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SOME HARDY SPACE ESTIMATES FOR MULTILINEAR
SINGULAR INTEGRAL OPERATOR

ZHOU XTAOSHA AND LIU LANZHE

ABSTRACT. In this paper, we establish the boundedness for some multilin-
ear singular integral operators on Hardy and Herz type Hardy spaces. The
operators include Calderon-Zygmund singular integral operators.

1. INTRODUCTION

Let b € BMO(R"™) and T be the Calderon-Zygmund operator. The com-
mutator [b,T] generated by b and T is defined by [b,T]f(z) = b(z)T f(z) —
T(bf)(x). By a classical result of Coifman, Rochberg and Weiss(see [6]), we
know that the commutator [b, 7] is bounded on LP(R") for 1 < p < co. How-
ever, it was observed that [b, T is not bounded, in general, from HP(R") to
LP(R™) and from L'(R™) to L»*°(R™) for p < 1. But, if H?(R™) is replaced
by a suitable atomic space Hi (R")(see [1, 14]), then [b,T] is bounded from
H}(R"™) to LP(R™) for p € (n/(n + 1),1]. In recent years, the theory of Herz
space and Herz type Hardy space, as a local version of Lebesgue space and
Hardy space, have been developed (see [8, 9, 11, 12]). The main purpose of
this paper is to establish the boundedness properties of some multilinear op-
erators related to certain non-convolution type singular integral operators on
Hardy and Herz type Hardy spaces. The operators include Calderén-Zygmund
singular integral operators.

2. NOTATIONS AND THEOREMS

In this paper, we study the singular integral operators as following. Let
T :S — S be a linear operator and there exists a locally integrable function
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K(z,y) on R" x R"\ {(z,y) € R" x R : x = y} such that

Tf(z)= [ K(z,y)f(y)dy
Rn
for every bounded and compactly supported function f, where K satisfies: for
fixede >0and n >0 >0,

K (2,y)| < Clz —y| ™
and
K (y,2) — K(2,2)| + |K (2,y) — K(,2)] < Cly — 2| — 2|77+

if 2|y —z| < |x—z|. Let m; be positive integers(i = 1,...,1), my+---+my =
and A; be some functions on R"(i = 1,...,[). The multilinear operator related
to T is defined by

H§:1 Ry1(As 2, y)

T4(f)(z) = — K(z,y)f(y)dy,
Rn |z =y
where
Ry+1(Aiz,y) Z —D’BA —y)~.
‘/B|<mz

Note that when m = 0, T is just the multilinear commutator of T' and A (see
[16]). While when m > 0, T is non-trivial generalizations of the commutator.
It is well known that multilinear operators are of great interest in harmonic
analysis and have been widely studied by many authors (see [3, 5, 4, 13]). In
[7], the weighted LP(p > 1)-boundedness of the multilinear operator related to
some singular integral operator are obtained. The main purpose of this paper
is to study the boundedness of the multilinear singular integral operator 74
on some Hardy and Herz-Hardy spaces.

First, let us introduce some notations. Throughout this paper, ) will denote
a cube of R" with sides parallel to the axes. For any locally integrable function
f, the sharp function of f is defined by

#(x) = d
f7( = sup |Q|/|f — foldy,

where, and in what follows, fo = |Q|™* fQ x)dz. Tt is well-known that (see
[10])
o) msupint o [ 17(0) — eldy
Q1 Jq

er ceC
We say that f belongs to BMO(R") if f# belongs to L>*(R") and || f||zmo =
1 #]] e

Definition 1. Let A; be some function on R™ and m; be positive integers(i =
L...;,0),m+---+m=mand 0 <p<1. A bounded measurable function
a on R" is said to be a (p, D"™A) atom if
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i) suppa C Q = Q(xq,r),

") HGHLOO <1QIV,

iii fR” dy—fRn H \DPA,(y)dy = 0 for |B] =m0 =1,...,1
andkzl o0

A tempered distribution f is said to belong to HY.. ,(R™), if, in the Schwartz
distributional sense, it can be written as

r) = Aa(x)
j=1
where a;’s are (p, D™A) atoms, \; € C and 77, |\j|P < oo. Moreover,

. 1/p
11, ~ (550 A1)

Definition 2. Let 0 < p,q < 00, « € R. For k € Z, define By = {zr € R" :
|z| < 28} and Cy, = By \ Bi_1. Denote by x; the characteristic function of Cj,
and Yo the characteristic function of B,.

