\mathcal{L}^{(1)}$ the derived algebra of \mathcal{L} ; $\mathcal{L}^{(n)} = (\mathcal{L}^{(n-1)})^{(1)}$, for all $n \geq 2$;
- (A) is the subalgebra generated by the subset A of \mathcal{L} ;
- $(\mathcal{A})_p = (\{x^{p^n} | x \in (\mathcal{A}), p \in \mathbb{N}\})$, where $x^{p^n} = x^{(p^n)}$; $\mathcal{A}^p = (\{x^p | x \in \mathcal{A}\})$, where \mathcal{A} is a subalgebra of \mathcal{L} ; $\mathcal{A}^{p^n} = (\mathcal{A}^{p^{n-1}})^p$;

- $\bullet \ \mathcal{L}_1 = \bigcap_{i=1}^{\infty} \mathcal{L}^{p^i};$
- $\mathcal{L}_0 = \{x \in \mathcal{L} | x^{p^n} = 0 \text{ for some } n\};$
- $Z(\mathcal{L})$ is the center of \mathcal{L} ;
- $\mathcal{N}(\mathcal{L})$ is the nilradical of \mathcal{L} .

Note that, if \mathcal{L} is a p-algebra (finite dimensional), then $Z(\mathcal{L})$ is closed as p-ideal of \mathcal{L} .

2. Lie p-algebras which are \mathcal{F}_p -free

In [8], Stitzinger has proved the following

Proposition 2.1. If \mathcal{L} is a finite dimensional Lie algebra over a field \mathbb{K} , then

$$\mathcal{L}^{(1)} \cap Z(\mathcal{L}) \subseteq \mathcal{F}(\mathcal{L}).$$

We may prove an analogue of this proposition for a Lie p-algebra.

Lemma 2.2. If \mathcal{L} is a finite dimensional Lie p-algebra over a field \mathbb{K} , then we have

$$(\mathcal{L}^{(1)})_p \cap Z(\mathcal{L}) \subseteq \mathcal{F}_p(\mathcal{L}).$$

Proof. Let \mathcal{M} be a maximal p-subalgebra of \mathcal{L} and suppose that $Z(\mathcal{L}) \nsubseteq \mathcal{M}$. Then $\mathcal{L} = \mathcal{M} + Z(\mathcal{L})$, so $\mathcal{L}^{(1)} = \mathcal{M}^{(1)} \subseteq \mathcal{M}$ and hence

$$(\mathcal{L}^{(1)})_p \subseteq (\mathcal{M})_p \subseteq \mathcal{M}.$$

The abelian socle $Sa(\mathcal{L})$ is the sum of all minimal ideals of \mathcal{L} .

We may define the abelian p-socle of the finite dimensional Lie p-algebra \mathcal{L} as being the sum of all minimal abelian p-ideals of \mathcal{L} and we denote it by Sap(\mathcal{L}).

The abelian socle (respectively, the abelian p-socle) of a finite dimensional Lie (p)-algebra is an ideal (a p-ideal) of \mathcal{L} , as one can show easily.

Definition 2.3. Let \mathcal{L} be a finite dimensional Lie p-algebra and I be a p-ideal of \mathcal{L} . We say that \mathcal{L} p-splits over I if there exists a p-subalgebra B of \mathcal{L} such that $\mathcal{L} = I + B$.

B is called a p-complement of the p-ideal I.

Theorem 2.4. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L}^{(1)} \neq 0$ and $\mathcal{L}^{(1)}$ is nilpotent. Then the following statements are equivalent:

- (i) $\mathcal{F}_p(\mathcal{L}) = 0$.
- (ii) $\operatorname{Sap}(\mathcal{L}) = \mathcal{N}(\mathcal{L})$, and \mathcal{L} p-splits over $\mathcal{N}(\mathcal{L})$.
- (iii) $\mathcal{L}^{(1)}$ is abelian, $(\mathcal{L}^{(1)})^p = 0$, \mathcal{L} p-splits over $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})$, and

$$\operatorname{Sap}(\mathcal{L}) = \mathcal{L}^{(1)} \oplus Z(\mathcal{L}).$$

In the same hypotheses, the Cartan subalgebra of \mathcal{L} are exactly those subalgebras which have $\mathcal{L}^{(1)}$ as a p-complement.

