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MAPS PRESERVING THE SPECTRUM OF CERTAIN
PRODUCTS OF OPERATORS

ALI TAGHAVI AND ROJA HOSSEINZADEH

Abstract. Let H be a complex Hilbert space, B(H) and S(H) be the
spaces of all bounded operators and all self-adjoint operators on H, respec-
tively. We give the concrete forms of the maps on B(H) and also S(H)
which preserve the spectrum of certain products of operators.

1. Introduction And Statement of the Results

The study of spectrum-preserving linear maps between Banach algebras goes
back to Frobenius [3] who studied linear maps on matrix algebras preserv-
ing the determinant. The following conjecture seems to be still open: Any
spectrum-preserving linear map from a unital Banach algebra onto a unital
semi-simple Banach algebra that preserves the unit is a Jordan morphism.
There are many other papers concerning this type of linear preservers; for
example, see [1, 6, 7, 10, 12].

Without assuming linearity, spectrum-preserving maps are almost arbitrary;
see [2, 5, 6, 9, 11]. In [9], Molnár considered multiplicatively spectrum-preserving
surjective maps on Banach algebras in the sense that the spectrum of the prod-
uct of the image of any two elements is equal to the spectrum of the product of
those two elements, and proved that the maps are almost isomorphisms in the
sense that isomorphisms multiplied by a signum function for the Banach al-
gebra of all complex-valued continuous functions on a first countable compact
Hausdorff space. In [5], the authors considered the same problem for triple
Jordan products of operators and proved that such maps must be Jordan iso-
morphisms multiplied by a cubic root of unity. Moreover, they extended the
results of [6].

The main aim of the present paper is to consider the spectrum preserving
of certain products of operators on the spaces of all self-adjoint operators and
also all bounded operators on a Hilbert space.
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We recall some notations. Let H be an infinite dimensional complex Hilbert
space, B(H) and S(H) be the spaces of all bounded operators and self-adjoint
operators on H, respectively. I denotes the identity operator and for any
operator A in B(H), σ(A) and |A| denote the spectrum of A and the absolute
value of A that is equal to (A∗A)1/2, respectively. If A ∈ B(H), then f(t) = tr

is continuous and nonnegative on σ(|A|) for any positive rational number r.
Hence f belongs to C(σ(|A|)). By the continuous functional calculus, f(A) =
|A|r belongs to B(H). If P ∈ B(H) is self-adjoint and P 2 = P , then P is called
projection. The set of all projections on H is denoted by P(H). If x, y ∈ H,
then x⊗ y stands for the operator of rank at most one defined by

(x⊗ y)z =< z, y > x (z ∈ H).

The set of all rank-one operators on H is denoted by F1(H). The set of all
rank-one projections on H is denoted by P1(H).

Let A ∈ B(H) be a finite-rank operator. On the set of all finite-rank opera-
tors on H, one can define the trace functional tr by

trA =
n∑

i=1

< xi, yi >,

where A =
∑n

i=1 xi ⊗ yi. Then tr is a well-defined linear functional.
Our main results are the follows.

Theorem 1. Let H be a complex Hilbert space, r and s positive rational num-
bers such that r + s > 1 and φ : S(H) → S(H) a surjective function which
satisfies

(∗) σ(|A|rB|A|s) = σ(|φ(A)|rφ(B)|φ(A)|s)
for all A in P1(H) ∪ {I} and B in S(H). Then there exists a bounded linear
or conjugate linear bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for all A ∈ S(H).

Theorem 2. Let H be a complex Hilbert space, r a positive rational number
such that r > 1 and φ : S(H) → S(H) a surjective function which satisfies

σ(|A|rB) = σ(|φ(A)|rφ(B))

for all A in P1(H) ∪ {I} and B in S(H). Then there exists a bounded linear
or conjugate linear bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for all A ∈ S(H).

Theorem 3. Let H be a complex Hilbert space, r a positive rational number
such that r > 1 and φ : B(H) → B(H) a surjective function which satisfies

σ(|A|rB) = σ(|φ(A)|rφ(B))
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for all A,B ∈ B(H). Then there exists a bounded linear or conjugate linear
bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for all A ∈ B(H).