The homogeneous Herz space is defined by

(1) KgP(R") = {f € Li,o(R"\{0}) : [|fl| g < o0},

where

s 1/p
111550 = [Z Qkapnkawzq] |

k=—o00

The nonhomogeneous Herz space is defined by

(2) KgP(R") = {f € Lie(R") = [[fll g < 00},

where
00 1/p
1l xer = [Z 257|| x| [0 + I\fXBollﬁq] :
k=1

Definition 3. Let A; be a function on R" and m; be positive integers (i =
L...,),m+-+m=macR 0<p<oo,1<qg<oco. A function a(z)
on R" is called a central («,q, D™A)-atom (or a central (a,q, D™A)-atom of
restrict type), if
1) suppa C B(0,r) for some r > 0 (or for some r > 1),
) HaHLq < [B(0, 7”)l_o‘/"

3) [pnalz)dz = [, af ) 1, DPAi(y)dy = 0 for |B] = my,i = 1,...,1

and k=1,...,[;
A tempered distribution f is said to belong to HK;ﬁmA(R") (or HK B 4 (R7)),
if it can be written as f =372 Aja; (or f =37, Aja;) in the S'(R") sense,
where a; is a central (a, ¢, D™A)-atom (or a central (a, g, D™A)-atom of re-
strict type) supported on B(0,27) and 3377 [A;[P < oo(or 3072, [P < o00),
moreover, ||f||HKap

s~ (S r)

j—foo

(or [[fllmxep
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Now, we can state our results as following.

Theorem 1. Let max(n/(n+1),n/(n+¢ec—9)) <q¢<1,1/¢=1/p—4d/n,
DPA; € BMO(R™) for all B with |3| = m; and i =1,...,1. Suppose that T4
is bounded from L*(R"™) to L"(R"™) for any 1 < s <n/d and 1/r =1/s —d/n.
Then T4 is bounded from HY.,. ,(R™) to LI(R™).

Theorem 2. Let0 < p < oo, 1 <q1,q0 <00, 1/q1—1/q2 =0/n, n(1—1/q) <
a <min(n(l —1/q) + 1,n(l — 1/q) + ¢) and DPA; € BMO(R"™) for all 3
with |B] = m; and i = 1,...,1. Suppose that T is bounded from L*(R") to
L"(R™) for any 1 < s <n/§ and 1/r = 1/s —6/n. Then T is bounded from
HEKS",, (RY) to K&P(R™).

Remark 1. Theorem 2 is also hold for nonhomogeneous Herz and Herz type
Hardy space.

3. PROOFS OF THEOREMS

To prove the theorems, we need the following lemma.

Lemma 1 (see [4]). Let A be a function on R® and DPA € L1(R") for |3| = m
and some q > n. Then

1 1/f1
[R50, < Ol —l™ 3 (IQ(::: y)l /Q( )|D6A(Z)|de) ’
) ﬁ’y

|8]=m
where Q(x,y) is the cube centered at x and having side length 5v/nlz — y).

Proof of Theorem 1: It suffices to prove that there exists a constant C' > 0
such that for every (p, D™A) atom a,

174 ()]s < C.

Let a be a (p, D™A) atom supported on a cube @ = Q(zo,d). We write

/ 7% (a)(2)|"dx :/ |74 (a)(x)|"dx +/ T4 (a)(2)| e = T +I1.

" 2Q (2Q)°

For I, taking r,s > 1 with ¢ < s < n/d and 1/r = 1/s — §/n, by Holder’s
inequality and the (L®, L")-boundedness of T*, we get

1< CITA (@14 1Q(o, 20) " < Cllall4.|QI" < ClQ|-/ro/*+1-9 < ¢

To obtain the estimate of I1, we need to estimate T (a) (z) for z € (2Q)".
Without loss of generality, we may assume [ = 2. Let Aj(z) = Ai(z) —
> Bl=ms é(DﬁAi)Qxﬂ. Then R, (As; 2,y) = R, (As;x,y) and DPA; = DPA;—

i
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(DPA;)q for |B] = m;. We write, by the vanishing moment of a,

