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CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND
CONVEX FUNCTIONS DEFINED BY CONVOLUTION

M. K. AOUF, R. M. EL-ASHWAH, AND S. M. EL-DEEB

ABSTRACT. The aim of this paper is to obtain coefficient estimates,
distortion theorems, convex linear combinations and radii of close-to-
convexity, starlikeness and convexity for functions belonging to the subclass
TS, (f,g;a, 3) of uniformly starlike and convex functions, we consider inte-
gral operators associated with functions in this class. Furthermore partial
sums f,(z) of functions f(z) in the class T'S(f, g; a, ) are considered and
sharp lower bounds for the ratios of real part of f(z) to fn(z) and f'(z) to
f..(z) are determined.

1. INTRODUCTION

Let S denote the class of functions of the form:
(1.1) f(2) :z—i—Zakzk.
k=2

that are analytic and univalent in the open unit disk U = {z:|z| < 1}. Let
f € S be given by (1.1) and g € S be given by

(1.2) 9(2) =2+ > bp2* (b >0),

then the Hadamard product (or convolution) f * g of f and ¢ is defined (as
usual) by

(1.3) (fx9)(2) =2+ > a2’ = (g% f)(2).

Following Goodman ([4] and [5]), Ronning ([9] and [10]) introduced and
studied the following subclasses:
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(i) A function f(z) of the form (1.1) is said to be in the class S,(«, ) of
uniformly F—starlike functions if it satisfies the condition:

2f'(2) } 2f'(2)
- re{ e -} > 25
where —1 < a < 1land 3> 0.
(ii) A function f(z) of the form (1.1) is said to be in the class UCV (a, ) of
uniformly G—convex functions if it satisfies the condition:

2f"(2) 2f(2)
where —1 < a < 1and (> 0.
It follows from (1.4) and (1.5) that

(1.6) f(z) e UCV(a,p) <~ zf/(z) € Sy(a, B).

For -1 <a<1,0<vy<1and >0, welet S,(f,g;a, ) be the subclass
of S consisting of functions f(z) of the form (1.1) and the functions g(z) of
the form (1.2) and satisfying the analytic criterion:

2fx9) () +2°(f*x9) (2) a}
=) (f*9)(2) +72(f x 9) (2)

2(f *9) (2) +v22(f x9)" (2)
(I =) (f*9)(2) +72(f *g)'(2)

Let T denote the subclass of S consisting of functions of the form:

(1.8) f(z)=2z— Zakzk (ar, > 0).

-1

(=€),

(z€U),

(1.7) Re{(1

— 1.

>

Further, we define the class T'S,(f, g;, 3) b

(1.9) TS(f,9:,0) = S5(f, g0, ) NT
We note that:
. z )
(i) TSO(f,@, )
TSo(f, W; a,1) =TSi(f, 1- z);
(see Bharati et al. [3]);
(i) TS, (f, ﬁ;o,ﬁ) =UCT(B) (B > 0) (see Subramanian et al. [15]);

(iii) T'So(f,z + Z (@)
i=2 ()
0,—-1,-2,.. ) (see Murugusundaramoorthy and Magesh [6,7]);

(iv) TSo(f,z+ Z knzk o, 8) =TS (n,a,B) (-1 <a<1,8>0,n¢e Ny=
N U {0}, N {1,2,...})(see Rosy and Murugusundaramoorthy [11]);

a,1) = 5,7 (a) and

a,1)=UCT(a), (-1 <a<1)

L, 8) = TS(a,B) (-1 Sa< 1,820 c
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wrsisa+ 5 (M T ) san = pmani<aciizo

A>—1) (see Shams et al. [14]);
(Vl) TSO( Z+ Z [1+)\(k 1)]”21670(’6) = TS)\ (nvavﬁ) <_1 <a< 17
B>0,A> O n € Np) (see Aouf and Mostafa [2]);

(vii) T'S,(f, 2 +ZE))’” a8 = TS (v,0,8) (-1 < a < 1,8 >0,

0<~v<1,¢#0,-1,-2,...) (see Murugusundaramoorthy et al. [8]);
(viil) TS, (f, 2+ > szk;a,ﬁ) =TS; (7, , B) (see Ahuja et al. [1]), where
k=2

. (al)k—l Ce (aq)k—l 1
(1.10) e = e (e (=)

(; >0,i=1,...,¢; 3;>0, j=1,...,8 ¢<s+1; q, s € Ny).
Also we note that

(1.11) TS,(f, =+ Zk”zk;a,ﬁ) =TS, (n,a,pB)
_ Red LD () + (D f(2))
~feran { e o Tor ey

>ﬁ' 2D f(2)) + 72D f(2))
—7)D"f(z) + D" f(2)

—1<a<l1, >0, ne Ny, zEU}.

