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25 (2009), 65–84
www.emis.de/journals

ISSN 1786-0091

RECENT RESULTS ON THE STABILITY OF THE
PARAMETRIC FUNDAMENTAL EQUATION OF

INFORMATION

ESZTER GSELMANN

Abstract. The purpose of this paper is to summarize the recent results
on the stability of the parametric fundamental equation of information.
Furthermore, by the help of a modification of a method we used in [9] we
shall give a unified proof for the Hyers–Ulam stability of the equation in
question, assuming that the parameter does not equal to 1. As a corollary
of the main result, a system of equations, that defines the recursive and
semi–symmetric information measures is also discussed.

1. Introduction and preliminaries

The study of stability problems for functional equations originates from a
famous question of Ulam. In his talk he asked whether it is true that the
solution of an equation differing slightly from a given one, must of necessity
be close to the solution of this equation (see Ulam [21] page 63). Concerning
the additive Cauchy equation, Hyers gave an affirmative answer to Ulam’s
question in 1941 (see Hyers [11]). Since then, this result has been extended
and generalized in several ways (see e.g. Forti [6], Ger [7], Hyers–Isac–Rassias
[12] and Moszner [17]), and the stability theory has become a dynamically
developing field of research.

In this paper the previous problem is investigated concerning the parametric
fundamental equation of information, i.e., equation

(1.1) f(x) + (1− x)αf

(
y

1− x

)
= f(y) + (1− y)αf

(
x

1− y

)
.

If α = 1, then equation (1.1) is called the fundamental equation of information
(see Aczél–Daróczy [3]). However, before this, we shall fix the notation and
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the terminology that will be used throughout this paper. As usual, R denotes
the set of the real numbers and on R+ and on R++ we understand the set of
the nonnegative and the positive real numbers, respectively. Furthermore, let
n be a fixed positive integer and define the following sets

Γn =

{
(p1, . . . , pn) ∈ Rn|pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1

}
,

Γ◦n =

{
(p1, . . . , pn) ∈ Rn|pi > 0, i = 1, . . . , n,

n∑
i=1

pi = 1

}
,

D =
{
(x, y) ∈ R2|x, y ∈ [0, 1[, x + y ≤ 1

}

and

D◦ =
{
(x, y) ∈ R2|x, y, x + y ∈]0, 1[

}
.

To make our result comprehensible, first we list some basic facts from the
theory of functional equations. These can be found e.g. in Kuczma [13] and in
Radó–Baker [18].

Definition 1.1 ([13, 18]). Let I ⊂ R+ and

A =
{
(x, y) ∈ R2

+|x, y, x + y ∈ I
}

.

A function a : I → R is called additive on A if

(1.2) a (x + y) = a (x) + a (y)

holds for all pairs (x, y) ∈ A.
Consider the set

I =
{
(x, y) ∈ R2

+|x, y, xy ∈ I
}

.

We say that µ : I → R is multiplicative on I if the functional equation

(1.3) µ (xy) = µ (x) µ (y)

is fulfilled for all (x, y) ∈ I.
If

L =
{
(x, y) ∈ R2

++|x, y, xy ∈ I
}

then a function l : I → R is called logarithmic on L if it satisfies the functional
equation

(1.4) l (xy) = l (x) + l (y)

for all (x, y) ∈ L.

The parametric fundamental equation of information arises in a natural
way in the characterization problem of information measures. A sequence
(In) of real-valued functions on Γ◦n or on Γn is called an information measure
on the open or on the closed domain, respectively. The usual information-
theoretical interpretation is that In(p1, . . . , pn) is a measure of uncertainty as
to the outcome of an experiment having n possible outcomes with probabilities
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p1, . . . , pn, or, in other words, it is the amount of information received from
the knowledge of which of the possible outcomes occurred.

Some desiderata for information measures can be found in Aczél–Daróczy
[3] as well as in Ebanks–Sahoo–Sander [5]. Nevertheless, in this paper we will
use only the following properties. The reader should consult Aczél [1], [2],
Daróczy [4], Havrda–Charvát [10] and Tsallis [20], as well.

Definition 1.2. The sequence of functions In : Γ◦n → R (n = 2, 3, . . .) is

(i) α–recursive, if

In (p1, . . . , pn) = In−1 (p1 + p2, p3, . . . , pn) + (p1 + p2)
α I2

(
p1

p1 + p2

,
p2

p1 + p2

)

holds for all n = 3, 4, . . . and (p1, . . . , pn) ∈ Γ◦n, with some α ∈ R.
(ii) 3–semi–symmetric, if

I3 (p1, p2, p3) = I3 (p1, p3, p2)

holds for all (p1, p2, p3) ∈ Γ◦3.

Measures depending on one probability distribution are generally referred
as entropies. Probably the most well-known of all is the Shannon-entropy

H1
n(p1, . . . , pn) = −

n∑
i=1

pi log2 (pi) , ((p1, . . . , pn) ∈ Γ◦n)

and the entropy of degree α (or the Havrda-Charvát-entropy that recently has
also been called Tsallis-entropy)

Hα
n (p1, . . . , pn) =

(
21−α − 1

)−1

(
n∑

i=1

pα
i − 1

)
. (α 6= 1, (p1, . . . , pn) ∈ Γ◦n)

It is easy to see that, for all (p1, . . . , pn) ∈ Γ◦n,

lim
α→1

Hα
n (p1, . . . , pn) = H1

n(p1, . . . , pn)

holds and this shows that (H1
n) can be continuously embedded to the family

of (Hα
n ).

