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ON E-CURVATURE OF R-QUADRATIC FINSLER METRICS
A. TAYEBI AND E. PEYGHAN

ABSTRACT. In this paper, we prove that every R-quadratic Finsler met-
ric with constant Douglas curvature along any geodesics has vanishing E-
curvature. It result that R-quadratic Randers metric satisfies S = 0.

1. INTRODUCTION

Let F' be a Finsler metric on a manifold M. The geodesics of F' are charac-
terized locally by the equation % +2G(z, %) = 0, where G* are coefficients
of a spray defined on M denoted by G(z,y) = y's% — 2Gia%i. A Finsler metric
F is called a Berwald metric if G* = 3T (x)y’y* are quadratic in y € T, M for
any x € M. Taking a trace of Berwald curvature yields mean Berwald curva-
ture E. In [12], Shen find a new non-Riemannian quantity for Finsler metrics
that is closely related to the mean Berwald curvature and call it E-curvature.
Recall that E-curvature is obtained from the mean Berwald curvature by the
covariant horizontal differentiation along geodesics.

The second variation of geodesics gives rise to a family of linear maps R, :
T,M — T, M, at any point y € T, M. R, is called the Riemann curvature in
the direction y. There are many Finsler metrics whose Riemann curvature in
every direction is quadratic. A Finsler metric F' is said to be R-quadratic if
R, is quadratic in y € T, M at each point x € M. Indeed a Finsler metric is
R-quadratic if and only if the h-curvature of Berwald connection depends on
position only in the sense of Bacsé—Matsumoto [3]. It is remarkable that, the
notion of R-quadratic Finsler metrics was introduced by Shen, which can be
considered as a generalization of Berwald metrics and R-flat metrics [4, 13, 8].
In this paper, we prove the following.

Theorem 1.1. Let F' be a R-quadratic Finsler metric. Suppose that the Dou-
glas curvature of F' is constant along any Finslerian geodesics. Then E = 0.
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In [1], Akbar-Zadeh considered a non-Riemannian quantity H which is ob-
tained from the mean Berwald curvature by the covariant horizontal differen-
tiation along geodesics. In the class of Weyl metrics, vanishing this quantity
results that the Finsler metric is of constant flag curvature and this fact clarifies
its geometric meaning [1, 10]. By the definition, if E = 0 then H = 0.

In [8], it is proved that if F' is a R-quadratic Finsler metric then H = 0.
Then Mo consider H-curvature of Finsler manifolds and get a new proof for
this fact [7]. Recently, Li-Shen prove that every R-quadratic Randers metric
has constant non-Riemannian invariant S-curvature [6]. Then Tang proved
that for a Randers metric H = 0 if and only if S = 0 [14]. Therefore, we can
conclude the following.

Corollary 1. Let F' be a R-quadratic Randers metric. Then S = 0.

There are many connections in Finsler geometry [15, 16]. In this paper, we
use the Berwald connection and denote the h- and v- covariant derivatives of
a Finsler tensor field by “ | ” and “, ” respectively.

2. PRELIMINARIES

Let M be a n-dimensional C'** manifold. Denote by T, M the tangent space
at v € M, by TM = U,enT, M the tangent bundle of M, and by T'My, =
TM \ {0} the slit tangent bundle on M. A Finsler metric on M is a function
F :TM — [0, 00) which has the following properties:

(i) Fis C*° on T My;

(ii) F' is positively 1-homogeneous on the fibers of tangent bundle T'M;

(iii) for each y € T, M, the following quadratic form g, on T, M is positive
definite,

1
gy, (u,v) == 5 [FQ(y + su + tv)] |ls.t=0, u,v € T, M.

Let © € M and F, := F|r,p. To measure the non-Euclidean feature of F,
define C, : T,M @ T,M @ T,M — R by
1d
Cy(u7vvw) = 5% [gy+tw(u> U)] ‘t=07 u,v,w € Ty M.

The family C := {C, },ern, is called the Cartan torsion. It is well known that
C = 0 if and only if F'is Riemannian.