T4(a)(z) = /Rn {K(:c,y) - M) Ry, (Av; 2, y) Ry (A 2, y)a(y) dy

N

K(x, i A A
* / |(x—x0)[Rm1 (Al; z, y) - Rm1 (Al; x, IO)]RTM (AQ; Z, y)a(y)dy
Rn

T — xo|™

K(z, i A A
+ / | (x xO) [RWLQ(AQ;I)y) - Rmz(AZ;xamO)]le (Al;x’x())a(y)dy
Rn

x—x0|m

—y)®?  K(x,x0)(x — 20)”
Z 52 /n{ ’fﬂ—y’m - |z — mo|™ -

|B2|=m2

x le (A2, y) D™ Ay (y)a(y)dy

K(z,z0)(z — x B2 ~ r
Z 0)( — 0) (R, (Av;2,y) — Ry (A1 1, 20)] X
|Gal=m2 52 o

X DB2A2< Ja(y)dy
—y)" K(x,20) (2 — 20)™
Z 51 /n [ |I_y|m |z — xo[™ )

|B1]=m1
X Rm2 (1212; z y)Dﬁl 1211 (y)a(y)dy

Z 52 K x xO)(x — :EO)IBI [Rnu (A% T, y) - RmQ(AQ’ L 1’0)] x

611=m v = 2ol
X Dﬁlfh(y)a(y)dy
3 1 / [K(ﬂf,y)(l' — Y K(z,zo) (@ — wo) T
B =y ol =ms pilB2! J e |z —y|™ |z — zo|™
x DP' Ay (y)DP2 Ay (y)a(y)dy
= IL(x) + I Iy(x) + I I3(x) + [ 1,(x) + II5(x) + [Ig(x) + 117 (x) + Ig(x).
By Lemma and the following inequality (see [17])

by — bo,| < Clog(|Qa|/[@1N)IIbl|Bro  for Q1 C Qo
we know that, for y € Q and x € 281Q \ 2*Q,
| Bon, (Ais 2, 9)| < Cle —y™ Y~ (1D Aillpao + [(D° Ai) ey — (D A)al)

|8]=m;

y[™ Z |D” AillByo-
|Bl=m;

Note that |v — y| ~ |z — x| for y € Q and x € R" \ 2(Q), we obtain, by the
condition on K,

(11 ()] <

+

< Cklx —
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IN

2
|y — | ly — xol° <
¢ /Rn (|ZL‘ — po|mtntl=o + N H | R, (Ais 2, y)|a(y)|dy
=1

2 €
= H Z | | || Baro / (\x o[ 10 + |z — ao|m+e—? |ay)|dy

=1\ [Bil=mi

2
. |Q|1/n+1—1/p ’Q|e/n+1—1/p
<CcII| X lIP*Aillewo | ¥ (‘ + :

— +1-6 — +e—4
=1\ |ul=m; = ol = ol

For I15(z), by the formula (see [5]):
R (Ai; 2, y) — R, (Ais 2, 20) Z le (DY Ay 2, m0) (0 — )
Iv[<m; )
and Lemma, we have

| R, (s 2,y) =R, Ay, 20)| < C DY 0 > fa—a0

[vl<mg |Bl=m;

mi—lvl’x_y“vIHDﬁAiHBMo’

thus

- ly — 0|
[115(z)| SC'H Z 1D Ail | aro /ka| a(y)|dy
=1\ |Bil=m;
2 1/n+1—1/p
<cTI( X 10w | 2

=L \Jil=m; = =l

Similarly,

2 5 ‘Q|1/n+1—1/p
11 <C DPA; k————————
[[13(z)] < H Z | |lBro -

_ +1-6"
=1\ |Bil=m; | wo|"

For I1,(z), similar to the proof of I1;(x) and I1;(x), we get

1/n—1/p g/n—1/p
L) <C > |ID"Alllsyo Y k( @ L >><

|B1]=m1 |B2|=m2 |£C B x0’n+1*5 |$ B xo‘”ﬂf*‘s

< [ 10" 42(9) ~ (D> A)oldy
Q

2 1/n+1-1/p e/n+1-1/p
<CII{ X IIP%Aillsuo k<||Q| 4+ 19 )

— +1-6 — +e—4d
=L \|gi=m: @ = 2ol" [ = ol
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Similarly,

2 Q1 1-1/p
[115(x)] < CH Z |D% Ayl Baso | k

|z — 2|10

1/n+1-1/p e/n+1-1/p
(2 Py

|x — x0|n+1—6 |x — x0|n+a—5

2
@) < O] | 32 107 Adllsao
=1

|Q|1/n+1—1/p

|z — 2|10

2
[117(x)| < CH Z ID% Ail|syo | k
i=1

For Ig(x), taking 1 < ry, 7y < oo such that 1/r; +1/ry = 1, then, by Holder’s
inequality,