The following theorem enables us to transform the characterization of infor-
mation measures into solving functional equations (see Aczél–Daróczy [3] and
Ebanks–Sahoo–Sander [5]).

Theorem 1.1. If the sequence of functions In : Γ◦n → R, (n = 2, 3, . . .) is
α–recursive and 3–semi–symmetric, then the function f : ]0, 1[→ R defined by

f(x) = I2(1− x, x) (x ∈]0, 1[)

satisfies functional equation (1.1) for all (x, y) ∈ D◦.
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2. Known results

In this section we will shortly list the results which have been achieved in
the last academic year on the stability of the parametric fundamental equation
of information.

Concerning this topic, the first result was the stability of equation (1.1)
on the set D, assuming that 1 6= α > 0 (see Maksa [15]). Furthermore the
stability constant, he has got in that paper is much smaller than that of our.
However, the method, used in Maksa [15] does not work if α = 1 or α ≤ 0 or
if we consider the problem on the open domain.

After that, it was proved that equation (1.1) is stable in the sense of Hyers
and Ulam on the set D◦ as well as on D, assuming that α ≤ 0 (see [9]).
Recently it turned out that this method is appropriate to prove superstability
in case 1 6= α > 0. Thus we can give a unified proof for the stability problem
of equation (1.1) except the case α = 1.

3. The main result

Our main result is contained in the following theorem.

Theorem 3.1. Let α, ε ∈ R be fixed, α 6= 1, ε ≥ 0. Suppose that the function
f : ]0, 1[→ R satisfies the inequality

(3.1)

∣∣∣∣f(x) + (1− x)αf

(
y

1− x

)
− f(y)− (1− y)αf

(
x

1− y

)∣∣∣∣ ≤ ε

for all (x, y) ∈ D◦. Then, in case α = 0, there exists a logarithmic function
l : ]0, 1[→ R and c ∈ R such that

(3.2) |f(x)− [l(1− x) + c]| ≤ K(α)ε, (x ∈]0, 1[)

furthermore, if α /∈ {0, 1}, there exist a, b ∈ R such that

(3.3) |f(x)− [axα + b(1− x)α − b]| ≤ K(α)ε

holds for all x ∈]0, 1[, where

K(α) =





|21−α − 1|−1
(8 + 6 · 2α + 2−α) , if α < 0

63, if α = 0

|21−α − 1|−1
(
3 + 12 · 2α + 32·3α+1

|2−α−1|

)
, if α > 0.

Proof. Define the function F on R2
++ by

(3.4) F (u, v) = (u + v)αf

(
v

u + v

)
.

Then

(3.5) F (tu, tv) = tαF (u, v) (t, u, v ∈ R++)

and

(3.6) f(x) = F (1− x, x), (x ∈]0, 1[)
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furthermore, with the substitutions

x =
w

u + v + w
, y =

v

u + v + w
(u, v, w ∈ R++)

inequality (3.1) implies that
∣∣∣∣f

(
w

u + v + w

)
+

(u + v)α

(u + v + w)α
f

(
v

u + v

)

−f

(
v

u + v + w

)
− (u + w)α

(u + v + w)α
f

(
w

u + w

)∣∣∣∣ ≤ ε

whence, by (3.4)

(3.7) |F (u + v, w) + F (u, v)− F (u + w, v)− F (u,w)| ≤ ε(u + v + w)α

follows for all u, v, w ∈ R++.
In the next step we define the functions g and G on R++ and on R2

++,
respectively by

(3.8) g(u) = F (u, 1)− F (1, u)

and

(3.9) G(u, v) = F (u, v) + g(v).

We will show that

(3.10) |G(u, v)−G(v, u)| ≤ 3ε(u + v + 1)α. (u, v ∈ R++)

Indeed, with the substitution w = 1, inequality (3.7) implies that

(3.11) |F (u + v, 1) + F (u, v)− F (u + 1, v)− F (u, 1)| ≤ ε(u + v + 1)α.

Interchanging u and v, it follows from (3.11) that

|−F (u + v, 1)− F (v, u) + F (v + 1, u)− F (v, 1)| ≤ ε(u+v+1)α. (u, v ∈ R++)

This inequality, together with (3.11) and the triangle inequality imply that

(3.12) |F (u, v)− F (v, u)− F (u + 1, v)

−F (u, 1) + F (v + 1, u) + F (v, 1)| ≤ 2ε(u + v + 1)α

holds for all u, v ∈ R++. On the other hand, with u = 1, we get from (3.7)
that

|F (1 + v, w) + F (1, v)− F (1 + w,w)− F (1, w)| ≤ ε(1 + v + w)α.

Replacing here v by u and w by v, respectively, we have that

|F (u + 1, v) + F (1, u)− F (v + 1, u)− F (1, v)| ≤ ε(u+ v +1)α. (u, v ∈ R++)

Again, by the triangle inequality and the definitions (3.8) and (3.9), (3.12) and
the last inequality imply (3.10).

