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ON A CLASS OF LIE p-ALGEBRAS

CAMELIA CIOBANU

Abstract. In this paper we study the finite dimensional Lie p-algebras,
L splitting on its abelian p-socle, the sum of its minimal abelian p-ideals.
In addition, some properties of the Frattini p-subalgebra of L are pointed
out.

1. Introduction

In this section, we recall some notions and properties necessary in the paper.

Definition 1.1. A Lie p-algebra is a Lie algebra L with a p-map a → ap, such
that:

(αx)p = αpxp, for all α ∈ K, x ∈ L,

x(adyp) = x(ady)p, for all, x, y ∈ L,

(x + y)p = xp + yp +
p−1∑

i=1

si(x, y) for all x, y ∈ L,

where isi(x, y) is the coefficient of Xi−1 in the expansion of x(ad(Xu + y))p−1.
A subalgebra (respectively, ideal) of L is p-subalgebra (respectively, p-ideal)

if it is closed under the p-map.

The notions of maximal p-subalgebra respectively maximal p-ideal of L are
defined as usual. The intersection of p-subalgebras (respectively p-ideals) is a
p-subalgebra (respectively a p-ideal) of L.

We denote by Φp(L) the p-subsubalgebra of L obtained by intersecting all
maximal p-subalgebras of L and we call it the Frattini p-subalgebra of L.

The largest p-ideal of L included into Φp(L) is called the Frattini p-ideal and
is denoted by Fp(L).
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These are the corresponding notions to the Frattini subalgebra Φ(L) and the
Frattini ideal F(L) for a Lie algebra.

We shall use the following notations:

• [x, y] is the product of x, y in L;
• L(1) the derived algebra of L;
• L(n) =

(L(n−1)
)(1)

, for all n ≥ 2;
• (A) is the subalgebra generated by the subset A of L;
• (A)p =

({xpn |x ∈ (A), p ∈ N}), where xpn

= x(pn);
• Ap = ({xp|x ∈ A}), where A is a subalgebra of L;

• Apn

=
(
Apn−1

)p

;

• L1 =
∞⋂

i=1

Lpi

;

• L0 = {x ∈ L|xpn

= 0 for some n};
• Z(L) is the center of L;
• N (L) is the nilradical of L.

Note that, if L is a p-algebra (finite dimensional), then Z(L) is closed as
p-ideal of L.

2. Lie p-algebras which are Fp-free

In [8], Stitzinger has proved the following

Proposition 2.1. If L is a finite dimensional Lie algebra over a field K, then

L(1) ∩ Z(L) ⊆ F(L).

We may prove an analogue of this proposition for a Lie p-algebra.

Lemma 2.2. If L is a finite dimensional Lie p-algebra over a field K, then we
have

(L(1))p ∩ Z(L) ⊆ Fp(L).

Proof. Let M be a maximal p-subalgebra of L and suppose that Z(L) * M.
Then L = M+ Z(L), so L(1) = M(1) ⊆M and hence

(L(1))p ⊆ (M)p ⊆M.

¤

The abelian socle Sa(L) is the sum of all minimal ideals of L.
We may define the abelian p-socle of the finite dimensional Lie p-algebra L as

being the sum of all minimal abelian p-ideals of L and we denote it by Sap(L).
The abelian socle (respectively, the abelian p-socle) of a finite dimensional

Lie (p)-algebra is an ideal (a p-ideal) of L, as one can show easily.
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Definition 2.3. Let L be a finite dimensional Lie p-algebra and I be a p-ideal
of L. We say that L p-splits over I if there exists a p-subalgebra B of L such
that L = I

·
+ B.

B is called a p-complement of the p-ideal I.

Theorem 2.4. Let L be a finite dimensional Lie p-algebra such that L(1) 6= 0
and L(1) is nilpotent. Then the following statements are equivalent:

(i) Fp(L) = 0.
(ii) Sap(L) = N (L), and L p-splits over N (L).
(iii) L(1) is abelian, (L(1))p = 0, L p-splits over L(1) ⊕ Z(L), and

Sap(L) = L(1) ⊕ Z(L).

In the same hypotheses, the Cartan subalgebra of L are exactly those subalge-
bras which have L(1) as a p-complement.