Given a Finsler manifold (M, F'), then a global vector field G is induced
by F on TM,, which in a standard coordinate (z°,y%) for T'My is given by

G=y'5 —2G" 8?/“ where G* = G'(x,y) are local functions on TM given by
1 0?[F?] 0[F?|
Gi = g { k_ } e T, M.

G is called the associated spray to (M, F'). The projection of an integral curve
of G is called a geodesic in M. In local coordinates, a curve c(t) is a geodesic
if and only if its coordinates (c'(t)) satisfy ¢ + 2G*(¢) = 0.
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For y € T, My, define B, : T,M @ T,M @ T,M — T,M and E, : T,M ®

T,M — R by B,(u,v,w) := BZ klujvkwlail o By(u,v) := Ejpuiv® where

; PG L ..
J oKL m, Ej(y) : _53 km>
U =1u d?:l 2 U = 6‘; and w = w' 8‘; . B and E are called the Berwald
curvature and mean Berwald curvature respectively. F'is called a Berwald
metric and weakly Berwald metric if B = 0 and E = 0, respectively [12].
Let

i i 1 0’ aG™

i k= Bjw = n + 1 0y dykoy! ( oy™ y )
It is easy to verify that D := D; wdr? ©0;@dr* @ dx is a well-defined tensor on
slit tangent bundle T'M,. We call D the Douglas tensor. The Douglas tensor
D is a non-Riemannian projective invariant, namely, if two Finsler metrics
F and F are projectively equivalent, G* = G + Py', where P = P(x,y) is
positively y-homogeneous of degree one, then the Douglas tensor of F' is same
as that of F' [5, 9, 11]. Finsler metrics with vanishing Douglas tensor are called
Douglas metrics. The notion of Douglas curvature was proposed by Bacsé and
Matsumoto as a generalization of Berwald curvature [2].

The quantity H, = H,;dx’ ® dz? is defined as the covariant derivative of E

along geodesics [10] More precisely

Hij = Eijjmy™
In local coordinates,
orG* orG*
2H;; = —2G" ——— — GmB* GmB ,
i=y" Oyt 0yI Qykox™ Oyt OyI Qykoy™ @7 km P km
where GZ = gG;.
y

The Rlemann curvature R, = R, dz" @
linear maps on tangent spaces, defined by
oG" 0?G" - 0*G" oG 0GY

-y’ +2G7 — — — .
oxk Ox QyF oyidyk  Oyi Oyk
For a flag P = span{y,u} C T, M with flagpole y, the flag curvature K =
K(P,y) is defined by

8902 T M — T, M is a family of

K(P y) ‘= gy(u7 Ry(u))
, 8y (Y, y)gy(u, u) — gy(y, u)?’
where g, = ¢;;(z,y)dz' @ dr?. We say that a Finsler metric F' is of scalar
curvature if for any y € T, M, the flag curvature K = K(x,y) is a scalar
function on the slit tangent bundle T'M,. If K = constant, then F' is said to
be of constant flag curvature.
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A Finsler metric F' is said to be R-quadratic if R, is quadratic in y € T, M
at each point x € M. Let

i 10 0R, ORI
Rj kl(xay) T 33y3{ ayl ayk}u

where R’ is the Riemann curvature of Berwald connection. Then we have
R}, = R} 1y (x,y)y’y'. Therefore R}, is quadratic in y € T, M if and only if R} ,
are functions of position alone. Indeed a Finsler metric is R-quadratic if and
only if the h-curvature of Berwald connection depends on position only in the
sense of Bacsé-Matsumoto [2].

By means of E-curvature, we can define Ey T MRQTMQT, M — R by

E,(u,v,w) == Eju(y)u'v’w",

where Eijk = Eijjr. We call it E-curvature. It is remarkable that, El-jk is
not totally symmetric in all three of its indices. By definition, if E = 0, then
E-curvature is covariantly constant along all horizontal directions on 7' M.

3. PROOF OF THEOREM 1.1
To prove the Theorem 1.1, we need the following:

Lemma 1.

(1) Eiymy™ = Hjkg — Ej.