In what follows we will investigate the function g. At this point of the proof
we have to distinguish three cases.

Case I. (α < 0)
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In this case we will determine the function g by proving that

(3.13) g(u) = c(uα − 1) (u ∈ R++)

with some c ∈ R.
Indeed, (3.10), (3.9) and (3.5) imply that

|G(tu, tv)−G(tv, tu)| ≤ 3ε(tu + tv + 1)α, (t, u, v ∈ R++)

therefore

|tαF (u, v) + g(tv)− tαF (v, u)− g(tu)| ≤ 3ε(tu + tv + 1)α (t, u, v ∈ R++)

or

|F (u, v)− F (v, u)− tα (g(tu)− g(tv))| ≤ 3ε(u + v + t−1)α (t, u, v ∈ R++)

whence

lim
t→0

t−α (g(tu)− g(tv)) = F (u, v)− F (v, u) (t, u, v ∈ R++)

follows. Particularly, with v = 1, by (3.8), we have that

(3.14) g(u) = lim
t→0

t−α (g(tu)− g(t)) . (u ∈ R++)

Let now u, v ∈ R++. Then, by (3.14), we obtain that

g(uv) = limt→0 t−α [g(tuv)− g(t)]
= limt→0 [(tv)−α (g((tv)u)− g(tv)) vα + t−α(g(tv)− g(t))]
= g(u)vα + g(v).

Therefore, g(u)vα + g(v) = g(v)uα + g(u), that is,

g(u) (vα − 1) = g(v) (uα − 1) (u, v ∈ R++)

which implies (3.13) with c = g(2) (2α − 1)−1.
Thus, by (3.6), (3.13), (3.9) and (3.10), we have that

|f(x)− c(1− x)α − (f(1− x)− cxα)|
= |F (1− x, x) + cxα − (F (x, 1− x) + c(1− x)α)|
= |G(1− x, x)−G(x, 1− x)| ≤ 3 · 2αε

(3.15)

holds for all x ∈]0, 1[.
In the next step we define the functions f0 and F0 on ]0, 1[ and on ]0, 1[2 by

(3.16) f0(x) = f(x)− c [(1− x)α − 1]

and

(3.17) F0(p, q) = f0(p) + pαf0(q)− f0(pq)− (1− pq)αf0

(
1− p

1− pq

)
,

respectively. Then (3.1) and (3.15) imply that

(3.18)

∣∣∣∣f0(x) + (1− x)αf0

(
y

1− x

)
− f0(y)− (1− y)αf0

(
x

1− y

)∣∣∣∣ ≤ ε
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for all (x, y) ∈ D◦ and

(3.19) |f0(x)− f0(1− x)| ≤ 3 · 2αε. (x ∈]0, 1[)

Furthermore, with the substitutions x = 1 − p, y = pq (p, q ∈]0, 1[), (3.18)
implies that

(3.20)

∣∣∣∣f0(1− p) + pαf0(q)− f0(pq)− (1− pq)αf0

(
1− p

1− pq

)∣∣∣∣ ≤ ε

holds for all p, q ∈]0, 1[. Therefore, due to (3.19) and the triangle inequality,
(3.18) implies that

(3.21) |F0(p, q)| ≤ (3 · 2α + 1) ε. (p, q ∈]0, 1[)

It can easily be checked that

(3.22) f0(p) [qα + (1− q)α − 1]− f0(q) [pα + (1− p)α − 1]

= F0(q, p)− F0(p, q)

− (1− pq)α

[
F0

(
1− q

1− pq
, p

)
+ f0

(
1− 1− p

1− pq

)
− f0

(
1− p

1− pq

)]

holds for all p, q ∈]0, 1[. Thus, by (3.21) and (3.19) we get that

∣∣∣∣f0(p)− f0(q)

qα + (1− q)α − 1
[pα + (1− p)α − 1]

∣∣∣∣

≤ 2(1 + 3 · 2α) + (1− pq)α(1 + 6 · 2α)

qα + (1− q)α − 1
ε. (p, q ∈]0, 1[)

Taking into consideration (3.16), with q = 1
2

with the definitions

a = f0

(
1

2

) (
21−α − 1

)−1
, b = a + c,

this inequality implies that

|f(x)− [axα + b(1− x)α − b]| ≤ 8 + 6 · 2α + 2−α

21−α − 1
ε. (x ∈]0, 1[)

In view of the definition of K(α), this implies that inequality (3.3) holds for
all x ∈]0, 1[.