Proof. (i) \Rightarrow (ii): These implications are immediate from Theorems 4.1, 4.2 of [5].

- $(iii) \Rightarrow (i)$: This also follows from Theorem 4.1 of [5].
- (i) \Rightarrow (iii): Suppose that $\mathcal{F}_p(\mathcal{L}) = 0$. Then $\mathcal{F}(\mathcal{L}) = 0$, and $\mathcal{L}^{(1)}$ is abelian. Now $(\mathcal{L}^{(1)})^p \subseteq Z(\mathcal{L})$ by Lemma 2.1 [6], and so

$$(\mathcal{L}^{(1)})^p \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) \subseteq \mathcal{F}_p(\mathcal{L}) = 0,$$

by Lemma 2.2. Clearly $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) \subseteq \mathcal{N}(\mathcal{L}) = \operatorname{Sap}(\mathcal{L})$.

Now let \underline{m} be a minimal (and hence abelian) p-ideal of \mathcal{L} . Then $[\mathcal{L}, \underline{m}] = \underline{m}$ is an ideal of \mathcal{L} and

$$[\mathcal{L}, \underline{m}]^p \subseteq (\mathcal{L}^{(1)})^p \cap \underline{m}^p \subseteq (\mathcal{L}^{(1)})^p \cap Z(\mathcal{L}) = 0$$

by Lemma 2.1 of [6] and by Lemma 2.2. Hence $[\mathcal{L}, \underline{m}]$ is *p*-closed, therefore $[\mathcal{L}, \underline{m}] = \underline{m}$ or $[\mathcal{L}, \underline{m}] = 0$.

The former implies that $\underline{m} \subseteq \mathcal{L}^{(1)}$, and the latter that $\underline{m} \subseteq Z(\mathcal{L})$ hence $\operatorname{Sap}(\mathcal{L}) = \mathcal{L}^{(1)} \oplus Z(\mathcal{L})$ and (iii) follows.

The last part of the theorem precises that the Cartan subalgebras are exactly those subalgebras having $\mathcal{L}^{(1)}$ as a p-complement. This follows from Proposition 1 of [8], or from Theorem 4.4.1.1. of [10] and from the fact that Cartan subalgebras are p-closed.

Corollary 2.5. If \mathcal{L} is a finite dimensional Lie p-algebra over \mathbb{K} with $\mathcal{L}^{(1)}$ nilpotent, and nonzero $\mathcal{F}_p(\mathcal{L}) = 0$ and \mathbb{K} is perfect, then the maximal toral subalgebras are precisely those having as p-complement $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})$.

Proof. Take $\mathcal{L} = (\mathcal{L}^{(1)} \oplus Z(\mathcal{L})) + B$, with Bp-closed and $B^{(1)} = 0$ and let $B = B_0 \oplus B_1$ be the Fitting decomposition of B relatively to the p-map. Then $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) = \operatorname{Sap}(\mathcal{L}) = \mathcal{N}(\mathcal{L})$ from Theorem 2.4, (ii), (iii). But $\mathcal{L}^{(1)} \oplus Z(\mathcal{L}) + B_0$

is a nilpotent ideal of \mathcal{L} and so $B_0 \subseteq \mathcal{N}(\mathcal{L}) \cap B = 0$. Hence $B = B_1$ is toral. It is clear that $B_1 + Z(\mathcal{L})_1$ is a maximal toral subalgebra of \mathcal{L} .