Proof. (i) ⇒ (ii): These implications are immediate from Theorems 4.1, 4.2 of
[5].

(iii)⇒ (i): This also follows from Theorem 4.1 of [5].
(i) ⇒ (iii): Suppose that Fp(L) = 0. Then F(L) = 0, and L(1) is abelian.

Now (L(1))p ⊆ Z(L) by Lemma 2.1 [6], and so

(L(1))p ⊆ (L(1))p ∩ Z(L) ⊆ (L(1))p ∩ Z(L) ⊆ Fp(L) = 0,

by Lemma 2.2. Clearly L(1) ⊕ Z(L) ⊆ N (L) = Sap(L).
Now let m be a minimal (and hence abelian) p-ideal of L. Then [L, m] =m

is an ideal of L and

[L,m]p ⊆ (L(1))p ∩mp ⊆ (L(1))p ∩ Z(L) = 0

by Lemma 2.1 of [6] and by Lemma 2.2. Hence [L,m] is p-closed, therefore
[L,m] = m or [L,m] = 0.

The former implies that m ⊆ L(1), and the latter that m ⊆ Z(L) hence
Sap(L) = L(1) ⊕ Z(L) and (iii) follows.

The last part of the theorem precises that the Cartan subalgebras are exactly
those subalgebras having L(1) as a p-complement. This follows from Proposi-
tion 1 of [8], or from Theorem 4.4.1.1. of [10] and from the fact that Cartan
subalgebras are p-closed. ¤

Corollary 2.5. If L is a finite dimensional Lie p-algebra over K with L(1)

nilpotent, and nonzero Fp(L) = 0 and K is perfect, then the maximal toral
subalgebras are precisely those having as p-complement L(1) ⊕ Z(L).

Proof. Take L =
(L(1) ⊕ Z(L)

) ·
+ B, with Bp-closed and B(1) = 0 and let

B = B0 ⊕ B1 be the Fitting decomposition of B relatively to the p-map. Then
L(1)⊕Z(L) = Sap(L) = N (L) from Theorem 2.4, (ii), (iii). But L(1)⊕Z(L)

·
+B0
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is a nilpotent ideal of L and so B0 ⊆ N (L) ∩B = 0. Hence B = B1 is toral. It
is clear that B1 + Z(L)1 is a maximal toral subalgebra of L.

Finally, let T be any maximal torus of L, and let C = ZL(T ). Then C is a

Cartan subalgebra of L, (by Theorem 4.5.17 of [10]) and L = L(1)
·
+ C as above.

Clearly we can write C = C0 ⊕ T . But now L(1) + C0 is a nilpotent ideal of L,
and so C0 ⊆ N (L) ∩ C = Z(L), making T a p-complement of L(1) ⊕ Z(L)0. ¤

The condition “Sap(L) = L(1) ⊕ Z(L)” in (iii) Theorem 2.4. cannot be
weakened to “Z(L) ⊆ Sap(L)”, as the following example proves.

Example 1. We know which are the Lie algebras of dimension 2 over K and we
take L = I + V , where

I = Ka +Kb, V = Kv1 +Kv2,

vp
1 = vp

2 = bp = 0, ap = 0,

[V, V ] = 0, [a, b] = 0, [a, v1] = v1, [a, v2] = v2, [b, v1] = v2, [b, v2] = 0.

Then L(1) = V is abelian,
(L(1)

)p
= 0, Z(L) = 0. Now

N (L) = Kb +Kv1 +Kv2.

Also Kv2 is a maximal p-ideal. Let J be a minimal p-ideal contained in N (L).
Since [N (L),N (L)] = Kv2, either J = Kv2 or [N (L), J ] = 0. Suppose that
J 6= Kv2. Then [b, J ] = 0 so J ⊆ Kb + Kv2, and [v1, J ] = 0 so J ⊆ Kv1 + Kv2.
Thus J ⊆ Kv2, a contradiction. Hence N (L) 6= Sap(L).

E. L. Stitzinger has shown that, for any Lie algebra L over the arbitrary field
K, such that L(1) is nilpotent, L is F-free (that is F(L) = 0) if and only if each
subalgebra of L is F-free.

The complete analogue of this result does not hold if F(L) is replaced by
Fp(L), as the following example proves.