-1

Y

2. COEFFICIENT ESTIMATES

Theorem 1. A function f(z) of the form (1.8) is in T'S,(f, g; 0, B) if

1) Sk +8) — (a+ A1+ — D] axlbe < 1—a,
k=2

where =1 <a<1,>0and 0 <y < 1.

Proof. 1t suffices to show that

2(fx9) (2) +v22(f *9)"(2)
(I =(f*9)(2) +vz(f *g)'(2)
Cped 2@ 402 x9)" () —a
: {( =N *9)(2) +72(f * 9)' () 1} =

g

.
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We have

2(f *9) (2) + 722 (f *9)" (2)
(I =(f*9)(2) +7z(f *g) ()

Cpod A9 () P (f29)(2)
R{u ) 1}

ﬁi .

—N(f *9)(2) +vz(f x g)

<0
(U 8) S5 0= 1+ (= 1)l
- L= 55 [0k = 1) ol e
This last expression is bounded above by (1 — a) if
S K1+ ) — (a-+ B) (L +1(k )] ul b < 1~
and hence t}fe Qproof is completed. 0

Theorem 2. A necessary and sufficient condition for f(z) of the form (1.8)
to be in the class T'S,(f,g;a, () is that

o

(2.2) > k(A +B8) = (a+ B [1+(k— D]aghy < 1 - a,

k=2

Proof. In view of Theorem 1, we need only to prove the necessity. If f(z) €

TS,(f,9;a,0) and z is real, then

1= S B[4 v(k — 1)] axbezt—! Sk — 1)L+ (k — 1)] agbpzt!
k:oi -« 2 ﬁ L o]

1-— Z [1 + ’Y(k} — 1)] apbp k1 1— Z [1 + ’}/(]{7 — 1)] apbypzF—1
k=2 k=2

Letting z — 1~ along the real axis, we obtain the desired inequality

o

S k(A +B) = (a+ B [L+v(k - D]agby < 1 - a.

k=2

O

Corollary 1. Let the function f(z) be defined by (1.8) be in the class
TS,(f g;a,). Then

11—«

k(14 5) = (a+ B [1 + (k= 1)]by

(2.3) ar, < (k> 2).
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The result is sharp for the function

(24)  flz)=z-

l—«
[k(1+ ) = (a+ B)] [1 +v(k —1)] by
3. DISTORTION THEOREMS

Theorem 3. Let the function f(z) be defined by (1.8) be in the class
TS,(f,g;0,0). Then for |z| =1 <1, we have

2" (k> 2).

-« 9
(3.1) 27 -
and
(3.2) FE <+ - :

2—a+B)1+7)b

provided that by, > by (k > 2). The equalities in (3.1) and (3.2) are attained
for the function f(z) given by

> N P Iy
at z =1 and z = re!®*+V7 (L € 7).
Proof. Since for k > 2,
(2~ b B4y < k(14 5) — (a+ A [1+2(k— )b

using Theorem 2, we have

(3.4) (2_044‘5)(14‘7)522%

k=2
<D RA+B) = (a+ B [1+y(k = D]aghy <1-a
k=2
that is, that
s -«
(3.5) ; PG [
From (1.8) and (3.5), we have
e 1 -«
(3.6) If(Z)IZT—TQk;“kZT_ (2—a+5)(1+7)bzr2
and
00 1 —«
(3.7) If(z)lSHTQ;“%S”(2—oz+6)(1+v)bf2

This completes the proof of Theorem 3. O
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Theorem 4. Let the function f(z) be defined by (1.8) be in the class
TS,(f,g;0,8). Then for |z| =17 <1, we have

, 2(1 — «)
(3.8) f(z)‘ e T
and
(3.9) (f’(z)‘ <1+ 201 — o)

S )T ey

provided that by, > by (k > 2). The result is sharp for the function f(z) given
by (3.3).

