NOTE ON AN INEQUALITY OF F. QI AND L. DEBNATH

WEI-DONG JIANG

Abstract

In this paper, a similar result of F. Qi and L. Debnath's inequality is given, and a generalization of Alzer's inequality is established.

1. Introduction

It is well-known that the following inequality

$$
\begin{equation*}
\frac{n}{n+1}<\left(\frac{(1 / n) \sum_{i=1}^{n} i^{r}}{(1 /(n+1)) \sum_{i=1}^{n+1} i^{r}}\right)^{1 / r} \leq \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} \tag{1.1}
\end{equation*}
$$

holds for $r>0$ and $n \in \mathbb{N}$. We call the left-hand side of this inequality Alzer's inequality [2], and the right-hand side Martins's inequality [4].

Alzer's inequality has invoked the interest of several mathematicians, we refer the reader to $[3,4,5,6,7]$ and the references therein.

In [6] F. Qi and L. Debnath gave a further generalization of (1.1), they proved the following result:

Theorem 1.1. Let n and m be natural numbers. Suppose $\left\{a_{1}, a_{2}, \cdots\right\}$ is a positive and increasing sequence satisfying

$$
\begin{equation*}
\frac{(k+2) a_{k+2}^{r}-(k+1) a_{k+1}^{r}}{(k+1) a_{k+1}^{r}-k a_{k}^{r}} \geq\left(\frac{a_{k+2}}{a_{k+1}}\right)^{r} \tag{1.2}
\end{equation*}
$$

for any given positive real number r and $k \in \mathbb{N}$. Then we have the inequality

$$
\begin{equation*}
\frac{a_{n}}{a_{n+m}} \leq\left(\frac{(1 / n) \sum_{i=1}^{n} a_{i}^{r}}{(1 /(n+m)) \sum_{i=1}^{n+m} a_{i}^{r}}\right)^{1 / r} \tag{1.3}
\end{equation*}
$$

[^0]Chen and F. Qi in [3] show that Alzer's inequality (1.1) is valid for $r<0$.
Motivated by approach of [3], a natural question is does (1.3) still hold for $r<0$. In this paper, we show that (1.3) is no longer valid for $r<0$. But, we found another similar result.

2. Main Results

Theorem 2.1. Let n and m be natural numbers. Suppose $\left\{a_{1}, a_{2}, \cdots\right\}$ is a positive and decreasing sequence satisfying

$$
\begin{equation*}
\frac{(k+2) a_{k+1}^{s}-(k+1) a_{k+2}^{s}}{(k+1) a_{k}^{s}-k a_{k+1}^{s}} \geq\left(\frac{a_{k+1}}{a_{k}}\right)^{s} \tag{2.1}
\end{equation*}
$$

for any given positive real number s and $k \in \mathbb{N}$. Then we have the inequality

$$
\begin{equation*}
\frac{a_{m+n}}{a_{n}} \leq\left(\frac{(1 / n) \sum_{i=1}^{n} \frac{1}{a_{i}^{s}}}{(1 /(n+m)) \sum_{i=1}^{n+m} \frac{1}{a_{i}^{s}}}\right)^{1 / s} \tag{2.2}
\end{equation*}
$$

The lower bound of (2.2) is best possible.
Proof. The inequality (2.2) is equivalent to

$$
\begin{equation*}
\frac{a_{n+m}^{s}}{a_{n}^{s}} \leq \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_{i}^{s}}}{\frac{1}{n+m} \sum_{i=1}^{n+m} \frac{1}{a_{i}^{s}}} \tag{2.3}
\end{equation*}
$$

This is also equivalent to

$$
\begin{equation*}
\frac{a_{n+1}^{s}}{a_{n}^{s}} \leq \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_{i}^{s}}}{\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{1}{a_{i}^{s}}} . \tag{2.4}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\frac{a_{n+1}^{s}}{(n+1)} \sum_{i=1}^{n+1} \frac{1}{a_{i}^{s}} \leq \frac{a_{n}^{s}}{n} \sum_{i=1}^{n} \frac{1}{a_{i}^{s}} . \tag{2.5}
\end{equation*}
$$

Since,

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{1}{a_{i}^{s}}=\sum_{i=1}^{n} \frac{1}{a_{i}^{s}}+\frac{1}{a_{n+1}^{s}} \tag{2.6}
\end{equation*}
$$

Inequality (2.5) reduces to

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{a_{i}^{s}} \geq \frac{n}{(n+1) a_{n}^{s}-n a_{n+1}^{s}} \tag{2.7}
\end{equation*}
$$

Since, $\left\{a_{1}, a_{2}, \cdots\right\}$ is a positive and decreasing sequence, it is easy to see that inequality (2.7) holds for $n=1$.

Assume that (2.7) holds for $n>1$. Using the principle of induction, it is easy to show that (2.7) holds for $n+1$. Using equality (2.6), the induction can be written as (2.1) for $k=n$. Thus, inequality (2.7) holds.

