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ON A CLASS OF LIE p-ALGEBRAS

CAMELIA CIOBANU

ABSTRACT. In this paper we study the finite dimensional Lie p-algebras,
L splitting on its abelian p-socle, the sum of its minimal abelian p-ideals.
In addition, some properties of the Frattini p-subalgebra of £ are pointed
out.

1. INTRODUCTION
In this section, we recall some notions and properties necessary in the paper.

Definition 1.1. A Lie p-algebra is a Lie algebra £ with a p-map a — a?, such
that:

(ax)? = oPaP, foralla €K, z € L,
z(ady?) = z(ady)?, for all, z,y € L,
p—1
(z +y)P =aP +yP + Zsi(x,y) for all z,y € L,
i=1
where is;(z,y) is the coefficient of X*~1 in the expansion of x(ad(Xu + y))?~ 1.

A subalgebra (respectively, ideal) of £ is p-subalgebra (respectively, p-ideal)
if it is closed under the p-map.

The notions of maximal p-subalgebra respectively mazimal p-ideal of L are
defined as usual. The intersection of p-subalgebras (respectively p-ideals) is a
p-subalgebra (respectively a p-ideal) of L.

We denote by @,(L) the p-subsubalgebra of £ obtained by intersecting all
maximal p-subalgebras of £ and we call it the Frattini p-subalgebra of L.

The largest p-ideal of £ included into ®,(L) is called the Frattini p-ideal and
is denoted by F,(L).
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These are the corresponding notions to the Frattini subalgebra ®(£) and the
Frattini ideal F(L) for a Lie algebra.
We shall use the following notations:

[x,y] is the product of z,y in L;

o £ the derived algebra of £;

£ = ([,(”*1))(1), for all n > 2;

(A) is the subalgebra generated by the subset A of £;
(A), = ({z?" |z € (A),p € N}), where 27" = 2(P");
AP = ({aP|x € A}), where A is a subalgebra of L;
A= (Y

Li= )LV
=1

Lo = {x € L|zP?" = 0 for some n};
Z(L) is the center of L;
N (L) is the nilradical of L.

Note that, if £ is a p-algebra (finite dimensional), then Z(L) is closed as
p-ideal of L.

2. LIE P-ALGEBRAS WHICH ARE J,-FREE
In [8], Stitzinger has proved the following
Proposition 2.1. If £ is a finite dimensional Lie algebra over a field K, then
£YNz(L) < FL).
We may prove an analogue of this proposition for a Lie p-algebra.

Lemma 2.2. If L is a finite dimensional Lie p-algebra over a field K, then we
have

(LM N Z(L) S Fp(L).

Proof. Let M be a maximal p-subalgebra of £ and suppose that Z(L£) € M.
Then £ = M + Z(L), so L = MM C M and hence

(LW, € (M), € M.
O

The abelian socle Sa(L) is the sum of all minimal ideals of L.

We may define the abelian p-socle of the finite dimensional Lie p-algebra L as
being the sum of all minimal abelian p-ideals of £ and we denote it by Sap(L).

The abelian socle (respectively, the abelian p-socle) of a finite dimensional
Lie (p)-algebra is an ideal (a p-ideal) of £, as one can show easily.
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Definition 2.3. Let £ be a finite dimensional Lie p-algebra and I be a p-ideal
of L. We say that L p-splits over I if there exists a p-subalgebra B of £ such

that L =1+ B.
B is called a p-complement of the p-ideal I.

Theorem 2.4. Let £ be a finite dimensional Lie p-algebra such that £ # 0
and LY is nilpotent. Then the following statements are equivalent:

(i) Fp(L) = 0.

(ii) Sap(L) = N (L), and L p-splits over N(L).

(iii) LD is abelian, (LM)P =0, L p-splits over LD © Z(L), and

Sap(L) = LY @ Z(L).

In the same hypotheses, the Cartan subalgebra of L are exactly those subalge-
bras which have LY as a p-complement.

Proof. (i) = (ii): These implications are immediate from Theorems 4.1, 4.2 of
[5]-

(iii)= (i): This also follows from Theorem 4.1 of [5].

(i) = (iii): Suppose that F,(L£) = 0. Then F(L) = 0, and L) is abelian.
Now (LM)P C Z(L£) by Lemma 2.1 [6], and so

(LW C (WP nzZ(L) (LD nZ(L) C Fp(L) =0,

by Lemma 2.2. Clearly £V @ Z(£) € N(L) = Sap(L).
Now let m be a minimal (and hence abelian) p-ideal of £. Then [£,m] =m
is an ideal of £ and

[£,m]? € (LD nmP C (L) N Z(L) =0
by Lemma 2.1 of [6] and by Lemma 2.2. Hence [£,m] is p-closed, therefore
[C,m] =m or [C,m]=0.
The former implies that m C £®), and the latter that m C Z(L) hence
Sap(£) = LM @ Z(£) and (iii) follows.
The last part of the theorem precises that the Cartan subalgebras are exactly
those subalgebras having £(!) as a p-complement. This follows from Proposi-

tion 1 of [8], or from Theorem 4.4.1.1. of [10] and from the fact that Cartan
subalgebras are p-closed. O

Corollary 2.5. If £ is a finite dimensional Lie p-algebra over K with £
nilpotent, and nonzero F,(L) = 0 and K is perfect, then the maximal toral
subalgebras are precisely those having as p-complement L) @ Z(L).