Case II. (α = 0)
In the second case we will show that there exists a logarithmic function

l : R++ → R such that

|g(u)− l(u)| ≤ 6ε

for all u ∈ R++. Indeed, (3.10) yields in this case that

|G(u, v)−G(v, u)| ≤ 3ε. (u, v ∈ R++)
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Due to (3.5) and (3.9) we obtain that

G(tu, tv) = F (tu, tv) + g(tv)
= F (u, v) + g(tv)
= G(u, v)− g(v) + g(tv)

that is,

G(tu, tv)−G(u, v) = g(tv)− g(v), (t, u, v ∈ R++)

therefore

|g(tv)− g(v) + g(u)− g(tu)|
= |G(tu, tv)−G(u, v)−G(tv, tu) + G(v, u)|
≤ |G(tu, tv)−G(tv, tu)|+ |G(v, u)−G(u, v)| ≤ 6ε

(3.23)

for all t, u, v ∈ R++. Now (3.23) with the substitution u = 1 implies that

|g(tv)− g(v)− g(t)| ≤ 6ε

holds for all t, v ∈ R++, since obviously g(1) = 0. This means that the function
g is approximately logarithmic on R++. Thus (see e.g. Forti [6]) there exists a
logarithmic function l : R++ → R such that

|g(u)− l(u)| ≤ 6ε

holds for all u ∈ R++.
Furthermore,

|f(x)− l(1− x)− (f(1− x)− l(x))|
= |F (1− x, x)− l(1− x)− F (x, 1− x) + l(x)|
= |F (1− x, x) + g(x)− g(x)− l(1− x)

− F (x, 1− x) + g(1− x)− g(1− x) + l(x) |
≤ |F (1− x, x) + g(x)− (F (x, 1− x) + g(1− x))|

+ |g(1− x)− l(1− x)|+ |l(x)− g(x)|
= |G(1− x, x)−G(x, 1− x)|

+ |g(1− x)− l(1− x)|+ |l(x)− g(x)|
≤ 3ε + 6ε + 6ε = 15ε

(3.24)

As in the first part of the proof, define the functions f0 and F0 on ]0, 1[ and
on ]0, 1[2, respectively, by

f0(x) = f(x)− l(1− x)

and

F0(p, q) = f0(p) + f0(q)− f0(pq)− f0

(
1− p

1− pq

)

Due to (3.24)

(3.25) |f0(x)− f0(1− x)| ≤ 15ε
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holds for all x ∈]0, 1[. Furthermore, with the substitutions x = 1 − p, y = pq
(p, q ∈]0, 1[) inequality (3.1) implies, that

(3.26)

∣∣∣∣f0(1− p) + f0(q)− f0(pq)− f0

(
1− p

1− pq

)∣∣∣∣ ≤ ε

is fulfilled for all p, q ∈]0, 1[. Inequalities (3.25) and (3.26) and the triangle
inequality imply that

(3.27) |F0(p, q)| ≤ 16ε

for all p, q ∈]0, 1[. An easy calculation shows that

f0(p)− f0(q)

= F0(q, p)− F0(p, q) + F0

(
1− p

1− pq
, p

)
− f0

(
1− 1− p

1− pq

)
+ f0

(
1− p

1− pq

)

therefore,

|f0(p)− f0(q)| ≤ |F0(q, p)|+ |F0(p, q)|+
∣∣∣∣F0

(
1− p

1− pq
, p

)∣∣∣∣

+

∣∣∣∣f0

(
1− 1− p

1− pq

)
− f0

(
1− p

1− pq

)∣∣∣∣
≤ 3 · 16ε + 15ε = 63ε

(3.28)

holds for all p, q ∈]0, 1[. With the substitution q = 1
2

inequality (3.28) implies
that ∣∣∣∣f0(p)− f0

(
1

2

)∣∣∣∣ ≤ 63ε. (p ∈]0, 1[)

Using the definition of the function f0, we obtain that inequality

|f(x)− l(1− x)− c| ≤ 63ε

is satisfied for all x ∈]0, 1[, where c = f0

(
1
2

)
. Hence inequality (3.2) holds,

indeed.
Case III. (1 6= α > 0)
Finally, in the last case, we will prove that there exists c ∈ R such that

|g(x)− c(xα − 1)| ≤ 4 · 3α+1ε

|2−α − 1|
holds for all x ∈]0, 1[.

Due to inequalities (3.4) and (3.8),

G(tu, tv) = F (tu, tv) + g(tv)

= tαF (u, v) + g(tv)

= tαG(u, v)− tαg(v) + g(tv),

that is,
G(tu, tv)− tαG(u, v) = g(tv)− tαg(v)
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holds for all t, v ∈ R++. Therefore,

|g(tv)− tαg(v) + tαg(u)− g(tu)|
= |G(tu, tv)−G(u, v)−G(tv, tu) + G(v, u)|
≤ |G(tu, tv)−G(tv, tu)|+ |G(u, v)−G(v, u)|
≤ 3ε(t(u + v) + 1)α + 3ε(u + v + 1)α

(3.29)

holds for all t, u, v ∈ R++, where we used (3.10). With the substitution u = 1,
(3.29) implies that

(3.30) |g(tv)− tαg(v)− g(t)|
≤ 3ε(t(v + 1) + 1)α + 3ε(v + 2)α (t, v ∈ R++)

Interchanging t and v in (3.30), we obtain that

(3.31) |g(tv)− vαg(t)− g(v)|
≤ 3ε(v(t + 1) + 1)α + 3ε(t + 2)α (t, v ∈ R++)

Inequalities (3.30), (3.31) and the triangle inequality imply that

(3.32) |tαg(v) + g(t)− vαg(t)− g(v)| ≤ B(t, v)

is fulfilled for all t, v ∈ R++, where

B(t, v) = 3ε(t(v + 1) + 1)α + 3ε(v + 2)α

+ 3ε(v(t + 1) + 1)α + 3ε(t + 2)α.