Proof. From Theorem 2 and (3.5), we have

2(1 — «)
2—a+B)1+7)b2

(3.10) > kay <
k=2

Since the remaining part of the proof is similar to the proof of Theorem 3, we
omit the details. 0J

4. CONVEX LINEAR COMBINATIONS

!

Theorem 5. Let p, > 0 forv =1,2,...,01 and Y p, < 1. If the functions
v=1

F,(z) defined by

(4.1) Fo(z)=2z— Zaszk (ago >0; v=1,2,...,])

are in the class T'S,(f, g;«, B) for everyv =1,2,...,1, then the function f(z)
defined by

k=2 v=1

fz) = Z—Z (Z,Uvakv)

is in the class TS,(f, g;a, )

Proof. Since F,(z) € TS,(f,g;,3), it follows from Theorem 2 that

o0

(4.2) S EQ+8) = (a+ B [L+y(k— D] arube <1 -a,

k=2
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for every v =1,2,...,1. Hence
[e'e) l
S k(1 + 8) — (a+ B))[1+ (k- 1) (Z u) by
k=2 v=1

Z (Z (1+78) = (a+B)[1+~y(k—1)] ak,vbk>

k=2
l
S (1_05>Z,U/v§ 1—a.
v=1

By Theorem 2, it follows that f(z) € T'S,(f, g; @, 3). O

Corollary 2. The class T'S,(f, g; v, B) is closed under convex linear combina-
tions.

Theorem 6. Let fi(z) = z and
11—« .
B N I e

for—=1<a<1,0<y<1landfB >0. Then f(z) is in the class T'S,(f, g; o, )
iof and only if it can be expressed in the form:

(43)  fulz) =

(4.4) f(z) = Zﬂkfk(2>
k=1
where p >0 and > py, = 1.
k=1
Proof. Assume that
= mfi(2)
k=1

> 1—a
N §: k(1+B) - a+ﬁﬂﬂ+wk—DMkM%'

k=2
Then it follows that

(4.6) f: [k(1+8) = (a+ B)][1+~(k = 1)] b

11—«
k=2

1—«
D) — (@t AL+ 16 ™~ Zﬂfc—l—mﬂ

So, by Theorem 2, f(z) € T'S,(f, g; v, B).
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Conversely, assume that the function f(z) defined by (1.8) belongs to the
class T'S,(f, g; ., ). Then

R T e i e ey i G
Setting

PP (3, EICEY. |{ES/E) LIS

and

(4.9) p=1- iuk,

we can see that f(z) can be expressed in the form (4.4). This completes the
proof of Theorem 6. U

Corollary 3. The extreme points of the class T'S,(f, g; «, 3) are the functions

fi(z) = z and
fr(2) =2 —

z
[k(1+ ) = (a+ B)][1+v(k—1)] by
5. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 7. Let the function f(z) defined by (1.8) be in the class
TS, (f,g;a,8). Then f(z) is close-to-convex of order p (0 < p < 1) in |z| < ry,
where

(k>2).

1

(1 =p)[k(1+6) = (a+B)] [1+7<k_1)]bk}k—1
(1 — ) '

The result is sharp, the extremal function being given by (2.4).

(51)  ry=inf {

k>2

Proof. We must show that

!

f(z)—l‘gl—pfor |z| <,

where r; is given by (5.1). Indeed we find from the definition (1.8) that
‘f’(z) - 1‘ <3 kay |2
k=2

Thus
Fe-1<1-p
if

(5.2) f: (%) ap |z < 1.
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But, by Theorem 2, (5.2) will be true if
() ot < B2 (o D10 e W

Y

1—p 11—«
that is, if
1
—p) k(1 — 1 E—=D]bp k-1
69) 1< {AABIED -0 oA erG = DRET )
Theorem 7 follows easily from (5.3). O

Theorem 8. Let the function f(z) defined by (1.8) be in the class
TS,(f,g;0,8). Then f(2) is starlike of order p (0 < p < 1) in |z| < ra, where

1
{(1—0)[k(1+6)—(04+ﬁ)] [1+7(k‘—1)]bk}m'