Proof. The following Ricci identity for E;; is hold:

(2) Eijuk — Eijirg = Eijpz'kl + Eipojkl'

It follows from (2) that

(3) Ejiaimy™ = Ejkmay™ = [Ejrmy™ 1 — Ejkp-

This yields the (1). O

Lemma 2. Let F' be a R-quadratic Finsler metric. Then the Berwald curvature
of F' is constant along any Finslerian geodesics.

Proof. The curvature form of Berwald connection is

. ) ) 1_. )
(4) O =dw'; — Wb AW = §leklwk Aw! = B jw® A w
For the Berwald connection, we have the following structure equation
(5) dgij — g2 — gikaj = —2L;w" 4 20,0,

where Ly, := Cjjisy° is the Landsberg curvature. Differentiating (5) yields
the following Ricci identity

(6) 95 Q" — 9pi " = — 2Lijuw” A w' — 2L, 100% A W™t

— QCijukwk AWt — QCijl,kwnJrk AWt — 2C’iijplyl.
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Differentiating of (4) yields

(7) a7’ —wFAQ7 +wl AQF =0.

Define B;. kijm a0d Bl 1im by

(8) By — Brawi" = Bjuil' = Bl + Bjatp, = Bjpm™ + By ™.
Similarly, we define R’ ~and R, . by

(9) dRjyy — Ry} — Bjqwi' = R + Rijqwi, = Rjggn™ + R ™™

From (6), (7), (8) and (9) one obtain

(10) R; kijm + R; imlk T Ré' mk|l = Bgi' kw1 + B;' R + Bi 1wl

(11) B;' Ellm — B; mk|l — R; mil,k>
(12) sz' klom — B;' km,l*

By assumption and (11) we have

(13) B} wiim = B s
which contacting with y™, we conclude that
(14) B ™ = 0.

By (14), we conclude that the Berwald curvature of R-quadratic Finsler metric
is constant along any geodesics. 0

Corollary 2. ([7, 8]) Let F' be a R-quadratic Finsler metric. Then H = 0.

By (11) we have . . .
B;' milk — B;‘ km|l — R;' kl,m:
This implies that B -

Thus we get the following.

Corollary 3. Let F be a R-quadratic Finsler metric. Then E-curvature is
totally symmetric in all three of its indices.

Proof of Theorem 1.1:

. . 2 . . . .
(15) D'y =B — n—H{Ejkfsll + End’; + Eiyd'y + By}
Then
(16) D jkimY = B jkimY n——l—l Ejrmy™ 0", + Epmy™0 ;T Eijimy™o k)
2 m, i
- n—+1 GkImY Y -

It follows from (11) that
(17) Bijkl\mym = Rijml,kym'
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Then we have

(18) Ejpimy™ = Ry 9™
We obtain
(19)
Damy™ = R 9™ — nLH Rpjmp,kyméoé + Rplmp,jymCSak + Rpkmp,lyméaj}
- HL_HEjk,llmymyi-
By assumptions we have
(20) Ejkmy™y’ = 0.
Contracting (20) with y; yields
(21) Ejk,l\mym =0.
Considering (1), we conclude that Fjj, = 0. O

Corollary 4. Let F be a R-quadratic Douglas metric. Then E =0.

It is remarkable that, the assumption of R-quadraticness of a Finsler metric
is necessary in Theorem 1.1 and can not be dropped. For example, see the
following.

Example 1. Let

<
F=ly[+

TW, yETm]R”:]R"

where |.| and <, > denote the Euclidean norm and inner product on R” respec-
tively. F'is indeed a Randers metric on the whole of R™ and it is a projectively
flat Randers metric on R™ i.e., the spray coefficients are in the form G* = Py,
for a scalar function on T'M, given by

P =c(lyl -

<xz,y>
V1t |zf?

where ¢ = 1/2(1/1 + |z|?). Then F' is a Douglas metric. The flag curvature of

F' given by
3 lylv/ 1+ |z]2— <2,y >
41+ |23 |y /1 + 2P+ <z, y >

Therefore, this Randers metric is not R-quadratic. By a simple calculation,
we get Eyj, = (n+ 1)Pyx # 0.

),
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