It can easily be shown that

$$
\begin{equation*}
\lim _{s \rightarrow+\infty}\left(\frac{(1 / n) \sum_{i=1}^{n} \frac{1}{a_{i}^{s}}}{(1 /(n+m)) \sum_{i=1}^{n+m} \frac{1}{a_{i}^{s}}}\right)^{1 / s}=\frac{a_{m+n}}{a_{n}} \tag{2.8}
\end{equation*}
$$

Hence, the lower bound of (2.2) is best possible. The proof is complete.
The following example shows that the sequence satisfying (2.1) is exists.
Example 2.2. Let $a_{k}=\frac{1}{k},(k=1,2, \cdots)$, then

$$
\frac{(k+2) a_{k+1}^{s}-(k+1) a_{k+2}^{s}}{(k+1) a_{k}^{s}-k a_{k+1}^{s}}=\frac{k^{s}}{(k+2)^{s}} \cdot \frac{(k+2)^{s+1}-(k+1)^{s+1}}{(k+1)^{s+1}-k^{s+1}}
$$

Define function $f, g:[k, k+1] \rightarrow R$, where $f(x)=(x+1)^{s+1}, g(x)=x^{s+1}, s>0$. Applying the Cauchy's mean-value theorem, it turns out that there exists one point $\xi \in(k, k+1)$ such that

$$
\begin{aligned}
\frac{k^{s}}{(k+2)^{s}} \cdot \frac{(k+2)^{s+1}-(k+1)^{s+1}}{(k+1)^{s+1}-k^{s+1}} & =\frac{k^{s}}{(k+2)^{s}} \cdot \frac{f(k+1)-f(k)}{g(k+1)-g(k)} \\
& =\frac{k^{s}}{(k+2)^{s}} \cdot \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \\
& =\frac{k^{s}}{(k+2)^{s}} \cdot\left(\frac{1+\xi}{\xi}\right)^{s} \\
& \geq \frac{k^{s}}{(k+2)^{s}} \cdot\left(1+\frac{1}{k+1}\right)^{s} \\
& =\left(\frac{k}{k+1}\right)^{s}=\left(\frac{a_{k+1}}{a_{k}}\right)^{s}
\end{aligned}
$$

Hence,

$$
\frac{(k+2) a_{k+1}^{s}-(k+1) a_{k+2}^{s}}{(k+1) a_{k}^{s}-k a_{k+1}^{s}} \geq\left(\frac{a_{k+1}}{a_{k}}\right)^{s}
$$

Let $a_{k}=\frac{1}{k}$ in Theorem 2.1, then we have

Corollary 2.1.

$$
\begin{equation*}
\frac{n}{n+m}<\left(\frac{(1 / n) \sum_{i=1}^{n} i^{s}}{(1 /(n+m)) \sum_{i=1}^{n+m} i^{r}}\right)^{1 / s} \tag{2.9}
\end{equation*}
$$

where $s>0$ and $m, n \in \mathbb{N}$.
Let $m=1$ in (2.9), then we get (1.1).
Acknowledgement. The authors are indebted to the referees for their valuable comments and help.

References

[1] S. Abramovich, J. Barić, M. Matić, and J. Pečarić. On van de Lune-Alzer's inequality. J. Math. Inequal., 1(4):563-587, 2007.
[2] H. Alzer. On an inequality of H. Minc and L. Sathre. J. Math. Anal. Appl., 179(2):396402, 1993.
[3] C. P. Chen and F. Qi. The inequality of alzer for negative powers. Octogon Mathematical Magazine, 11(2):442-445, 2003.
[4] J. S. Martins. Arithmetic and geometric means, an application to Lorentz sequence spaces. Math. Nachr., 139:281-288, 1988.
[5] F. Qi. Generalization of H. Alzer's inequality. J. Math. Anal. Appl., 240(1):294-297, 1999.
[6] F. Qi and L. Debnath. On a new generalization of Alzer's inequality. Int. J. Math. Math. Sci., 23(12):815-818, 2000.
[7] F. Qi, B.-N. Guo, and L. Debnath. A lower bound for ratio of power means. Int. J. Math. Math. Sci., (1-4):49-53, 2004.
[8] J. Sándor. On an inequality of Alzer. J. Math. Anal. Appl., 192(3):1034-1035, 1995.
[9] J. S. Ume. An inequality for a positive real function. Math. Inequal. Appl., 5(4):693-696, 2002.

Received on February 22, 2009; accepted on March 15, 2009

Department of Information Engineering, Weihai Vocational College, Weihai 264210, ShanDong province, P.R.CHINA

E-mail address: jackjwd@163.com

[^0]: 2000 Mathematics Subject Classification. 26D15.
 Key words and phrases. Alzer's inequality; power mean; Cauchy's mean value theorem; mathematical induction.