With the substitution t = 1
2

and with the definition c =
g( 1

2)
2−α−1

, we obtain

(3.33) |g(v)− c(vα − 1)| ≤ B
(

1
2
, v

)

|2−α − 1|

for all v ∈ R++.
Let us observe that

|B(t, v)| ≤ 4 · 3α+1ε

holds, if t, v ∈]0, 1[. Thus

(3.34) |g(v)− c(vα − 1)| ≤ B
(

1
2
, v

)

|2−α − 1| ≤
4 · 3α+1ε

|2−α − 1|
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for all v ∈]0, 1[. Therefore (3.6), (3.9), (3.10), (3.34) and the triangle inequality
imply that

|f(x)− c(1− x)α + c− (f(1− x)− cxα + c)|
= |F (1− x, x)− c(1− x)α + c− (F (x, 1− x)− cxα + c)|
≤ |F (1− x, x) + g(x)− F (x, 1− x)− g(1− x)|

+ |g(x)− c(xα − 1)|+ |g(1− x)− c((1− x)α − 1)|
= |G(1− x, x)−G(x, 1− x)|

+ |g(x)− c(xα − 1)|+ |g(1− x)− c((1− x)α − 1)|

≤ 3 · 2αε +
8 · 3α+1ε

|2−α − 1|

(3.35)

holds for all x ∈]0, 1[.
As in the previous cases, we define the functions f0 and F0 on ]0, 1[ and on

]0, 1[2 by

(3.36) f0(x) = f(x)− c(1− x)α

and

(3.37) F0(p, q) = f0(p) + pαf0(q)− f0(pq)− (1− pq)αf0

(
1− p

1− pq

)
,

respectively. Then (3.1), (3.35) and (3.36) imply that

(3.38)

∣∣∣∣f0(x) + (1− x)αf0

(
y

1− x

)
− f0(y)− (1− y)αf0

(
x

1− y

)∣∣∣∣ ≤ ε

for all (x, y) ∈ D◦ and

(3.39) |f0(x)− f0(1− x)| ≤ 3 · 2αε +
8 · 3α+1ε

|2−α − 1| . (x ∈]0, 1[)

Furthermore, with the substitutions x = 1 − p, y = pq (p, q ∈]0, 1[), (3.38)
implies that

(3.40)

∣∣∣∣f0(1− p) + pαf0(q)− f0(pq)− (1− pq)αf0

(
1− p

1− pq

)∣∣∣∣ ≤ ε

holds for all p, q ∈]0, 1[. Thus (3.39) and (3.40) and the triangle inequality
imply that

|F0(p, q)| ≤ ε + 3 · 2αε +
8 · 3α+1ε

|2−α − 1| . (x ∈]0, 1[)
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As in the previous cases, it is easy to see that the identity (3.22) is satisfied
for all p, q ∈]0, 1[. Therefore

∣∣∣∣f0(p)− f0(q)

qα + (1− q)α − 1
[pα + (1− p)α − 1]

∣∣∣∣

≤ |qα + (1− q)α − 1|−1

(
3

(
ε + 3 · 2αε +

8 · 3α+1ε

|2−α − 1|
)

+ 3 · 2αε +
8 · 3α+1ε

|2−α − 1|
)

for all p, q ∈]0, 1[. In view of (3.36), with q = 1
2

with the definitions

a = f0

(
1

2

) (
21−α − 1

)−1
and b = a + c,

this inequality implies that

(3.41) |f(p)− [apα + b(1− p)α − b]| ≤ K(α)ε

holds for all p ∈]0, 1[, where

K(α) =
∣∣21−α − 1

∣∣−1
(

3 + 12 · 2α +
32 · 3α+1

|2−α − 1|
)

,

which had to be proved. ¤

4. Corollaries and remarks

First we explain, why our method does not work, in case α = 1.

Remark 1. Since
lim
α→1

K(α) = +∞,

our method is inappropriate if α = 1. Hence we cannot prove stability con-
cerning the fundamental equation of information on the set D◦.

An easy calculation shows that

sup
α<0

K(α) = sup
α<0

8 + 6 · 2α + 2−α

21−α − 1
= 15,

therefore, in case α < 0, 15 can also be considered as a stability constant.

Using Theorem 3.1., with the choice ε = 0, we get the general solution of
equation (1.1) (see Ebanks–Sahoo–Sander [5] or Maksa [14]).

Corollary 4.1. Let α 6= 1 be arbitrary but fixed real number and assume that
the function f : ]0, 1[→ R satisfies the functional equation

f(x) + (1− x)αf

(
y

1− x

)
= f(y) + (1− y)αf

(
x

1− y

)

for all pairs (x, y) ∈ D◦. Then, and only then, in case α = 0, there exists a
logarithmic function l : ]0, 1[→ R and c ∈ R such that

f(x) = l(1− x) + c, (x ∈]0, 1[)
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furthermore, in case α /∈ {0, 1}, there exist a, b ∈ R such that

f(x) = axα + b(1− x)α − b

holds for all x ∈]0, 1[.