[11s(z)] <
<C Z / Z)ﬁ1+52 B K(I7x0)(x _ :fr?)&Jrﬁz y
sl Toal=ms |56—y| |z — 2o
x| DL A, (y)]| D% Ay (y)||a(y)|dy
1/r
<C ) (/ |D A (y) — (DﬁlAl)QVld?/)
|B1]=m1 Q
1/r2 |Q|1/n71/p |Q|5/n71/p
D Ay(y) — (D™ Ay)q|™d
XZ(/| ) | y) (ll‘—l‘o|n+1_§ + |JZ—ZL‘0|”+6_5)

|B2|=m2

2
4 Q|1/n+1—1/p |Q|a/n+1—1/p
C D% A; | :
= H Z ] a0 (]:c N + |z — mo|te?
=1\ |Bil=mi
Thus, recall that max(n/(n+ 1),n/(n+¢ec—=9)) < ¢ <1,

o)

1< / T4(a)(2)|%dx
3 BRCC

2 00
<C .DﬁlflZ / k?QqX
<CII{ > ID* Ao z o

=1\ |Bi|l=m;
1/n+1-1/p e/n+1-1/p \ ¢
(12 . 1ol ) e

|x — x0|n+1—5 |fL‘ _ xoln-&-s—é

q

2 0
<C H Z ||D'8iAi||BMO Z qu[anq(l/p—l/n—l) + Qk‘ntJ(l/P—&/n—l)]
=1\ |Bi|l=m; k=1
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2
<C H Z HDﬁiAiHBMO
i=1

|B:|=m;

q

This completes the proof of Theorem 1. 0
Proof of Theorem 2: Without loss of generality, we may assume [ = 2. Let
fe HK apma(R") and f(z) =377 Ajaj(z) be the atomic decomposition
for f as in Definition 3. We write

k—3 p
AN < > Qkap(z |Aj|||TA<aj>xk||m)

k=—00 Jj=—00
o] 0o p
)2 ( > M]-\HTA(aj)xkuL@)
k=—0o0 Jj=k—2
=J+ JJ

For JJ, by the (L%, L%)-boundedness of T4, we get

00 00 p
JI<C Y g ( > |Aj|rrajum>
J 2

k=—o0 =
oo 00 p
<C Z okap < Z |)‘j|2ja>
k=—00 j=k—2
_ C’Zk—_kaap( o ha [AP27 ]Ozp), O<p<1
B e —J o] —iap’ p/p’
e [ L
CT o Wb (S 2670, 0<p<i
< /
> CZ]——oo R¥1 <Z]+2 (k—j ap/2> <ZJ+ o (k— j)ap//2>p/p e
ey s NI s
a1

j=—00
For J, similar to the proof of Theorem 1, we get, for z € Cy, j < k — 3,

|74 (a;) ()] <

2
| BV By
<cII{ X 1% allao | (52 + 2255) [ sy

o Bl By 6
+C Z 107 Au[Byro |$|n+16 || +e=d Z n|a] wID™ As(y)|dy

|B1]=m1 |B2|=m2
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6 IBj|1/" | B[/ 61
+C Z 1D Ao Brmo |I|n+1—5 |w|te—d Z n|a3 IID Al( )ldy

|B2]|=m2 |B1]=m1

B.|1/n B.|e/m
¢ (]’33|er15 + |L‘Z‘+56) Z / |aj ||Dﬂ1A1( )||D62A2( )|dy

|B1]=m1,|B2|=m2

9i(14+n(1-1/a1)~a)  9j(=+n(1-1/q1)~a)
< C ( ‘x’n+176 + )

s
To be simply, denote W (j, k) = 20—k (+n(=1/a)=a) 4 9(i=k)(e+n(1=1/a1)=e) ‘then
o] k—3 . .
2i(1+n(1-1/q1)=)  9j(e+n(l=1/q1)—a)]P
ko ‘ knp/
J=C Z 2 ( Z |>\J|p |: 2k(n+1-0) + 9k(n+e—9) :| 2
k=—oc0 Jj=—00
Cy o NP2 s WL, 0<p<1 .
) 1P/P
O3 P [ s W0 K2 [ s WGP p>1

<C Z Al < CUAI, o

j==o0

These yield the desired result and finish the proof of Theorem 2. U

DM A

4. EXAMPLES

In this section we shall apply Theorem 1 and 2 of the paper to the Calderén-
Zygmund singular integral operator.

Let T be the Calder6n-Zygmund operator (see [2, 10, 15, 18], the multilinear
operator related to 1" is defined by

A _ H§:1 Rmi'f‘l(Ai; xz, y)
T = [ e

In particular, the multilinear commutator related to T is (see [11])

(f)e) = |

Then it is easily to see that T satisfies the conditions in Theorem 1 and 2.

K(z,y)f(y)dy.

K(z,y)f(y)dy.
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