Finally, let T be any maximal torus of \mathcal{L} , and let $\mathcal{C} = Z_{\mathcal{L}}(T)$. Then \mathcal{C} is a Cartan subalgebra of \mathcal{L} , (by Theorem 4.5.17 of [10]) and $\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{C}$ as above. Clearly we can write $\mathcal{C} = \mathcal{C}_0 \oplus T$. But now $\mathcal{L}^{(1)} + \mathcal{C}_0$ is a nilpotent ideal of \mathcal{L} , and so $\mathcal{C}_0 \subseteq \mathcal{N}(\mathcal{L}) \cap \mathcal{C} = Z(\mathcal{L})$, making T a p-complement of $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})_0$. \square

The condition "Sap(\mathcal{L}) = $\mathcal{L}^{(1)} \oplus Z(\mathcal{L})$ " in (iii) Theorem 2.4. cannot be weakened to " $Z(\mathcal{L}) \subseteq \text{Sap}(\mathcal{L})$ ", as the following example proves.

Example 1. We know which are the Lie algebras of dimension 2 over \mathbb{K} and we take $\mathcal{L} = I + V$, where

$$I = \mathbb{K}a + \mathbb{K}b, \ V = \mathbb{K}v_1 + \mathbb{K}v_2,$$

$$v_1^p = v_2^p = b^p = 0, \ a^p = 0,$$

$$[V, V] = 0, \ [a, b] = 0, \ [a, v_1] = v_1, \ [a, v_2] = v_2, \ [b, v_1] = v_2, \ [b, v_2] = 0.$$

Then $\mathcal{L}^{(1)} = V$ is abelian, $(\mathcal{L}^{(1)})^p = 0, Z(\mathcal{L}) = 0$. Now

$$\mathcal{N}(\mathcal{L}) = \mathbb{K}b + \mathbb{K}v_1 + \mathbb{K}v_2.$$

Also $\mathbb{K}v_2$ is a maximal p-ideal. Let J be a minimal p-ideal contained in $\mathcal{N}(\mathcal{L})$. Since $[\mathcal{N}(\mathcal{L}), \mathcal{N}(\mathcal{L})] = \mathbb{K}v_2$, either $J = \mathbb{K}v_2$ or $[\mathcal{N}(\mathcal{L}), J] = 0$. Suppose that $J \neq \mathbb{K}v_2$. Then [b, J] = 0 so $J \subseteq \mathbb{K}b + \mathbb{K}v_2$, and $[v_1, J] = 0$ so $J \subseteq \mathbb{K}v_1 + \mathbb{K}v_2$. Thus $J \subseteq \mathbb{K}v_2$, a contradiction. Hence $\mathcal{N}(\mathcal{L}) \neq \operatorname{Sap}(\mathcal{L})$.

E. L. Stitzinger has shown that, for any Lie algebra \mathcal{L} over the arbitrary field \mathbb{K} , such that $\mathcal{L}^{(1)}$ is nilpotent, \mathcal{L} is \mathcal{F} -free (that is $\mathcal{F}(\mathcal{L}) = 0$) if and only if each subalgebra of \mathcal{L} is \mathcal{F} -free.

The complete analogue of this result does not hold if $\mathcal{F}(\mathcal{L})$ is replaced by $\mathcal{F}_p(\mathcal{L})$, as the following example proves.

Example 2. Let $\mathcal{L} = \mathbb{K}a + \mathbb{K}b + \mathbb{K}v_1 + \mathbb{K}v_2$ with $\mathbb{K} = \mathbb{Z}_2$,

$$a^2 = a, b^2 = a + b, [a, v_1] = v_1, [a, v_2] = v_2, [b, v_1] = v_2, [b, v_2] = v_1 + v_2,$$

 $[a, b] = [v_1, v_2] = 0, v_1^2 = v_2^2 = 0,$

and $I = \mathbb{K}a + \mathbb{K}b$. We get $\mathcal{F}_p(\mathcal{L}) = 0$ where as $\mathcal{F}_p(I) = \mathbb{K}a$.

However some partial results can be obtained.

Theorem 2.6. Let \mathcal{L} be a finite-dimensional p-Lie algebra. Then the following statements are equivalent:

- (i) $\mathcal{L}^{(1)}$ is nilpotent and $\mathcal{F}_p(\mathcal{L}) = 0$.
- (ii) $\mathcal{L} = I + B$ where B is an abelian subalgebra, I is an abelian p-ideal, the (adjoint) action of B on I is faithful and completely reducible, $Z(\mathcal{L})$ is completely reducible under the p-map, and the p-map is trivial on [B, I].