Example 2. Let L = Ka +Kb +Kv1 +Kv2 with K = Z2,

a2 = a, b2 = a + b, [a, v1] = v1, [a, v2] = v2, [b, v1] = v2, [b, v2] = v1 + v2,

[a, b] = [v1, v2] = 0, v2
1 = v2

2 = 0,

and I = Ka +Kb. We get Fp(L) = 0 where as Fp(I) = Ka.

However some partial results can be obtained.

Theorem 2.6. Let L be a finite-dimensional p-Lie algebra. Then the following
statements are equivalent:

(i) L(1) is nilpotent and Fp(L) = 0.

(ii) L = I
·
+ B where B is an abelian subalgebra, I is an abelian p-ideal, the

(adjoint) action of B on I is faithful and completely reducible, Z(L) is completely
reducible under the p-map, and the p-map is trivial on [B, I].
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Proof. (i) ⇒ (ii) By Theorem 2.4, L = I
·
+ B, where

I = Sap(L) = I1 ⊕ · · · ⊕ In,

with Ii is a minimal p-ideal of L, for i = 1, 2, . . . , n, and B is a p-subalgebra of
L. Now ZB(I) = {x ∈ B|[x,B] = 0} is an ideal in the solvable Lie algebra L. If
ZB(I) 6= 0, it follows that

0 6= ZB(I) ∩ Sap(L) ⊆ B ∩ I = 0,

which is a contradiction. Hence ZB(I) = 0 and the action of B is faithful.
Now suppose that Ii * Z(L). Then Ii ∩ Z(L) ⊂ Ii and so, as Ii ∩ Z(L) is

a p-ideal, Ii ∩ Z(L) = 0. If a ∈ Ii then (ada)p = 0, and so adap = 0,hence
ap ∈ Z(L). Thus, ap ∈ Ii ∩ Z(L) = 0, and the minimality of Ii implies that Ii

is an irreducible B-module but, of course, if Ii ⊆ Z(L) then Ii is a completely
reducible B-module, so I = I1 ⊕ · · · ⊕ In is a completely reducible B-module.

Now L(1) is nilpotent, therefore ad x is nilpotent, for every x ∈ B(1). It
follows from Engel’s Theorem that [B(1), Ii] ⊂ Ii for every i = 1, 2, . . . , n. If
Ii * Z(L), this implies that [B(1), Ii] = 0, since Ii is an irreducible B-module.
If Ii ⊆ Z(L) then, clearly, [B(1), Ii] = 0 also. Thus [B(1), Ii] = 0, and so
B(1) = 0, as ZB(I) = 0. Moreover, Z(L) ⊆ I, since ZB(I) = 0. If a ∈ Z(L) and
a = a1 + · · · + an, with ai ∈ Ii, then [x, a1] + · · · + [x, an] = 0, for all x ∈ L,
so each ai ∈ Z(L). Hence Z(L) = ΣIi, where the sum is over all Ii contained
in Z(L). Since eachIi ⊆ Z(L) is a minimal p-ideal, Z(L) must be irreducible
under the p-map.

(ii)⇒ (i). In view of Theorem 4.1. of [5], it suffices to show that I = Sap(L).
Now we have I = [B, I]⊕ Z(L), [B, I] is a direct sum of irreducible B-modules
(each of which is a minimal p-ideal) and Z(L) is a direct sum of irreducible
subspaces for the p-map (each of which is a minimal p-ideal). Thus, I ⊆ Sap(L).
But, as B acts faithfully on L, I is a maximal abelian ideal. Hence I = SapL,
as required. ¤

Corollary 2.7. Let L be a finite dimensional Lie p-algebra with L(1) nilpotent
and Fp(L) = 0. Let P be a p-subalgebra of L containing Sap(L). Then Fp(P ) =
0.

Proof. Write L = I
·
+ B as in Theorem 2.4 (ii). Then P = I

·
+ (B ∩ P ) since

I = Sap(L) ⊆ P . Now B acts completely reducibly on [B, I], and hence so does
B ∩P . It follows that B ∩P acts completely reducibly on [B ∩P, I]. Moreover,
Z(P ) = Z(L) ⊕ Z[B,I](B ∩ P ) and the p-map is trivial on [B, I], so that Z(P )
is completely reducible under the p-map. The result now follows from Theorem
2.4. ¤

Corollary 2.8. Let L be a finite dimensional Lie p-algebra such that L(1) is
nilpotent and Fp(L) = 0. If J is an ideal of L, then Sap(J) = 0.