(5.4) ro = inf

k>2

(k=p)(1=-a)

The result is sharp, with the extremal function f(z) given by (2.4).
Proof. 1t is sufficient to show that

2f (2)
/()
where 75 is given by (5.4). Indeed we find, again from the definition (1.8) that

—1‘§1—pf0r |z| < 79,

o0

B k1
21 (2) _1‘ Lt Dl

o0

f(z) 1 — Zak|Z|k_1 '
k=2

Thus /( )

zf (2 B B

7 1’ =i
if

= (k — p)ag 2"

(5.5) ; a7 <1

But, by Theorem 2, (5.5) will be true if
(k=p) |20 _ k(1 +5) = (a+ B [1+y(k = D] by

i-p = 1-a)
that is, if
1
(1= p) [F(L+ 8) — (a+ B L+ 20k~ )b\ E=1
66) 14 < k= (1-a) Jteso)

Theorem 8 follows easily from (5.6). O



64 M. K. AOUF, R. M. EL-ASHWAH, AND S. M. EL-DEEB

Corollary 4. Let the function f(z) defined by (1.8) be in the class
TS,(f,g;0,8). Then f(z) is convex of order p (0 < p < 1) in |z| < rs, where
1
(1=p) [k(1+5) = (a+ B [1 +(k - 1>]bk}k—1
=) (-a)

The result is sharp, with the extremal function f(z) given by (2.4).

(5.7)  r3= inf{

k>2

6. A FAMILY OF INTEGRAL OPERATORS

In view of Theorem 2, we see that z — Y dy2" is in T'S,(f, g; o, 3) as long
k=2
as 0 < dj < a; for all k. In particular, we have

Theorem 9. Let the function f(z) defined by (1.8) be in the class
TS, (f,g9;a,8) and c be a real number such that ¢ > —1. Then the function
F(z) defined by

(6.1) F(z) = ctl /tc_lf(t)dt (c>—1)

~C
0

also belongs to the class T'S,(f,g;a, ).

Proof. From the represtation (6.1) of F(z), it follows that

F(z)=2z— dezk,
k=2

where
c+1
dy, = < k>2).
g (c—l—k)ak_ak (k=2)
On the other hand, the converse is not true. This leads to a radius of
univalence result. O

Theorem 10. Let the function F(z) = z — > axz® (ar > 0) be in the class
k=2

TS,(f,g;c, ), and let ¢ be a real number such that ¢ > —1. Then the function
f(2) given by (6.1) is univalent in |z| < R*, where
1
62) R o CTDRHD) — (@t I+ o(h=1]b T
k>2 k(c+k)(1—a)

The result is sharp.
Proof. From (6.1), we have
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In order to obtain the required result, it suffices to show that
‘f/(z) — 1‘ <1 wherever |z| < R*,

where R* is given by (6.2). Now

(o)

' k(c+ k) o1
HCREEDIE ~ui il
Thus |f'(z) — 1| <1 if
. k(c+k) o1
(6.3) ; T D ap |2|" < 1.
But Theorem 2 confirms that
(6.4) fi%ﬂ+6%4a+f§g+ﬂk—nmmkgl

k=2
Hence (6.3) will be satisfied if

Kot K)ot RO 0) = (0 B Lk = )]y
(ct1) 1—a) ’
that is, if
1

k(c+k)(1 —«)

Therefore, the function f(z) given by (6.1) is univalent in |z| < R*. Sharpness
of the result follows if we take

6.6) f(z)=z— (c+ k)=o) E (k> 2).

k(1+8) —(a+ AL +1k—Dlbs(c+1)° "~

7. PARTIAL SUMS

Following the earlier works by Silverman [12] and Siliva [13] on partial sums
of analytic functions, we consider in this section partial sums of functions in
the class T'S,(f, g; ., ) and obtain sharp lower bounds for the ratios of real

part of f(z) to f, (2) and f'(2) to f, (2).
Theorem 11. Define the partial sums fi(z) and f,(z) by

fi(z) =z and fn(z) = 2+ Zakzk, (n € N\{1}).
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Let f(z) € T'S,(f,g;c,B) be given by (1.1) and satisfies the condition (2.2)
and

(7.1) o> 1, k=23,...,n,
Cn+1, k=n+1n+2 ...,

where, for convenience,

B+ 8) = (0 + O] [+ (k= D]ty

(72) C = 1— o
Then
(7.3) Re{;;((zz))}>1_cn+1 (z€U; neN)
and
fn(z) Cn+1
(7.4) Re{ 02) } > T

Proof. For the coefficients ¢, given by (7.2) it is not difficult to verify that
(75) Ck+1 > Ci > 1.