Proof. (i) \Rightarrow (ii) By Theorem 2.4, $\mathcal{L} = I + B$, where

$$I = \operatorname{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n$$

with I_i is a minimal p-ideal of \mathcal{L} , for i = 1, 2, ..., n, and B is a p-subalgebra of \mathcal{L} . Now $Z_B(I) = \{x \in B | [x, B] = 0\}$ is an ideal in the solvable Lie algebra \mathcal{L} . If $Z_B(I) \neq 0$, it follows that

$$0 \neq Z_B(I) \cap \operatorname{Sap}(\mathcal{L}) \subseteq B \cap I = 0$$
,

which is a contradiction. Hence $Z_B(I) = 0$ and the action of B is faithful.

Now suppose that $I_i \nsubseteq Z(\mathcal{L})$. Then $I_i \cap Z(\mathcal{L}) \subset I_i$ and so, as $I_i \cap Z(\mathcal{L})$ is a p-ideal, $I_i \cap Z(\mathcal{L}) = 0$. If $a \in I_i$ then $(ada)^p = 0$, and so $ada^p = 0$,hence $a^p \in Z(\mathcal{L})$. Thus, $a^p \in I_i \cap Z(\mathcal{L}) = 0$, and the minimality of I_i implies that I_i is an irreducible B-module but, of course, if $I_i \subseteq Z(\mathcal{L})$ then I_i is a completely reducible B-module, so $I = I_1 \oplus \cdots \oplus I_n$ is a completely reducible B-module.

Now $\mathcal{L}^{(1)}$ is nilpotent, therefore ad x is nilpotent, for every $x \in B^{(1)}$. It follows from Engel's Theorem that $[B^{(1)},I_i] \subset I_i$ for every $i=1,2,\ldots,n$. If $I_i \nsubseteq Z(\mathcal{L})$, this implies that $[B^{(1)},I_i]=0$, since I_i is an irreducible B-module. If $I_i \subseteq Z(\mathcal{L})$ then, clearly, $[B^{(1)},I_i]=0$ also. Thus $[B^{(1)},I_i]=0$, and so $B^{(1)}=0$, as $Z_B(I)=0$. Moreover, $Z(\mathcal{L}) \subseteq I$, since $Z_B(I)=0$. If $a \in Z(\mathcal{L})$ and $a=a_1+\cdots+a_n$, with $a_i \in I_i$, then $[x,a_1]+\cdots+[x,a_n]=0$, for all $x \in \mathcal{L}$, so each $a_i \in Z(\mathcal{L})$. Hence $Z(\mathcal{L})=\Sigma I_i$, where the sum is over all I_i contained in $Z(\mathcal{L})$. Since each $I_i \subseteq Z(\mathcal{L})$ is a minimal p-ideal, $Z(\mathcal{L})$ must be irreducible under the p-map.

(ii) \Rightarrow (i). In view of Theorem 4.1. of [5], it suffices to show that $I = \operatorname{Sap}(\mathcal{L})$. Now we have $I = [B, I] \oplus Z(\mathcal{L})$, [B, I] is a direct sum of irreducible B-modules (each of which is a minimal p-ideal) and $Z(\mathcal{L})$ is a direct sum of irreducible subspaces for the p-map (each of which is a minimal p-ideal). Thus, $I \subseteq \operatorname{Sap}(\mathcal{L})$. But, as B acts faithfully on \mathcal{L} , I is a maximal abelian ideal. Hence $I = \operatorname{Sap} \mathcal{L}$, as required.

Corollary 2.7. Let \mathcal{L} be a finite dimensional Lie p-algebra with $\mathcal{L}^{(1)}$ nilpotent and $\mathcal{F}_p(\mathcal{L}) = 0$. Let P be a p-subalgebra of \mathcal{L} containing $\operatorname{Sap}(\mathcal{L})$. Then $\mathcal{F}_p(P) = 0$.