Proof. Take £ = (L&) @® Z(L)) + B, with Bp-closed and BM) = 0 and let
B = By ® B be the Fitting decomposition of B relatively to the p-map. Then

LY@ Z(L) =Sap(L) = N(L) from Theorem 2.4, (i), (iii). But L3 & Z(L)+ By
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is a nilpotent ideal of £ and so By C N(£) N B = 0. Hence B = B; is toral. It
is clear that By + Z(L£); is a maximal toral subalgebra of L.
Finally, let T be any maximal torus of £, and let C = Z,(T). Then C is a

Cartan subalgebra of £, (by Theorem 4.5.17 of [10]) and £ = £1) +C as above.
Clearly we can write C = Cy @ T. But now £ + C; is a nilpotent ideal of £,
and so Cy C N'(L) NC = Z(L), making T a p-complement of L) @ Z(L). O

The condition “Sap(L£) = LW @ Z(L£)” in (i) Theorem 2.4. cannot be
weakened to “Z(L) C Sap(L)”, as the following example proves.

Example 1. We know which are the Lie algebras of dimension 2 over K and we
take £ =1 + V, where

I =Ka+ Kb, V =Kuv; + Koy,
! =0l =P =0, a? =0,
[V,V] =0, [a,b] =0, [a,v1] =v1, [a,vs] =va, [b,v1] =va, [b,va] =0.
Then £V =V is abelian, (L))" =0, Z(L) = 0. Now
N (L) = Kb+ Kv;y + Ko,.

Also Kvg is a maximal p-ideal. Let J be a minimal p-ideal contained in N (L).
Since [N(L),N(L)] = Kuva, either J = Kvy or [N(L),J] = 0. Suppose that
J # Kvy. Then [b,J] = 0so J C Kb+ Kuvy, and [v1,J] =0 so J C Kvy + Kus.
Thus J C Kuvs, a contradiction. Hence A (L) # Sap(L).

E. L. Stitzinger has shown that, for any Lie algebra £ over the arbitrary field
K, such that £() is nilpotent, £ is F-free (that is F(£) = 0) if and only if each
subalgebra of L is F-free.

The complete analogue of this result does not hold if F(L£) is replaced by
Fp(L), as the following example proves.

Ezxample 2. Let £ = Ka + Kb + Kvy + Kvg with K = Zs,
a® = a,b®> = a+b,[a,v1] = v, [a,v2] = v, [b,v1] = V2, [b, V2] = v1 + Vo,
[a,b] = [v1,v2] = 0,0] = v =0,
and I = Ka + Kb. We get F,(L£) = 0 where as F,(I) = Ka.
However some partial results can be obtained.

Theorem 2.6. Let L be a finite-dimensional p-Lie algebra. Then the following
statements are equivalent:
(i) LY s nilpotent and F,(L) = 0.

(i) L=1 + B where B is an abelian subalgebra, I is an abelian p-ideal, the
(adjoint) action of B on I is faithful and completely reducible, Z(L) is completely
reducible under the p-map, and the p-map is trivial on [B, I].
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Proof. (1) = (ii) By Theorem 2.4, £L =1 + B, where
I=Sap(L)=5L& - &1,

with I; is a minimal p-ideal of £, for ¢ = 1,2,...,n, and B is a p-subalgebra of
L. Now Zp(I) = {z € Bl[z, B] = 0} is an ideal in the solvable Lie algebra L. If
Zp(I) # 0, it follows that

0+# Zg(I)NSap(L) C BNI=0,

which is a contradiction. Hence Zg(I) = 0 and the action of B is faithful.

Now suppose that I; € Z(L£). Then I; N Z(L£) C I; and so, as I; N Z(L) is
a p-ideal, I; N Z(L) = 0. If a € I; then (ada)? = 0, and so ada? = 0,hence
aP € Z(L). Thus, a? € I; N Z(L) = 0, and the minimality of I; implies that I;
is an irreducible B-module but, of course, if I; C Z(L£) then I; is a completely
reducible B-module, so I =1, & --- & I,, is a completely reducible B-module.

Now £ is nilpotent, therefore adz is nilpotent, for every z € BW. Tt
follows from Engel’s Theorem that [B(l),li] C I; for every i« = 1,2,...,n. If
I; ¢ Z(L), this implies that [BW), I;] = 0, since I; is an irreducible B-module.
If I, C Z(L) then, clearly, [B) I;] = 0 also. Thus [B),I;] = 0, and so
BW =0, as Zg(I) = 0. Moreover, Z(L) C I, since Zg(I) =0. If a € Z(L) and
a=ay+- -+ an, with a; € I;, then [z,a1] + -+ + [z,a,] = 0, for all z € L,
so each a; € Z(L). Hence Z(L) = XI;, where the sum is over all I; contained
in Z(£). Since eachl; C Z(L£) is a minimal p-ideal, Z(£) must be irreducible
under the p-map.