Theorem 4. Let r and s be positive rational numbers such that r+ s > 1 and
φ : B(H) → B(H) a surjective function which satisfies

(∗) σ(|A|rB|A|s) = σ(|φ(A)|rφ(B)|φ(A)|s)
for all A,B ∈ B(H). Then there exists a bounded linear or conjugate linear
bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for all A ∈ B(H).

2. Proofs

We use the following propositions and theorem to prove our results.
The following proposition is useful criteria for characterizing rank-one pro-

jections.

Proposition 1. Let A ∈ P(H). Then the following statements are equivalent.

(a) A is rank-one.
(b) A 6= 0 and card(σ(AT ) \ {0}) ≤ 1 for all T ∈ S(H).

Proof. In order to complete the proof, it is sufficient to prove that (b) implies
(a). Assume on the contrary that there exist y1, y2 in the range of A such that
are linearly independent. Without loss of generality, suppose that ‖y1‖ = 1. If

z1 =
y2− < y2, y1 > y1

‖y2− < y2, y1 > y1‖
then ‖z1‖ = 1 and < y1, z1 >= 0. Let S = ay1⊗y1+ bz1⊗ z1 for some nonzero
and different reals a and b. It is easy to check that S ∈ S(H), ASy1 = ay1 and
ASz1 = bz1, because Ay1 = y1 and Ay2 = y2. Hence a, b ∈ σ(AS). This is a
contradiction and so the proof is completed. �
Proposition 2. Let A ∈ B(H). Then the following statements hold.

(a) Let A be a positive operator and r a positive rational number. A is
rank-one if and only if Ar is.

(b) A is rank-one if and only if |A| is.

Proof. (a) If A is rank-one, it is clear that Ar is rank-one. Let m and n be
natural numbers such that r = m

n
. It is enough to prove that A is rank-one

when Am is rank-one, because if A
m
n is rank-one, then it is clear that Am is

rank-one. Assume that Am is rank-one but Am−1 isn’t. Then there are vectors
y1, y2 ∈ RanAm−1 such that y1 and y2 are linearly independent. Since Am is
rank-one, Ay1 and Ay2 are linearly dependent. So there exist scalars a, b ∈ C
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with ab 6= 0 such that aAy1 + bAy2 = 0 which implies ay1 + by2 ∈ kerA. Since
A is positive, ay1 + by2 ∈ (RanA)⊥. On the other hand, ay1 + by2 ∈ RanA.
So we obtain ay1 + by2 = 0 which implies the linear independence of y1 and
y2 that is contradiction. Therefore Am−1 is rank-one. Inductively, it can be
concluded that A is rank-one.

(b) The statement ”A is rank-one if and only if A∗A is” is proved similar to
the previous part. Now since |A| = (A∗A)1/2, the assertion can be concluded
from (a). �
Proposition 3. Let A ∈ S(H) and x ∈ H. Then Ax = 0 if and only if
|A|x = 0.

Proof. Assertion follows easily from the following equalities

< Ax,Ax >=< A2x, x >=< |A|2x, x >=< |A|x, |A|x > . �
We use the following theorem to give the general forms of maps satisfying

the hypothesis of the mentioned main results.

Theorem 5 ([15]). Let H be a complex Hilbert space, and let L : S(H) → S(H)
be an R-linear and weakly continuous operator. If L(P1(H)) = P1(H), then
there exists a bounded linear or conjugate linear bijection T : H → H satisfying
T ∗ = T−1 such that L(A) = TAT ∗ for all A ∈ S(H).

Proof of Theorem 1. We prove that φ is a continuous additive bijection of S(H)
that preserves rank-one projections in both directions. In order to prove this
assertion we divide the proof into several steps.

Step 1. Let B ∈ S(H). B = 0 if and only if φ(B) = 0. Since φ is surjective,
there exists B ∈ S(H) such that φ(B) = 0. So by (∗) we have

σ(|A|rB|A|s) = {0}
for all A ∈ P1(H). This implies

{0, < Bx, x >} = {0}
for all x from unit ball, which yields B = 0.