Proof. Write $\mathcal{L} = I + B$ as in Theorem 2.4 (ii). Then $P = I + (B \cap P)$ since $I = \operatorname{Sap}(\mathcal{L}) \subseteq P$. Now B acts completely reducibly on [B, I], and hence so does $B \cap P$. It follows that $B \cap P$ acts completely reducibly on $[B \cap P, I]$. Moreover, $Z(P) = Z(\mathcal{L}) \oplus Z_{[B,I]}(B \cap P)$ and the p-map is trivial on [B,I], so that Z(P) is completely reducible under the p-map. The result now follows from Theorem 2.4.

Corollary 2.8. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L}^{(1)}$ is nilpotent and $\mathcal{F}_p(\mathcal{L}) = 0$. If J is an ideal of \mathcal{L} , then $\operatorname{Sap}(J) = 0$.

Proof. It suffices to show this for maximal ideals. By Corollary 2.5, we may assume that $I_1 \nsubseteq J$, where $\operatorname{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n$, with I_1, \ldots, I_n minimal abelian p-ideals. Then $\mathcal{L} = J + I_1$, since J is maximal, and $J \cap I_1 = 0$. Thus $\mathcal{L} = J \oplus I_1$, $J \cong \mathcal{L}/I_1 \cong B + (I_2 \oplus \cdots \oplus I_n)$, and $I_1 \subseteq Z(\mathcal{L})$. Hence $Z_B(I_2 \oplus \cdots \oplus I_n) = Z_B(I) = 0$, and it is clear that all of the conditions of Theorem 2.4 (ii) hold. \square

Corollary 2.9. If \mathcal{L} is an abelian finite dimensional Lie p-algebra, then $\mathcal{F}_p(\mathcal{L}) = 0$, if and only if \mathcal{L} is completely reducible under the p-map.

Proof. This statement can be proved by using Theorem 2.4 and the fact B=0 and $\mathcal{L}=Z(\mathcal{L})$.

Corollary 2.10. Let \mathcal{L} be a finite dimensional Lie p-algebra such that $\mathcal{L} = \operatorname{Sap}(\mathcal{L}) + B$ and that the conditions of Theorem 2.4 (ii) are satisfied. Assume in addition that B is completely reducible under the p-map; that is $\operatorname{Sap}(B) = B$. Then if P is any p-subalgebra of $\mathcal{L}, P = \operatorname{Sap} P + B'$, the conditions of Theorem 2.4. (ii) are satisfied and B' is completely reducible under the p-map.

Proof. If $\operatorname{Sap}(\mathcal{L}) \subseteq P$, then $\operatorname{Sap}(P) = \operatorname{Sap}(\mathcal{L})$, and taking $B' = B \cap P$, we get the result.

It suffices to prove the Corollary for maximal p-subalgebras. So assume that P is maximal and that $I_1 \nsubseteq P$, where $\operatorname{Sap}(\mathcal{L}) = I_1 \oplus \cdots \oplus I_n$, with I_1, \ldots, I_n minimal abelian p-ideals. Then $\mathcal{L} = I_1 + P$, with $P \cap I_1 = 0$. Hence $P \cong B + (I_2 \oplus \cdots \oplus I_n)$. As B is completely reducible under the p-map, we have

$$B = B' \oplus Z_B(I_2 \oplus \cdots \oplus I_n).$$

Then $\operatorname{Sap}(P) = Z_B(I_2 \oplus \cdots \oplus I_n) \oplus I_2 \oplus \cdots \oplus I_n, P = \operatorname{Sap}(P) + B'$, the conditions of Theorem 2.4 (ii) are satisfied and B' is completely reducible under the p-map.

Definition 2.11. A finite dimensional Lie *p*-algebra \mathcal{L} is called *p*-elementary, if $\mathcal{F}_p(P) = 0$ for every *p*-subalgebra P of \mathcal{L} .