Therefore we have

(7.6) S larl + e Y el < efar] < 1.
k=2

k=n+1 k=2
By setting
Cog1 D, apztt
z 1 =n
(17) a(z) = %H{fiz_(l_ )} =
n{% Cn+1 1+ Z apzk1
k=2
and applying (7.6), we find that
Cnp1 D, lag
-1 <
z
g 2-23% |ag] — o1 X0 fal
k=2 k=n-+1
Now
91(2) — 1‘ <1
g1(z)+1
if

n o0
Z |ak| + cnpa Z lag| < 1.
=2

k=n+1
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From the condition (2.2), it is sufficient to show that

n oo [e.9]
Z |ak| + cnta Z |a| < ch ||
k=2 k=2

k=n+1
which is equivalent to

n o

(7.9) S (e~ Dl + 3 (e — i) lar] 2 0,

k=2 k=n+1
which readily yields the assertion (7.3) of Theorem 11. In order to see that

ZTL+1
(7.10) f(z) =2+
Cn+1
gives sharp result, we observe that for z = rew that f(z) =1+ SR
fn(z) Cn+1

1—

as z — 17. Similarly, if we take
Cnt1

(14 cnt) i a1
(7.11) 92(3) = (1 + Cn—i—l) {fn(Z) Cn+1 } _1_ [—l

f(z)  1+4+cum 14+ i a1
k=2
and making use of (7.6), we can deduce that
(It cna) 20 |ax|
(7.12) 92(2) — 1‘ < . =t
PO 223 ol — (1= o) 3 Jal
k=2 k=n+1

which leads us immediately to the assertion (7.4) of Theorem 11.
The bound in (7.4) is sharp for each n € N with the extremal function f(z)

given by (7.10). The proof of Theorem 11 is thus complete. O
Theorem 12. If f(z) of the form (1.1) satisfies the condition (2.2). Then
’ 1
(7.13) Re{&}zl—n—i_ ,
fa(2) Cnt1
and
fl (Z) } Cn+1

7.14 Re ¢ =& > ,
(7-14) {f(z) Tntl4cnn
where ¢, defined by (7.2) and satisfies the condition

k, ifk=2,3,...,n,

>

(7.15) GZN e i k=ndlnt2,.. ..

n+1

The results are sharp with the function f(z) given by (7.10).
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Proof. By setting

o(:) = 2t {JJZEZ)) B (1 B 7;:11)}

14 ol Z ka1 + Z kayz*~

B n+ 150
(7.16) 1+ Z kayzk—1
k=2
Cn+1
k
n+1y Xn:+l =
-1+
1+ Z kayzk—1
k=2
Then
Cn+1
Z k |ag|
(7.17) ‘g(z)_1'< ”H’”“
=2 +1 .55
Now
9(x) =1
g(z)+ 1|~
if
(7.18) Zk ar] + = C"“ Z klag] <1,
k n+1

since the left hand side of (7.18) is bounded above by > ¢ |ag] if

k=2
n o0 Cn
(7.19) D (ew—k)larl + D (cx — p flk) la,| >0
k=2 k=n+1

and the proof of (7.13) is complete.
To prove the result (7.14), define the function g(z) by

(n—i—l—i—cnﬂ) {f;(z) _ Cnt1 }
n+1 f(z) n+l+cn

(1+ CW’H) S kagztt

n+1/) .5
1 ook 1 ’

1+ > kagzk1
k=2
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and making use of (7.19), we deduce that

(1+ C"“) S k]

n+1

‘952;11’ S k=n+1 S 1’
g\z n Cn+1 )
2—2 k ag| — <1 + ) k Q.
kzzjz e n+1 k:Zn:—I—l e
which leads us immediately to the assertion (7.14) of Theorem 12. O
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