Step 2. φ(I) = I. First we assert that |φ(I)| r+s
2 φ(I)|φ(I)| r+s

2 = I. The
condition (∗) yields

σ(|φ(I)|
r+s
2 φ(I)|φ(I)|

r+s
2 ) ∪ {0} = σ(|φ(I)|r+s|φ(I)) ∪ {0}

= σ(|φ(I)|rφ(I)|φ(I)|s) ∪ {0}
= σ(I) ∪ {0}
= {0, 1}.

Hence |φ(I)| r+s
2 φ(I)|φ(I)| r+s

2 is a projection. So in order to complete the proof

of assertion, it is enough to show that |φ(I)| r+s
2 φ(I)|φ(I)| r+s

2 is injective. First
we show that |φ(I)|r+s is injective. Because if x ∈ H such that |φ(I)|r+sx = 0,
then we have

< |φ(I)|r+sx, x >= 0
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and hence

0 = σ(|φ(I)|r+sx⊗ x) = σ(|φ(I)|rx⊗ x|φ(I)|s).
From (∗) we obtain σ(A) = 0 where A is an operator such that φ(A) = x⊗ x.
This implies that A = 0. So by Step 1, x = 0 and therefore |φ(I)|r+s is
injective.

Now let x ∈ H such that |φ(I)| r+s
2 φ(I)|φ(I)| r+s

2 x = 0. The injectivity of

|φ(I)|r+s yields the injectivity of |φ(I)| r+s
2 . So φ(I)|φ(I)| r+s

2 x = 0. By Propo-

sition 3, We have |φ(I)| r+s
2

+1x = 0. The condition r+ s > 1 together with the

injectivity of |φ(I)|r+s and also |φ(I)| r+s
2 yields x = 0 and this completes the

proof of assertion.
From assertion we can conclude that |φ(I)| r+s

2 is invertible which multiplying

by |φ(I)| r+s
2 from right and then by |φ(I)|− r+s

2 from left follows

φ(I)|φ(I)|r+s = I

and hence

φ(I) = φ(I)|φ(I)|r+sφ(I).

So φ(I) ≥ 0, because we have

φ(I) = [φ(I)|φ(I)|−
r+s
2 ][|φ(I)|−

r+s
2 φ(I)]∗.

φ(I) ≥ 0 and condition (∗) imply

1 = σ(I) = σ(|φ(I)|rφ(I)|φ(I)|s) = σ(φ(I)r+s+1).

Therefore φ(I) = I and this completes the proof.
Step 3. φ is injective. Let φ(B) = φ(B′). By (∗) we obtain

σ(|A|rB|A|s) = σ(|A|rB′|A|s)
for all A ∈ P1(H). This implies

{0, < Bx, x >} = {0, < B′x, x >}
and so

< (B −B′)x, x >= 0

for all x from unit ball, which yields B = B′ and thus φ is injective.
Step 4. φ preserves the projections and also the rank-one projections in both

directions. (∗) and Step 2 yield that σ(B) = σ(φ(B)) for all B ∈ S(H). So
it is clear that B is a projection if and only if φ(B) is. Now let P ∈ P1(H).
Since φ(P ) is idempotent, by (∗) we obtain

(1) σ(PB) \ {0} = σ(φ(P )φ(B)) \ {0}
for all B ∈ S(H). On the other hand, by Proposition 1. we have P 6= 0 and
card(σ(PB) \ {0}) ≤ 1 for all B ∈ S(H). This together with (1), surjectivity
of φ and Step 1 follows that φ(P ) 6= 0 and card(σ(φ(P )B′) \ {0}) ≤ 1 for all
B′ ∈ S(H). Again by Proposition 1. we infer that φ(P ) is rank-one. Hence φ
preserves the rank-one projections. Since φ is injective and φ−1 has the same
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properties of φ, the rank-one projections are preserved by φ in both directions
and this completes the proof.