Corollary 2.12. Assume $\mathcal{L}^{(1)}$ is a finite dimensional Lie p-algebra with nilpotent $\mathcal{L}^{(1)}$ and $\mathcal{F}_p(\mathcal{L}) = 0$. Let $\mathcal{L} = \operatorname{Sap}(\mathcal{L}) + B$ as in Theorem 2.4 (ii). Then \mathcal{L} is p-elementary, if and only if $B = \operatorname{Sap}(B)$

Proof. As $\mathcal{F}_p(\mathcal{L}) = 0$ and $\mathcal{L} = \operatorname{Sap}(\mathcal{L}) + B$ (Theorem 2.4. (ii)), then B has a faithful completely reducible representation on $\operatorname{Sap}(\mathcal{L})$. This is equivalent to the fact that B has a non-zero nilideals as in [7]. Since B is abelian, this is equivalent to the injectivity of the p-map. Since \mathbb{K} is algebraically closed, this is equivalent to $\operatorname{Sap}(B) = B$ as in [4]. It follows from Corollary 2.14 that \mathcal{L} is p-elementary. The converse is immediate from the definition.

The result above cannot be extended to the case when \mathbb{K} is a perfect field. Let us see the following example.

Example 3. Let \mathcal{L} be any abelian Lie p-algebra for which the p-map is injective but \mathcal{L} is not completely reducible under the p-map. Then \mathcal{L} has a faithful completely reducible module B. Make B into an abelian Lie p-algebra with trivial p-map. Then $\mathcal{F}_p(B + \mathcal{L}) = 0$, but $\mathcal{F}_p(\mathcal{L}) \neq 0$.

Now, if \mathbb{K} is not perfect, let $\lambda \in \mathbb{K} \setminus \mathbb{K}$ and take $\mathcal{L} = \mathbb{K}a + \mathbb{K}b$, with $a^p = a, b^p = \lambda a$. If $\lambda \in \mathbb{K}$ and $\mu^p - \mu + \lambda = 0$ has no solution in \mathbb{K} , take $\mathcal{L} = \mathbb{K}a + \mathbb{K}b$ with $a^p = a, b^p = b + \lambda a$. Here we may take B to be p-dimensional with a represented by the identity matrix and b represented by the matrix

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -\lambda & 1 & 0 & \dots & 0 \end{pmatrix}$$

(the companion matrix of $\mu^p - \mu + \lambda$). If $\mathbb{K} = \mathbb{Z}_p$ we may take $\lambda = -1$. Putting p = 2, we get the example 2.7.

References

- [1] D. W. Barnes. Lie algebras. Lecture Notes, University of Tubingen.
- [2] C. Ciobanu. Cohomological study of Lie p-algeras. PhD thesis, Ovidius University, Constantza, 2001.
- [3] C. Ciobanu and M. Stefanescu. Introducere in studiul algebrelor Lie. Mircea cel Batran, Naval Academy Publishing House, Constanta, 2000.
- [4] N. Jacobson. Lie algebras. Interscience Tracts in Pure and Applied Mathematics, No. 10. Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962.
- [5] M. Lincoln and D. Towers. Frattini theory for restricted Lie algebras. Arch. Math. (Basel), 45(5):451–457, 1985.
- [6] M. Lincoln and D. Towers. The Frattini p-subalgebra of a solvable Lie p-algebra. Proc. Edinburgh Math. Soc. (2), 40(1):31–40, 1997.
- [7] J. R. Schue. Cartan decompositions for Lie algebras of prime characteristic. J. Algebra, 11:25–52, 1969.
- [8] E. L. Stitzinger. Frattini subalgebras of a class of solvable Lie algebras. *Pacific J. Math.*, 34:177–182, 1970.
- [9] D. A. Towers. A Frattini theory for algebras. Proc. London Math. Soc. (3), 27:440-462, 1973.
- [10] D. J. Winter. Abstract Lie algebras. The M.I.T. Press, Cambridge, Mass.-London, 1972.

"MIRCEA CEL BATRAN" NAVAL ACADEMY,

1, Fulgerului Sreet, 900218, Constantza,

ROMANIA

GERULUI SREEI, 900216, CONSTANTZA

E-mail address: cciobanu@anmb.ro