Remark 2. In view of Corollary 4.1., Theorem 3.1. says that the parametric
fundamental equation of information is stable on the open domain in the sense
of Hyers and Ulam, provided that the parameter does not equal to one.

Remark 3. Let us observe that the solutions of (1.1) are bounded on D◦,
assuming that 1 6= α > 0. Therefore Theorem 3.1. means that the parametric
fundamental equation of information is not only stable but also superstable in
this case(as to the superstability, the reader can consult Ger [7] and Moszner
[17]).

In the following theorem we shall prove that equation (1.1) is stable not only
on D◦ but also on D. During the proof of this theorem the following function
will be needed. For all 1 6= α > 0 we define the function T (α) by

T (α) = 3 · 2α +
8 · 3α+1

|2−α − 1| ,

that is, T (α) is that function which appears in inequality (3.39). Furthermore,
the following relationship is fulfilled between K(α) and T (α)

K(α) =
4T (α) + 3

|21−α − 1|
for all 1 6= α > 0.

Theorem 4.1. Let α, ε ∈ R be fixed, α 6= 1, ε ≥ 0. Suppose that the function
f : [0, 1] → R satisfies inequality (3.1) for all (x, y) ∈ D. Then, in case α 6= 0
there exist a, b ∈ R such that the function h1 defined on [0, 1] by

h1(x) =





0, if x = 0
axα + b(1− x)α − b, if x ∈ ]0, 1[
a− b, if x = 1

is a solution of (1.1) on D and

(4.1) |f(x)− h1(x)| ≤ K(α)ε, (x ∈ [0, 1])

holds if α < 0 and

(4.2) |f(x)− h1(x)| ≤ max {K(α), T (α) + 1} ε, (x ∈ [0, 1])

is satisfied in case 1 6= α > 0. Furthermore, in case α = 0, there exists c ∈ R
such that the function h2 defined on [0, 1] by

h2(x) =





f(0), if x = 0
c, if x ∈ ]0, 1[
f(1), if x = 1
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is a solution of (1.1) on D and

(4.3) |f(x)− h2(x)| ≤ K(α)ε. (x ∈ [0, 1])

Proof. An easy calculation shows that the functions h1 and h2 are the solutions
of equation (1.1) on D in case α 6= 0 and α = 0, respectively.

Firstly, we investigate the case α < 0. Theorem 3.1. implies that (4.1) holds
for all x ∈]0, 1[. Thus it is enough to prove that (4.1) holds for x = 0 and
x = 1. It follows from (3.1), with the substitution y = 0, that

|(1− x)α − 1| · |f(0)| ≤ ε. (x ∈]0, 1[)

Since α < 0, f(0) = 0 follows, that is, (4.1) holds in case x = 0.
Let now x ∈]0, 1[ and y = 1− x in (3.1). Then

|f(1− x)− f(x)− f(1) ((1− x)α − xα)| ≤ ε.

Applying (3.3) to 1− x instead of x to get

|−f(1− x) + a(1− x)α + bxα − b| ≤ K(α)ε.

Adding this last two inequalities and inequality (3.3) up and using the triangle
inequality to obtain

|(a− b)− f(1)| · |(1− x)α − xα| ≤ (2K(α) + 1) ε. (x ∈]0, 1[)

Since α < 0, we get that f(1) = a− b and so (4.1) holds also for x = 1.
Secondly, we deal with the case α > 0. Substituting x = 0 into (3.1) and

with y → 0 we obtain that

|f(0)| ≤ ε ≤ K(α)ε,

that is, (4.1) holds for x = 0. If x ∈]0, 1[, then inequality (4.2) follows im-
mediately from Theorem 3.1. Furthermore, with the substitution y = 1 − x
(x ∈]0, 1[) inequality (3.1) implies that

|f(x) + (1− x)αf(1)− f(1− x)− xαf(1)| ≤ ε. (x ∈]0, 1[)

From the proof of Theorem 3.1 (see definition (3.36)) it is known that

f(x) = f0(x) + c(1− x)α, (x ∈]0, 1[)

therefore the last inequality yields that

(4.4) |f0(x)− f0(1− x) + c(1− x)α − cxα + (1− x)αf(1)− xαf(1)| ≤ ε

holds for all x ∈]0, 1[. Whereas

|f0(x)− f0(1− x)| ≤ T (α). (x ∈]0, 1[)

Thus after rearranging (4.4), we get that

|f0(x)− f0(1− x)− [c + f(1)][xα − (1− x)α]| ≤ ε, (x ∈]0, 1[)

that is,

||f0(x)− f0(1− x)| − |c + f(1)| · |xα − (1− x)α|| ≤ ε
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holds for all x ∈]0, 1[. Therefore

|c + f(1)| · |xα − (1− x)α| ≤ (T (α) + 1)ε

for all x ∈]0, 1[. Taking the limit x → 0+, we obtain that

|c + f(1)| ≤ (T (α) + 1)ε.