(ii)= (i). In view of Theorem 4.1. of [5], it suffices to show that I = Sap(L).
Now we have I = [B,I|® Z(L), [B,1] is a direct sum of irreducible B-modules
(each of which is a minimal p-ideal) and Z(L£) is a direct sum of irreducible
subspaces for the p-map (each of which is a minimal p-ideal). Thus, I C Sap(L).
But, as B acts faithfully on £, I is a maximal abelian ideal. Hence I = Sap L,
as required. O

Corollary 2.7. Let £ be a finite dimensional Lie p-algebra with L) nilpotent
and F,(L) = 0. Let P be a p-subalgebra of L containing Sap(L). Then F,(P) =
0.

Proof. Write £ = I + B as in Theorem 2.4 (ii). Then P = I 4+ (B N P) since
I =Sap(L) C P. Now B acts completely reducibly on [B, I], and hence so does
BN P. It follows that BN P acts completely reducibly on [BN P, I]. Moreover,
Z(P) = Z(L) ® Zip,j(B N P) and the p-map is trivial on [B,I], so that Z(P)
is completely reducible under the p-map. The result now follows from Theorem
2.4. ([l

Corollary 2.8. Let L be a finite dimensional Lie p-algebra such that £ is
nilpotent and F,(L) = 0. If J is an ideal of L, then Sap(J) = 0.



284 CAMELIA CIOBANU

Proof. Tt suffices to show this for maximal ideals. By Corollary 2.5, we may
assume that I3 ,(Z J, where Sap(L) = I;®- - -1, with I, ..., I, minimal abelian
p-ideals. Then £ = J+ I, since J is maximal, and JNI; = 0. Thus £ = J&® I,
JEL/L 2B+ (L®---®l,),and I; C Z(L). Hence Zg(Ia ®---® I,,) =
Zp(I) =0, and it is clear that all of the conditions of Theorem 2.4 (ii) hold. O

Corollary 2.9. If L is an abelian finite dimensional Lie p-algebra, then F,(L) =
0, if and only if L is completely reducible under the p-map.

Proof. This statement can be proved by using Theorem 2.4 and the fact B =0
and £ = Z(L). O

Corollary 2.10. Let L be a finite dimensional Lie p-algebra such that L =

Sap(L) + B and that the conditions of Theorem 2.4 (ii) are satisfied. Assume
in addition that B is completely reducible under the p-map; that is Sap(B) = B.

Then if P is any p-subalgebra of L, P = Sap P + B’, the conditions of Theorem
2.4. (ii) are satisfied and B’ is completely reducible under the p-map.

Proof. If Sap(L) C P, then Sap(P) = Sap(L), and taking B’ = BN P, we get
the result.

It suffices to prove the Corollary for maximal p-subalgebras. So assume that P
is maximal and that I; ¢ P, where Sap(L) = I;®- - -®I,,, with I, ..., I,, minimal
abelian p-ideals. Then £ = I1+ P, with PNI; = 0. Hence P & B+ (Io®---®I,).
As B is completely reducible under the p-map, we have

B=B®Zg(la® - -®1,).

Then Sap(P) = Zg(lb & - & 1) ® Iy & --- ® I,, P = Sap(P) + B, the
conditions of Theorem 2.4 (ii) are satisfied and B' is completely reducible under
the p-map. O

Definition 2.11. A finite dimensional Lie p-algebra L is called p-elementary,
if 7,(P) = 0 for every p-subalgebra P of L.

Corollary 2.12. Assume L) is a finite dimensional Lie p-algebra with nilpo-

tent LY and F,(L) = 0. Let L = Sap(L) + B as in Theorem 2.4 (ii). Then L
is p-elementary, if and only if B = Sap(B)

Proof. As F,(L) = 0 and £ = Sap(L) + B (Theorem 2.4. (ii)), then B has
a faithful completely reducible representation on Sap(L). This is equivalent to
the fact that B has a non-zero nilideals as in [7]. Since B is abelian, this is
equivalent to the injectivity of the p-map. Since K is algebraically closed, this
is equivalent to Sap(B) = B as in [4]. It follows from Corollary 2.14 that £ is
p-elementary. The converse is immediate from the definition. |
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The result above cannot be extended to the case when K is a perfect field.
Let us see the following example.

Ezample 3. Let £ be any abelian Lie p-algebra for which the p-map is injective
but £ is not completely reducible under the p-map. Then £ has a faithful
completely reducible module B. Make B into an abelian Lie p-algebra with

trivial p-map. Then F,(B + L) =0, but Fp(L) #0.

Now, if K is not perfect, let A € K\K Pand take £ = Ka + Kb, with a? =
a,b? = da. If A € K and p? — p+ A = 0 has no solution in K, take £ = Ka + Kb
with a? = a,b? = b+ Aa. Here we may take B to bep-dimensional with a
represented by the identity matrix and b represented by the matrix

01 0...0
0 01...0
0 0 0...1
-A21 0...0

(the companion matrix of pu? — p+ A). If K = Z, we may take A = —1.
Putting p = 2, we get the example 2.7.
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