Step 5. φ is additive. Step 4 and (∗) imply that

tr(ABA) = tr(φ(A)φ(B)φ(A))

for all A ∈ P1(H) and B ∈ S(H). So the assertion can be proved in a very
similar way as the discussion in [9].

Step 6. φ is continuous. We know that σ(A) = σ(φ(A)) for all A ∈ S(H).
By this fact and Step 5, we can conclude that φ is continuous.

So by above steps, φ is a continuous additive bijection of S(H) preserving
the rank-one projections in both directions. The forms of such transformations
is given in Theorem 5. So there exists a bounded linear or conjugate linear
bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for any A ∈ S(H). Therefore the proof of Theorem 1. is complete. �
Proof of Theorem 2. is similar to the proof of Theorem 1.

Proof of Theorem 1.3. We prove that φ is a bijective linear map that preserves
self-adjoint operators in both directions. In order to prove this assertion we
divide the proof into several steps.

Step 1. φ is injective. Let φ(B) = φ(B′). By (∗∗) we obtain

σ(|A|rB) = σ(|A|rB′)

for all A ∈ B(H) and so for all A ∈ P1(H). This implies

{0, < Bx, x >} = {0, < B′x, x >}
and so

< (B −B′)x, x >= 0

for all x from unit ball, which yields B = B′ and thus φ is injective.
Step 2. Let A ∈ B(H). |A|r = 0 if and only if |φ(A)|r = 0. If |A|r = 0, then

by (∗∗) we have
σ(|φ(A)|rφ(B)) = {0}

for all B ∈ B(H). This and surjectivity of φ follow

{0, < |φ(A)|rx, x >} = {0}
for all x ∈ H, which yields |φ(A)|r = 0. The converse is proved similarly.

Step 3. φ preserves rank-one operators in both directions. By Definition 2.2
in [4] we have the following statement: A is rank-one if and only if A 6= 0 and
card(σ(AB) \ {0}) ≤ 1 for all B ∈ B(H).

Let A be rank-one. By Proposition 2.2, |A|r is rank-one and so |A|r 6= 0
and card(σ(|A|rB) \ {0}) ≤ 1 for all B ∈ B(H). By Step 2, (∗∗) and the
surjectivity of φ we obtain |φ(A)|r 6= 0 and card(σ(|φ(A)|rB′)\{0}) ≤ 1 for all
B′ ∈ B(H). This implies that |φ(A)|r is rank-one. Again using Proposition 2.
yields that φ(A) is rank-one. The converse is proved similarly.
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Step 4. φ is linear. Step 3 and (∗∗) yield
tr(|φ(A)|rφ(B)) = tr(|A|rB)

for all rank-one operator A and all B ∈ B(H). So the assertion can be proved
in a very similar way as the discussion in [9].

Step 5. φ preserves self-adjoint operators in both directions. Let y be an
arbitrary element from unit ball. By Step 3, there exists a rank-one operator
A ∈ B(H) such that φ(A) = y ⊗ y. Thus |A|r = x ⊗ x for some x ∈ H. Now
let B be a self-adjoint operator. So by (∗∗) we obtain

σ(x⊗B∗x) = σ(y ⊗ φ(B)∗y)

which implies

< Bx, x >=< φ(B)y, y > .

Since < Bx, x > is real, < φ(B)y, y > is real. This together with the arbitrari-
ness of y implies that φ(B) is self-adjoint. The converse is proved in a similar
way.

So by above steps, φ is a bijective linear map such that preserves self-adjoint
operators in both directions and satisfies in (∗∗). The forms of such transfor-
mations on S(H) is given in Theorem 2. So there exists a bounded linear or
conjugate linear bijection T : H → H satisfying T ∗ = T−1 such that

φ(A) = TAT ∗

for all A ∈ S(H). Now let A ∈ B(H) be arbitrary. Then there exist A1, A2 ∈
S(H) such that A = A1 + iA2. So we have

φ(A) = φ(A1 + iA2) = φ(A1) + iφ(A2) = TA1T
∗ + iTA2T

∗ = TAT ∗.

The proof is complete. �
Proof of Theorem 1.4. is similar to the proof of Theorem 1.3.
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