However, in the proof of Theorem 3.1. we used the definition c = b− a, thus

|f(1)− (a− b)| ≤ (T (α) + 1)ε,

so (4.2) holds, indeed.
Finally, we investigate the case α = 0. If x = 0 or x = 1, then (4.3) trivially

holds, since

|f(0)− h2(0)| = |f(0)− f(0)| = 0 ≤ K(α)ε

and

|f(1)− h2(1)| = |f(1)− f(1)| = 0 ≤ K(α)ε.

Let now x ∈]0, 1[ and y = 1− x in (3.1), then we obtain that

(4.5) |f(x)− f(1− x)| ≤ ε, (x ∈]0, 1[)

if fulfilled for all x ∈]0, 1[.
Due to Theorem 3.1. there exists a logarithmic function l : ]0, 1[→ R and

c ∈ R such that

(4.6) |f(x)− l(1− x)− c| ≤ 63ε

holds for all x ∈]0, 1[. Hence it is enough to prove that the function l is
identically zero on ]0, 1[. Indeed, due to (3.2) and (4.5)

|l(1− x)− l(x)|
= |l(1− x)− f(1− x) + f(1− x) + c− l(x) + f(x)− f(x)− c|
≤ |l(1− x) + c− f(x)|+ |f(1− x)− l(x)− c|+ |f(x)− f(1− x)|
≤ 127ε

(4.7)

holds for all x ∈]0, 1[. Since the function l is uniquely extendable to R++, with
the substitution x = p

p+q
(p, q ∈ R), we get that

|l(p)− l(q)| ≤ 127ε, (p, q ∈ R++)

where we used the fact that l is logarithmic, as well. This last inequality, with
the substitution q = 1 implies that

|l(p)| ≤ 127ε

holds for all p ∈ R++, since l(1) = 0. Thus l is bounded on R++. However, the
only bounded, logarithmic function on R++ is the identically zero function.
Therefore,

|f(x)− c| ≤ 63ε

holds for all x ∈]0, 1[, i.e., (4.3) is proved. ¤
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Applying Theorem 3.1. we can prove the stability of a system of func-
tional equations that characterizes the α-recursive, 3-semi-symmetric informa-
tion measures.

Theorem 4.2. Let n ≥ 2 be a fixed positive integer and (In) be the sequence
of functions In : Γ◦n → R and suppose that there exist a sequence (εn) of non-
negative real numbers and a real number α 6= 1 such that

(4.8) |In(p1, . . . , pn)

− In−1(p1 + p2, p3, . . . , pn)− (p1 + p2)
αI2

(
p1

p1 + p2

,
p2

p1 + p2

)∣∣∣∣ ≤ εn−1

for all n ≥ 3 and (p1, . . . , pn) ∈ Γ◦n, and

(4.9) |I3(p1, p2, p3)− I3(p1, p3, p2)| ≤ ε1

holds on Γ◦n. Then, in case α < 0 there exist c, d ∈ R such that

(4.10) |In (p1, . . . , pn)− [cHα
n (p1, . . . , pn) + d (pα

1 − 1)]|

≤
n−1∑

k=2

εk + K(α) (2ε2 + ε1)

(
1 +

n−1∑

k=2

(
k∑

i=1

pα
i

))

for all n ≥ 2 and (p1, . . . , pn) ∈ Γ◦n. Furthermore, in case α = 0 there exists a
logarithmic function l : ]0, 1[→ R and c ∈ R such that

(4.11)
∣∣In (p1, . . . , pn)− [

cH0
n (p1, . . . , pn) + l(p1)

]∣∣

≤
n−1∑

k=2

εk + K(α) (n− 1) (2ε2 + ε1)

for all n ≥ 2 and (p1, . . . , pn) ∈ Γ◦n. Finally, if α > 0 then there exist c, d ∈ R
such that

(4.12) |In(p1, . . . , pn)− [cHα
n (p1, . . . , pn) + d(pα

1 − 1)]|

≤
n−1∑

k=2

εk + (n− 1)K(α)(2ε2 + ε1)

holds for all n ≥ 2 and (p1, . . . , pn) ∈ Γ◦n, where the convention

1∑

k=2

εk =
1∑

k=2

(
k∑

i=1

pα
i

)
= 0

is adopted.

Proof. As in [15], due to (4.8) and (4.9), it can be proved that, for the function
f defined on ]0, 1[ by f(x) = I2(1− x, x) we get that∣∣∣∣f(x) + (1− x)αf

(
y

1− x

)
− f(y)− (1− y)αf

(
x

1− y

)∣∣∣∣ ≤ 2ε2 + ε1
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for all (x, y) ∈ D◦, i.e., (3.1) holds with ε = 2ε2 + ε1. Therefore, applying
Theorem 3.1. we obtain (3.2) and (3.3), respectively, with some a, b, c ∈ R and
a logarithmic function l : ]0, 1[→ R and ε = 2ε2 + ε1, i.e.,

|I2 (1− x, x)− (axα + b(1− x)α − b)| ≤ K(α)(2ε2 + ε1), (x ∈]0, 1[)

in case α 6= 0, and

|I2 (1− x, x)− (l(1− x) + c)| ≤ K(α)(2ε2 + ε1) (x ∈]0, 1[)

in case α = 0.
Therefore (4.10) and (4.12) holds with c = (21−α − 1)a, d = b − a in case

α < 0 and in case α > 0, furthermore, (4.11) holds in case α = 0, respectively,
for n = 2.