284 CAMELIA CIOBANU

Proof. It suffices to show this for maximal ideals. By Corollary 2.5, we may
assume that I1 * J , where Sap(L) = I1⊕· · ·⊕In, with I1, . . . , In minimal abelian
p-ideals. Then L = J + I1, since J is maximal, and J ∩ I1 = 0. Thus L = J⊕ I1,
J ∼= L/I1

∼= B
·
+ (I2 ⊕ · · · ⊕ In), and I1 ⊆ Z(L). Hence ZB(I2 ⊕ · · · ⊕ In) =

ZB(I) = 0, and it is clear that all of the conditions of Theorem 2.4 (ii) hold. ¤

Corollary 2.9. If L is an abelian finite dimensional Lie p-algebra, then Fp(L) =
0, if and only if L is completely reducible under the p-map.

Proof. This statement can be proved by using Theorem 2.4 and the fact B = 0
and L = Z(L). ¤

Corollary 2.10. Let L be a finite dimensional Lie p-algebra such that L =
Sap(L)

·
+ B and that the conditions of Theorem 2.4 (ii) are satisfied. Assume

in addition that B is completely reducible under the p-map; that is Sap(B) = B.

Then if P is any p-subalgebra of L, P = Sap P
·
+ B′, the conditions of Theorem

2.4. (ii) are satisfied and B′ is completely reducible under the p-map.

Proof. If Sap(L) ⊆ P , then Sap(P ) = Sap(L), and taking B′ = B ∩ P , we get
the result.

It suffices to prove the Corollary for maximal p-subalgebras. So assume that P
is maximal and that I1 * P , where Sap(L) = I1⊕· · ·⊕In, with I1, . . . , In minimal

abelian p-ideals. Then L = I1+P , with P∩I1 = 0. Hence P ∼= B
·
+(I2⊕· · ·⊕In).

As B is completely reducible under the p-map, we have

B = B′ ⊕ ZB(I2 ⊕ · · · ⊕ In).

Then Sap(P ) = ZB(I2 ⊕ · · · ⊕ In) ⊕ I2 ⊕ · · · ⊕ In, P = Sap(P )
·
+ B

′
, the

conditions of Theorem 2.4 (ii) are satisfied and B
′
is completely reducible under

the p-map. ¤

Definition 2.11. A finite dimensional Lie p-algebra L is called p-elementary,
if Fp(P ) = 0 for every p-subalgebra P of L.

Corollary 2.12. Assume L(1) is a finite dimensional Lie p-algebra with nilpo-
tent L(1) and Fp(L) = 0. Let L = Sap(L)

·
+ B as in Theorem 2.4 (ii). Then L

is p-elementary, if and only if B = Sap(B)

Proof. As Fp(L) = 0 and L = Sap(L)
·
+ B (Theorem 2.4. (ii)), then B has

a faithful completely reducible representation on Sap(L). This is equivalent to
the fact that B has a non-zero nilideals as in [7]. Since B is abelian, this is
equivalent to the injectivity of the p-map. Since K is algebraically closed, this
is equivalent to Sap(B) = B as in [4]. It follows from Corollary 2.14 that L is
p-elementary. The converse is immediate from the definition. ¤
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The result above cannot be extended to the case when K is a perfect field.
Let us see the following example.

Example 3. Let L be any abelian Lie p-algebra for which the p-map is injective
but L is not completely reducible under the p-map. Then L has a faithful
completely reducible module B. Make B into an abelian Lie p-algebra with
trivial p-map. Then Fp(B

·
+ L) = 0, but Fp(L) 6= 0.

Now, if K is not perfect, let λ ∈ K\K pand take L = Ka + Kb, with ap =
a, bp = λa. If λ ∈ K and µp−µ + λ = 0 has no solution in K, take L = Ka +Kb
with ap = a, bp = b + λa. Here we may take B to bep-dimensional with a
represented by the identity matrix and b represented by the matrix



0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
−λ 1 0 . . . 0




(the companion matrix of µp − µ + λ). If K = Zp we may take λ = −1.
Putting p = 2, we get the example 2.7.
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