We continue the proof by induction on n. Suppose that (4.10), (4.11) and
(4.12) holds, resp., and for the sake of brevity, introduce the notation

Jn(p1, . . . , pn) =

{
cHα

n (p1, . . . , pn), if α 6= 0
cH0

n(p1, . . . , pn) + l(p1), if α = 0

for all n ≥ 2, (p1, . . . , pn) ∈ Γ◦n. It can easily be seen that (4.10), (4.11) and
(4.12) hold on Γ◦n for Jn instead of In (n ≥ 3) with εn = 0 (n ≥ 2). Thus, for
all (p1, . . . , pn+1) ∈ Γ◦n+1, we get that

In+1(p1, . . . , pn+1)− Jn+1(p1, . . . , pn+1)

= In+1(p1, . . . , pn+1)− Jn(p1 + p2, p3, . . . , pn+1)

− (p1 + p2)
αJ2

(
p1

p1 + p2

,
p2

p1 + p2

)

= In+1(p1, . . . , pn+1)− In(p1 + p2, p3, . . . , pn+1)

− (p1 + p2)
αI2

(
p1

p1 + p2

,
p2

p1 + p2

)

+ In(p1 + p2, p3, . . . , pn+1)− Jn(p1 + p2, p3, . . . , pn+1)

+ (p1 + p2)
α

(
I2

(
p1

p1 + p2

)
− J2

(
p1

p1 + p2

,
p2

p1 + p2

))
.

Therefore, if α < 0, (4.8) (with n + 1 instead of n), (4.10) with n = 2 and the
induction hypothesis (applying to (p1 + p2, . . . , pn+1) instead of (p1, . . . , pn))
imply that

|In+1(p1, . . . , pn+1)− Jn+1(p1, . . . , pn+1)|

≤ εn +
n−1∑

k=2

εk + K(α)(2ε2 + ε1)

(
1 +

n−1∑

k=2

(
k+1∑
i=1

pα
i

))

+ K(α)(2ε2 + ε1)(p1 + p2)
α

=
n∑

k=2

εk + K(α)(2ε2 + ε1)

(
1 +

n∑

k=2

(
k∑

i=1

pα
i

))
,
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that is (4.10) holds for n + 1 instead of n.
Furthermore, if α = 0, (4.8) (with n+1 instead of n), (4.11) with n = 2 and

the induction hypothesis (applying to (p1+p2, . . . , pn+1) instead of (p1, . . . , pn))
imply that

|In+1(p1, . . . , pn+1)− Jn+1(p1, . . . , pn+1)|

≤ εn +
n−1∑

k=2

εk + K(α)(n− 1)(2ε2 + ε1) + K(α)(2ε2 + ε1)

=
n∑

k=2

εk + K(α)n(2ε2 + ε1).

This yields that (4.11) holds for n + 1 instead of n.
Finally, if α > 0, then (4.8) (with n + 1 instead of n), (4.12) with n = 2 and

the induction hypothesis (applying to (p1+p2, . . . , pn+1) instead of (p1, . . . , pn))
imply that

|In+1(p1, . . . , pn+1)− Jn+1(p1, . . . , pn+1)|

≤ εn +
n−1∑

k=2

εk + K(α)(n− 1)(2ε2 + ε1) + K(α)(2ε2 + ε1)

=
n∑

k=2

εk + K(α)n(2ε2 + ε1),

that is, (4.12) holds for n + 1 instead of n. ¤
Remark 4. Applying Theorem 4.2 with the choice εn = 0 for all n ∈ N, we get
the α–recursive, 3–semi–symmetric information measures. Hence Theorem 4.2
says that the system of α–recursive and 3–semi–symmetric information mea-
sures is stable.

5. Open problems

In the last part of the paper we list some open problems from the investigated
topic.

The stability of equation (1.1) in the exceptional case α = 1 was raised by
Székelyhidi in [19], and it is still open.

Open problem 1. Prove or disprove that the fundamental equation of informa-
tion is stable on the set D◦ or on the set D.

We remark that concerning this problem a partial result was published in
Morando [16].

In the monograph of Ebanks, Sahoo and Sander (see [5]) higher dimensional
information measures and functions are considered. A stability type result was
published in [8], assuming the underlying multiplicative function is bounded
on its closed domain. Therefore the following problem can be formulated.
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Open problem 2. What can be said about the stability of the fundamental
equation of information of multiplicative type on the closed as well as on the
open domain?

In the inset theory (see e.g. Aczél–Daróczy [3]), measures of information may
be depend on both the probabilities and events. Thus the problem of finding
all inset information measures lead to the generalized fundamental equation of
information of degree alpha, that is, to the functional equation

f(x) + (1− x)αg

(
y

1− x

)
= h(x) + (1− y)αk

(
x

1− y

)
. ((x, y) ∈ D◦)

This equation was solved in Maksa [14].

Open problem 3. Is it true that the generalized fundamental equation of infor-
mation of degree alpha is stable on the set D◦?
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